Advertisement

Mobility in MANET Using Robot: A Review

  • Farkhana Muchtar
  • Abdul Hanan Abdullah
  • Siti Nor Zawani Ahmmad
  • Yugal Kumar
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 958)

Abstract

Recently, MANET (Mobile Ad Hoc Network) researchers have shown increased interest towards using mobile robot technology for their testbed platforms. Despite the existence of articles that discuss the usage of mobile robot technology pertaining to MANET testbed from the perspective of MANET researcher, the discussion provided in the papers are rather lacklustre as it is not the sole purpose of those articles. Hence, this review aims to discuss MANET testbeds that were facilitated with mobile robot technology from previous undertaken researches. With the wealth of information provided in this paper, it is hoped that this paper will be the ultimate source of reference for other MANET researchers who need to choose the most suitable mobile robots with real mobility in their MANET testbeds.

Keywords

Mobile Ad Hoc Network MANET testbed Mobile robot Real mobility 

References

  1. 1.
    Ko, J., Stewart, B., Fox, D., Konolige, K., Limketkai, B.: A practical, decision-theoretic approach to multi-robot mapping and exploration. In: Proceedings of the 20003 IEEE/RSJ International Conference on Intelligent Robots and Systems, (IROS 2003), vol. 4, pp. 3232–3238 (2003).  https://doi.org/10.1109/iros.2003.1249654
  2. 2.
    Konolige, K., et al.: CentiBOTS: large-scale robot teams. In: Proceedings from the 2003 International Workshop on Multi-robot Systems: From Swarms to Intelligent Autonoma, vol. 2, pp. 193–204. Springer, Berlin (2003)Google Scholar
  3. 3.
    Konolige, K., et al.: Centibots: very large scale distributed robotic teams. In: Ang, M.H., Khatib, O. (eds.) Experimental Robotics IX. STAR, vol. 21, pp. 131–140. Springer, Heidelberg (2006).  https://doi.org/10.1007/11552246_13CrossRefGoogle Scholar
  4. 4.
    Fox, D., Ko, J., Konolige, K., Limketkai, B., Schulz, D., Stewart, B.: Distributed multi-robot exploration and mapping. Proc. IEEE 94(7), 1325–1339 (2006).  https://doi.org/10.1109/JPROC.2006.876927CrossRefGoogle Scholar
  5. 5.
    Stewart, B., Ko, J., Fox, D., Konolige, K.: The revisiting problem in mobile robot map building: a hierarchical bayesian approach. In: Uffe, K., Christopher, M. (eds.) Proceedings of the Nineteenth conference on Uncertainty in Artificial Intelligence (UAI’03), pp. 551–558. Morgan Kaufmann Publishers Inc., San Francisco (2002)Google Scholar
  6. 6.
    Sibley, G.T., Rahimi, M.H., Sukhatme, G.: Robomote: a tiny mobile robot platform for large-scale ad- hoc sensor networks. In: Proceedings of the 2002 IEEE International Conference on Robotics and Automation (ICRA 2002), vol. 2, pp. 1143–1148. IEEE (2002)Google Scholar
  7. 7.
    Rahimi, M., Shah, H., Sukhatme, G.S., Heideman, J., Estrin, D.: Studying the feasibility of energy harvesting in a mobile sensor network. In: Proceedings of the 2003 IEEE International Conference on Robotics and Automation (ICRA 2003), vol. 1, pp. 19–24 (2003).  https://doi.org/10.1109/robot.2003.1241567
  8. 8.
    Dhariwal, A., Sukhatme, G.S., Requicha, A.A.G.: Bacterium-inspired robots for environmental monitoring. In: Proceedings of the 2004 IEEE International Conference on Robotics and Automation, (ICRA 2004), vol. 2, pp. 1436–1443 (2004).  https://doi.org/10.1109/robot.2004.1308026
  9. 9.
    Dantu, K., Rahimi, M., Shah, H., Babel, S., Dhariwal, A., Sukhatme, G.: Robomote: enabling mobility in sensor networks. In: 4th International Symposium on Information Processing in Sensor Networks (IPSN 2005), pp. 404–409 (2005).  https://doi.org/10.1109/ipsn.2005.1440957
  10. 10.
    Dantu, K., Sukhatme, G.S.: Detecting and tracking level sets of scalar fields using a robotic sensor network. In: Proceedings of the 2007 IEEE International Conference on Robotics and Automation (ICRA 2007), pp. 3665–3672 (2007).  https://doi.org/10.1109/robot.2007.364040
  11. 11.
    Antonelli, G., Arrichiello, F., Caccavale, F., Marino, A.: Decentralized time-varying formation control for multi-robot systems. Int. J. Robot. Res. 33(7), 1029–1043 (2014).  https://doi.org/10.1177/0278364913519149CrossRefGoogle Scholar
  12. 12.
    Li, W., Shen, W.: Swarm behavior control of mobile multi-robots with wireless sensor networks. J. Netw. Comput. Appl. 34(4), 1398–1407 (2011).  https://doi.org/10.1016/j.jnca.2011.03.023CrossRefGoogle Scholar
  13. 13.
    White, B., Lepreau, J., Guruprasad, S.: Lowering the barrier to wireless and mobile experimentation. ACM SIGCOMM Comput. Commun. Rev. 33(1), 47–52 (2003).  https://doi.org/10.1145/774763.774770CrossRefGoogle Scholar
  14. 14.
    Jiménez-González, A., Martinez-de Dios, J.R., Ollero, A.: Testbeds for ubiquitous robotics: a survey. Robot. Auton. Syst. 61(12), 1487–1501 (2013).  https://doi.org/10.1016/j.robot.2013.07.006CrossRefGoogle Scholar
  15. 15.
    Johnson, D., Stack, T., Fish, R., Flickinger, D., Ricci, R., Lepreau, J.: TrueMobile: a mobile robotic wireless and sensor network testbed. In: Proceedings of the 25th Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM 2006). IEEE Computer Society (2006)Google Scholar
  16. 16.
    Johnson, D., et al.: Mobile emulab: a robotic wireless and sensor network testbed. In: Proceedings of the 25th International Conference on Computer Communications (INFOCOM 2006), pp. 1–12. IEEE (2006).  https://doi.org/10.1109/infocom.2006.182
  17. 17.
    Flickinger, D.M.: Motion planning and coordination of mobile robot behavior for medium scale distributed wireless network experiments. Master’s thesis, The University of Utah (2007)Google Scholar
  18. 18.
    Johnson, D., et al.: Robot couriers: precise mobility in a wireless network testbed. In: Proceedings of the 3rd International Conference on Embedded Networked Sensor Systems (SenSys 2005), pp. 276–277. ACM, New York (2005).  https://doi.org/10.1145/1098918.1098952
  19. 19.
    Johnson, D.: Design and implementation of a mobile wireless sensor network testbed. Master thesis, University of Utah (2010)Google Scholar
  20. 20.
    De, P.: Mint: a reconfigurable mobile multi-hop wireless network testbed. Ph.D. thesis, State University of New York at Stony Brook, Stony Brook (2007)Google Scholar
  21. 21.
    Krishnan, R., Raniwala, A., Chiueh, T.C.: Design of a channel characteristics-aware routing protocol. In: Proceedings of the 27th Conference on Computer Communications (INFOCOM 2008). IEEE (2008).  https://doi.org/10.1109/infocom.2008.314
  22. 22.
    Krishnan, R., Raniwala, A., Chiueh, T.C.: An empirical comparison of throughput-maximizing wireless mesh routing protocols. In: Proceedings of the 4th Annual International Conference in Wireless Internet (WICON 2008), pp. 40:1–40:9. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering). ICST, Brussels (2008)Google Scholar
  23. 23.
    Raniwala, A., Chiueh, T.C.: Evaluation of a wireless enterprise backbone network architecture. In: Proceedings of the 12th Annual IEEE Symposium on High Performance Interconnects (HOTI 2004), 22–24 August, pp. 98–104. IEEE Computer Society, Washington, DC (2004)Google Scholar
  24. 24.
    Raniwala, A., Chiueh, T.C.: Architecture and algorithms for an IEEE 802.11-based multi-channel wireless mesh network. In: Proceedings of the 24th Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM 2005), vol. 3, pp. 2223–2234 (2005).  https://doi.org/10.1109/infcom.2005.1498497
  25. 25.
    Raniwala, A., De, P., Sharma, S., Krishnan, R., Chiueh, T.C.: End-to-end flow fairness over IEEE based wireless mesh networks. In: Proceedings of the 26th Annual IEEE International Conference on Computer Communications (INFOCOM 2007). IEEE (2007).  https://doi.org/10.1109/infcom.2007.281
  26. 26.
    Raniwala, A., Gopalan, K., Chiueh, T.C.: Centralized channel assignment and routing algorithms for multi-channel wireless mesh networks. ACM SIGMOBILE Mob. Comput. Commun. Rev. 8(2), 50–65 (2004).  https://doi.org/10.1145/997122.997130CrossRefGoogle Scholar
  27. 27.
    De, P., Raniwala, A., Sharma, S., Chiueh, T.C.: MiNT: a miniaturized network testbed for mobile wireless research. In: Proceedings of the 24th Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM 2005), vol. 4, pp. 2731–2742 (2005).  https://doi.org/10.1109/infcom.2005.1498556
  28. 28.
    De, P., Raniwala, A., Sharma, S., Chiueh, T.C.: Design considerations for a multihop wireless network testbed. IEEE Commun. Mag. 43(10), 102–109 (2005).  https://doi.org/10.1109/mcom.2005.1522132CrossRefGoogle Scholar
  29. 29.
    De, P., et al.: MiNT-m: an autonomous mobile wireless experimentation platform. In: Proceedings of the 4th International Conference on Mobile Systems, Applications and Services (MobiSys 2006), pp. 124–137. ACM, New York (2006).  https://doi.org/10.1145/1134680.1134694
  30. 30.
    Mitchell, C., Munishwar, V., Singh, S., Wang, X., Gopalan, K., Abu-Ghazaleh, N.: Testbed design and localization in MiNT-2: a miniaturized robotic platform for wireless protocol development and emulation. In: First International Communication Systems and Networks and Workshops (COMSNETS 2009), pp. 1–10 (2009).  https://doi.org/10.1109/comsnets.2009.4808866
  31. 31.
    Munishwar, V., Singh, S., Wang, X., Mitchell, C., Gopalan, K., Abu-Ghazaleh, N.: On the accuracy of RFID-based localization in a mobile wireless network testbed. In: IEEE International Conference on Pervasive Computing and Communications (PerCom 2009), pp. 1–6 (2009).  https://doi.org/10.1109/percom.2009.4912872
  32. 32.
    Munishwar, V., Singh, S., Mitchell, C., Wang, X., Gopalan, K., Abu-Ghazaleh, N.: RFID based localization for a miniaturized robotic platform for wireless protocols evaluation. In: Proceedings of the 7th IEEE International Conference on Pervasive Computing and Communications (PerCom 2009), pp. 1–3 (2009).  https://doi.org/10.1109/percom.2009.4912794
  33. 33.
    Paine, N.A.: Design and development of a modular robot for research use. Master thesis, The University of Texas at Austin, USA (2010)Google Scholar
  34. 34.
    Stovall, D., Paine, N., Petz, A., Enderle, J., Julien, C., Vishwanath, S.: Pharos: an application-oriented testbed for heterogeneous wireless networking environments. Technical report TR- UTEDGE-2009-006, The University of Texas at Austin (2009)Google Scholar
  35. 35.
    Petz, A., Jun, T., Roy, N., Fok, C.-L., Julien, C.: Passive network-awareness for dynamic resource-constrained networks. In: Felber, P., Rouvoy, R. (eds.) DAIS 2011. LNCS, vol. 6723, pp. 106–121. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-21387-8_9CrossRefGoogle Scholar
  36. 36.
    Petz, A., Fok, C.L., Julien, C.: Experiences using a miniature vehicular network testbed. In: Proceedings of the Ninth ACM International Workshop on Vehicular Inter-networking, Systems, and Applications (VANET 2012), pp. 21–26. ACM, New York (2012).  https://doi.org/10.1145/2307888.2307894
  37. 37.
    Petz, A., Bednarczyk, A., Paine, N., Stovall, D., Julien, C.: MaDMAN: a middleware for delay-tolerant mobile ad-hoc networks. Technical report TR-UTEDGE-2010-011, University of Texas at Austin (2010)Google Scholar
  38. 38.
    Petz, A., Fok, C.L., Julien, C., Walker, B., Ardi, C.: Network coded routing in delay tolerant networks: an experience report. In: Proceedings of the 3rd Extreme Conference on Communication: The Amazon Expedition (ExtremeCom 2011), pp. 4:1–4:6. ACM, New York (2011).  https://doi.org/10.1145/2414393.2414397
  39. 39.
    Petz, A.: The Click Convergence Layer: Putting a Modular Router Under DTN2 (2010)Google Scholar
  40. 40.
    Fok, C., Petz, A., Stovall, D., Paine, N., Julien, C., Vishwanath, S.: Pharos: a testbed for mobile cyber-physical systems. Technical report TR-ARiSE-2011-001, University of Texas at Austin (2011)Google Scholar
  41. 41.
    Fok, C.L., et al.: A platform for evaluating autonomous intersection management policies. In: Proceedings of the IEEE/ACM Third International Conference on Cyber-Physical Systems (ICCPS 2012), pp. 87–96 (2012).  https://doi.org/10.1109/iccps.2012.17
  42. 42.
    Killijian, M.O., Roy, M., Severac, G.: ARUM: a cooperative middleware and an experimentation platform for mobile systems. In: Proceedings of the IEEE 6th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob 2010), pp. 442–449 (2010).  https://doi.org/10.1109/wimob.2010.5645030
  43. 43.
    Killijian, M.O., Roy, M., Severac, G.: The ARUM experimentation platform: an open tool to evaluate mobile systems applications. In: Rückert, U., Joaquin, S., Felix, W. (eds.) Advances in Autonomous Mini Robots, pp. 221–234. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-27482-4_22CrossRefGoogle Scholar
  44. 44.
    Killijian, M.-O., Roy, M.: Data backup for mobile nodes: a cooperative middleware and an experimentation platform. In: Casimiro, A., de Lemos, R., Gacek, C. (eds.) WADS 2009. LNCS, vol. 6420, pp. 53–73. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-17245-8_3CrossRefGoogle Scholar
  45. 45.
    Killijian, M.O., Powell, D., Roy, M., Sévérac, G.: Experimental evaluation of ubiquitous systems: why and how to reduce WiFi communication range. In: Proceedings of the 2nd International Conference on Distributed Event-Based Systems (DEBS 2008) (2008)Google Scholar
  46. 46.
    Federation for Future Internet Research and Experimentation (fed4fire): w-iLab.t - Fed4Fire (2015). http://www.fed4fire.eu/w-ilab-t/. Accessed 30 Nov 2015
  47. 47.
    Becue, P., Jooris, B., Sercu, V., Bouckaert, S., Moerman, I., Demeester, P.: Remote control of robots for setting up mobility scenarios during wireless experiments in the IBBT w-iLab.t. In: Korakis, T., Zink, M., Ott, M. (eds.) TridentCom 2012. LNICST, vol. 44, pp. 425–426. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-35576-9_51CrossRefGoogle Scholar
  48. 48.
    Moerman, I., et al.: Toolkit for wireless mobility testbeds. Deliverable report Deliverable D3.5, OpenLab (2014)Google Scholar
  49. 49.
    Bouckaert, S., Jooris, B., Becue, P., Moerman, I., Demeester, P.: The IBBT w-iLab.t: a large-scale generic experimentation facility for heterogeneous wireless networks. In: Korakis, T., Zink, M., Ott, M. (eds.) TridentCom 2012. LNICST, vol. 44, pp. 7–8. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-35576-9_4CrossRefGoogle Scholar
  50. 50.
    Abdelhadi, A., et al.: Position estimation of robotic mobile nodes in wireless testbed using GENI. In: Proceedings of the 2016 Annual IEEE Systems Conference (SysCon 2016), pp. 1–6. IEEE (2016)Google Scholar
  51. 51.
    Van Haute, T., et al.: Comparability of RF-based indoor localization solutions in heterogeneous environments: an experimental study. Int. J. Ad Hoc Ubiquit. Comput. 23(1–2), 92–114 (2015)Google Scholar
  52. 52.
    Bouckaert, S., Vandenberghe, W., Jooris, B., Moerman, I., Demeester, P.: The w-iLab.t testbed. In: Magedanz, T., Gavras, A., Thanh, N.H., Chase, J.S. (eds.) TridentCom 2010. LNICST, vol. 46, pp. 145–154. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-17851-1_11CrossRefGoogle Scholar
  53. 53.
    Neumann, A., López, E., Navarro, L.: Evaluation of mesh routing protocols for wireless community networks. Comput. Netw. Part 2 93, 308–323 (2015).  https://doi.org/10.1016/j.comnet.2015.07.018CrossRefGoogle Scholar
  54. 54.
    Viñas, R.B.: Evaluation of dynamic routing protocols on realistic wireless topologies. Ph.D. thesis, Autonomous University of Barcelona, Spain (2012)Google Scholar
  55. 55.
    Neumann, A., Lopez, E., Navarro, L.: An evaluation of BMX6 for community wireless networks. In: Proceedings of the 8th IEEE International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob 2012), pp. 651–658 (2012).  https://doi.org/10.1109/wimob.2012.6379145
  56. 56.
    Rensfelt, O., Hermans, F., Gunningberg, P., Larzon, L.Å., Björnemo, E.: Repeatable experiments with mobile nodes in a relocatable WSN testbed. Comput. J. 54(12), 1973–1986 (2011).  https://doi.org/10.1093/comjnl/bxr052CrossRefGoogle Scholar
  57. 57.
    Rensfelt, O., Ferm, F.H.C., Gunningberg, P., Larzon, L.Å.: Sensei-UU: a nomadic sensor network testbed supporting mobile nodes. Technical report 2009-025, Department of Information Technology, Uppsala University (2009)Google Scholar
  58. 58.
    Rensfelt, O., Hermans, F., Ferm, C., Larzon, L.A., Gunningberg, P.: Sensei - a flexible testbed for heterogeneous wireless sensor networks. In: Proceedings of the 5th International Conference on Testbeds and Research Infrastructures for the Development of Networks Communities and Workshops (TridentCom 2009), pp. 1–2 (2009).  https://doi.org/10.1109/tridentcom.2009.4976218
  59. 59.
    Rensfelt, O., Hermans, F., Larzon, L.Å., Gunningberg, P.: Sensei-UU: a relocatable sensor network testbed. In: Proceedings of the Fifth ACM International Workshop on Wireless Network Testbeds, Experimental Evaluation and Characterization (WiNTECH 2010), pp. 63–70. ACM, New York (2010).  https://doi.org/10.1145/1860079.1860091
  60. 60.
    Hermans, F., Rensfelt, O., Gunningberg, P., Larzon, L.-Å., Ngai, E.: Sensei-UU — a relocatable WSN testbed supporting repeatable node mobility. In: Magedanz, T., Gavras, A., Thanh, N.H., Chase, J.S. (eds.) TridentCom 2010. LNICST, vol. 46, pp. 612–614. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-17851-1_57CrossRefGoogle Scholar
  61. 61.
    Arora, A., Ertin, E., Ramnath, R., Nesterenko, M., Leal, W.: Kansei: a high-fidelity sensing testbed. IEEE Internet Comput. 10(2), 35–47 (2006).  https://doi.org/10.1109/MIC.2006.37CrossRefGoogle Scholar
  62. 62.
    Ertin, E., et al.: Kansei: a testbed for sensing at scale. In: The Fifth International Conference on Information Processing in Sensor Networks, IPSN 2006, pp. 399–406 (2006).  https://doi.org/10.1109/ipsn.2006.243879
  63. 63.
    Giordano, V., Ballal, P., Lewis, F., Turchiano, B., Zhang, J.B.: Supervisory control of mobile sensor networks: math formulation, simulation, and implementation. IEEE Trans. Syst. Man Cybern. Part B Cybern. 36(4), 806–819 (2006).  https://doi.org/10.1109/TSMCB.2006.870647CrossRefGoogle Scholar
  64. 64.
    Jayasingha, D., Jayawardhane, N., Karunanayake, P., Karunarathne, G., Dias, D.: Wireless sensor network testbed for mobile data communication. In: Proceedings of the 4th International Conference on Information and Automation for Sustainability (ICIAFS 2008), pp. 97–103 (2008).  https://doi.org/10.1109/iciafs.2008.4783994
  65. 65.
    Forster, A., et al.: MOTEL: towards flexible mobile wireless sensor network testbeds. In: Proceedings of the 8th European Conference on Wireless Sensor Networks (EWSN 2011), Bonn, Germany, February 2011Google Scholar
  66. 66.
    Jiménez-González, A., Martínez-de Dios, J., Ollero, A.: An integrated testbed for heterogeneous mobile robots and other cooperating objects. In: Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2010), pp. 3327–3332 (2010).  https://doi.org/10.1109/iros.2010.5650665
  67. 67.
    Jimenez-Gonzalez, A., Martinez-De Dios, J.R., Ollero, A.: An integrated testbed for cooperative perception with heterogeneous mobile and static sensors. Sensors 11(12), 11516–11543 (2011).  https://doi.org/10.3390/s111211516CrossRefGoogle Scholar
  68. 68.
    Martinez-de Dios, J.R., Jimenez-Gonzalez, A., de San Bernabe, A., Ollero, A.: Introduction. In: Martinez-de Dios, J.R., Jimenez-Gonzalez, A., de San Bernabe, A., Ollero, A. (eds.) A Remote Integrated Testbed for Cooperating Objects. SpringerBriefs in Electrical and Computer Engineering, pp. 1–4. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-01372-5_1CrossRefGoogle Scholar
  69. 69.
    Martinez-de Dios, J.R., Jimenez-Gonzalez, A., de San Bernabe, A., Ollero, A.: CONET integrated testbed architecture. In: Martinez-de Dios, J.R., Jimenez-Gonzalez, A., de San Bernabe, A., Ollero, A. (eds.) A Remote Integrated Testbed for Cooperating Objects. SpringerBriefs in Electrical and Computer Engineering, pp. 23–39. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-01372-5_3CrossRefGoogle Scholar
  70. 70.
    Martinez-de Dios, J.R., Jimenez-Gonzalez, A., de San Bernabe, A., Ollero, A.: CONET integrated testbed experiments. In: Martinez-de Dios, J.R., Jimenez-Gonzalez, A., de San Bernabe, A., Ollero, A. (eds.) A Remote Integrated Testbed for Cooperating Objects, pp. 59–73. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-01372-5_5CrossRefGoogle Scholar
  71. 71.
    Vingelmann, P., Pedersen, M., Heide, J., Zhang, Q., Fitzek, F.: Data dissemination in the wild: a testbed for high-mobility MANETs. In: Proceedings of the 2012 IEEE International Conference on Communications (ICC 2012), pp. 291–296 (2012).  https://doi.org/10.1109/icc.2012.6364123
  72. 72.
    Reich, J., Misra, V., Rubenstein, D.: Roomba MADNeT: a mobile ad-hoc delay tolerant network testbed. ACM SIGMOBILE Mob. Comput. Commun. Rev. 12(1), 68–70 (2008).  https://doi.org/10.1145/1374512.1374536CrossRefGoogle Scholar
  73. 73.
    Vingelmann, P., Heide, J., Pedersen, M.V., Zhang, Q., Fitzek, F.H.P.: All-to-all data dissemination with network coding in dynamic MANETs. Comput. Netw. 74(Part B), 34–47 (2014).  https://doi.org/10.1016/j.comnet.2014.06.018CrossRefGoogle Scholar
  74. 74.
    Reich, J., Misra, V., Rubenstein, D.S., Zussman, G.: Spreadable connected autonomic networks (SCAN). Technical report CUCS-016-08 (2008)Google Scholar
  75. 75.
    Reich, J., Misra, V., Rubenstein, D., Zussman, G.: Connectivity maintenance in mobile wireless networks via constrained mobility. IEEE J. Sel. Areas Commun. 30(5), 935–950 (2012).  https://doi.org/10.1109/JSAC.2012.120609CrossRefGoogle Scholar
  76. 76.
    Dahlberg, T.A., Nasipuri, A., Taylor, C.: Explorebots: a mobile network experimentation testbed. In: Proceedings of the 2005 ACM SIGCOMM Workshop on Experimental Approaches to Wireless Network Design and Analysis (E-WIND 2005), pp. 76–81. ACM, New York (2005).  https://doi.org/10.1145/1080148.108015
  77. 77.
    Bromage, S., et al.: SCORPION: a heterogeneous wireless networking testbed. ACM SIGMOBILE Mob. Comput. Commun. Rev. 13(1), 65–68 (2009).  https://doi.org/10.1145/1558590.1558604CrossRefGoogle Scholar
  78. 78.
    Förster, A., Förster, A., Garg, K., Puccinelli, D., Giordano, S., Gambardella, L.M.: MOTEL-a mobile robotic-assisted wireless sensor networks testbed. In: Wireless Integration of Sensor Networks in Hybrid Architectures, p. 13 (2012)Google Scholar
  79. 79.
    Foerster, A., Foerster, A., Garg, K., Giordano, S., Gambardella, L.M.: MOTEL: mobility enabled wireless sensor network testbed. Adhoc Sensor Wirel. Netw. 24(3) (2015)Google Scholar
  80. 80.
    Janansefat, S., Senturk, I., Akkaya, K., Gloff, M.: A mobile sensor network testbed using irobots. In: 37th Annual IEEE Conference on Local Computer Networks (LCN 2012), Clearwater, FL, 22–25 October 2012 (2012)Google Scholar
  81. 81.
    Janansefat, S., Akkaya, K., Senturk, I., Gloff, M.: Rethinking connectivity restoration in WSNs using feedback from a low-cost mobile sensor network testbed. In: IEEE 38th Conference on Local Computer Networks Workshops (LCN 2013), pp. 108–115 (2013).  https://doi.org/10.1109/lcnw.2013.6758506
  82. 82.
    Senturk, I., Akkaya, K., Janansefat, S.: Towards realistic connectivity restoration in partitioned mobile sensor networks. Int. J. Commun. Syst. 29(2), 230–250 (2016).  https://doi.org/10.1002/dac.2819CrossRefGoogle Scholar
  83. 83.
    Tonneau, A.S., Mitton, N., Vandaele, J.: How to choose an experimentation platform for wireless sensor networks? A survey on static and mobile wireless sensor network experimentation facilities. Ad Hoc Netw. 30, 115–127 (2015).  https://doi.org/10.1016/j.adhoc.2015.03.002CrossRefGoogle Scholar
  84. 84.
    Tonneau, A.S., Mitton, N., Vandaele, J.: A Survey on (mobile) wireless sensor network experimentation testbeds. In: Proceedings of the 2014 IEEE International Conference on Distributed Computing in Sensor Systems (DCOSS 2014), pp. 263–268 (2014).  https://doi.org/10.1109/dcoss.2014.41
  85. 85.
    Fleury, E., Mitton, N., Noel, T., Adjih, C.: FIT IoT-LAB: the largest IoT open experimental testbed. ERCIM News 101(14) (2015)Google Scholar
  86. 86.
    Burin des Rosiers, C., et al.: SensLAB. In: Korakis, T., Li, H., Tran-Gia, P., Park, H.-S. (eds.) TridentCom 2011. LNICST, vol. 90, pp. 239–254. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-29273-6_19CrossRefGoogle Scholar
  87. 87.
    Rosiers, C.B.D., et al.: SensLAB Very Large Scale Open Wireless Sensor Network Testbed (2011)Google Scholar
  88. 88.
    Quilez, R., Zeeman, A., Mitton, N., Vandaele, J.: Docking autonomous robots in passive docks with Infrared sensors and QR codes. In: Proceedings of the 10th International Conference on Testbeds and Research Infrastructures for the Development of Networks and Communities (TRIDENTCOM 2015), pp. 113–122 (2015)Google Scholar
  89. 89.
    IoT-LAB Team: IoT-LAB Mobile Robot (2015). https://www.iot-lab.info/robots/. Accessed 30 Nov 2015
  90. 90.
    Choumas, K., et al.: Optimization driven multi-hop network design and experimentation: the approach of the FP7 project OPNEX. IEEE Commun. Mag. 50(6), 122–130 (2012).  https://doi.org/10.1109/MCOM.2012.6211496CrossRefGoogle Scholar
  91. 91.
    Giatsios, D., Apostolaras, A., Korakis, T., Tassiulas, L.: Methodology and tools for measurements on wireless testbeds: the NITOS approach. In: Fàbrega, L., Vilà, P., Careglio, D., Papadimitriou, D. (eds.) Measurement Methodology and Tools. LNCS, vol. 7586, pp. 61–80. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-41296-7_5CrossRefGoogle Scholar
  92. 92.
    Keranidis, S., et al.: Experimentation on end-to-end performance aware algorithms in the federated en- vironment of the heterogeneous PlanetLab and NITOS testbeds. Comput. Netw. 63, 48–67 (2014).  https://doi.org/10.1016/j.bjp.2013.12.026CrossRefGoogle Scholar
  93. 93.
    Keranidis, S., Kazdaridis, G., Passas, V., Korakis, T., Koutsopoulos, I., Tassiulas, L.: NITOS energy monitoring framework: real time power monitoring in experimental wireless network deployments. SIGMOBILE Mob. Comput. Commun. Rev. 18(1), 64–74 (2014).  https://doi.org/10.1145/2581555.2581566CrossRefGoogle Scholar
  94. 94.
    Pechlivanidou, K., Katsalis, K., Igoumenos, I., Katsaros, D., Korakis, T., Tassiulas, L.: NITOS testbed: a cloud based wireless experimentation facility. In: Proceedings of the 26th International Teletraffic Congress (ITC 2014), pp. 1–6 (2014).  https://doi.org/10.1109/itc.2014.6932976
  95. 95.
    Niavis, H., Kazdaridis, G., Korakis, T., Tassiulas, L.: Enabling sensing and mobility on wireless testbeds. In: Korakis, T., Zink, M., Ott, M. (eds.) TridentCom 2012. LNICST, vol. 44, pp. 421–424. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-35576-9_50CrossRefGoogle Scholar
  96. 96.
    Muchtar, F., Abdullah, A.H., Latiff, M.S.A., Hassan, S., Wahab, M.H.A., Abdul-Salaam, G.: A technical review of MANET testbed using mobile robot technology. In: Journal of Physics: Conference Series (2018, manuscript submitted for publication)Google Scholar
  97. 97.
    Muchtar, F., Abdullah, A.H., Arshad, M.M., Wahab, M.H.A., Ahmmad, S.N.Z., Abdul-Salaam, G.: A critical review of MANET testbed using mobile robot technology. In: Journal of Physics: Conference Series (2018, manuscript submitted for publication)Google Scholar
  98. 98.
    Muchtar, F., Abdullah, A.H., Wahab, M.H.A., Ambar, R., Hanafi, H.F., Ahmmad, S.N.Z.: Mobile ad hoc network testbed using mobile robot technology. In: Journal of Physics: Conference Series (2018, manuscript submitted for publication)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Farkhana Muchtar
    • 1
    • 2
  • Abdul Hanan Abdullah
    • 1
  • Siti Nor Zawani Ahmmad
    • 3
  • Yugal Kumar
    • 4
  1. 1.Faculty of ComputingUniversiti Teknologi MalaysiaSkudaiMalaysia
  2. 2.School of Computer SciencesUniversiti Sains MalaysiaGelugorMalaysia
  3. 3.Instrumentation and Control EngineeringUniversity Kuala Lumpur, MITECMasaiMalaysia
  4. 4.Department of Science and Engineering and Information TechnologyJaypee University of Information TechnologySolanIndia

Personalised recommendations