Synthesis and Design of Engineered Biochars as Electrode Materials in Energy Storage Systems

  • Omid Norouzi
  • Pejman Salimi
  • Francesco Di MariaEmail author
  • S. E. M. Pourhosseini
  • Farid Safari
Part of the Biofuels and Biorefineries book series (BIOBIO, volume 9)


Secondary or rechargeable batteries are nowadays considered to be one of the most important electrochemical energy storage devices. Particularly, lithium-ion batteries (LIBs) are popular due to their high energy and power density. However, next generation LIBs will need to be smaller and cheaper, an increase in their energy content appears to be necessary. So that active materials with higher rate capability, higher energy content, and higher cycle life are required. On the other hand, the development of safe and environmentally friendly LIBs is a necessary specification. To this end, this chapter introduces engineered biocarbon-based materials with a short description of their designs, structural features, and chemical and physical activation. This chapter also provides novel engineered biochars used in LIBs and their performance differences.


Lithium-ion batteries Graphite Biochar Engineered biochars Pyrolysis 


  1. 1.
    H.O.F. Batteries, D.E. Library, T.M. Companies (2004) Handbook of batteries. doi:
  2. 2.
    Gröger O, Gasteiger HA, Suchsland J-P (2015) Review – electromobility: batteries or fuel cells? J Electrochem Soc 162:A2605–A2622. CrossRefGoogle Scholar
  3. 3.
    Eftekhari A (2018) On the theoretical capacity/energy of lithium batteries and their counterparts. ACS Sustain Chem Eng acssuschemeng.7b04330.
  4. 4.
    Nitta N, Wu F, Lee JT, Yushin G (2015) Li-ion battery materials: present and future. Mater Today 18:252–264. CrossRefGoogle Scholar
  5. 5.
    Schmuch R, Wagner R, Hörpel G, Placke T, Winter M (2018) Performance and cost of materials for lithium-based rechargeable automotive batteries. Nat Energy 3:267–278. CrossRefGoogle Scholar
  6. 6.
    Zubi G, Dufo-López R, Carvalho M, Pasaoglu G (2018) The lithium-ion battery: state of the art and future perspectives. Renew Sust Energ Rev 89:292–308. CrossRefGoogle Scholar
  7. 7.
    Eftekhari A (2017) Ordered mesoporous materials for lithium-ion batteries. Microporous Mesoporous Mater 243:355–369. CrossRefGoogle Scholar
  8. 8.
    Jiang J, Zhu JH, Ai W, Fan ZX, Shen XN, Zou CJ, Liu JP, Zhang H, Yu T (2014) Evolution of disposable bamboo chopsticks into uniform carbon fibers: a smart strategy to fabricate sustainable anodes for Li-ion batteries. Energy Environ Sci 7:2670–2679. CrossRefGoogle Scholar
  9. 9.
    Tasaki K, Goldberg A, Liang JJ, Winter M (2011) New insight into electrochemical differences in cycling behaviors of a lithium-ion battery cell between the ethylene carbonate- and propylene carbonate-based electrolytes. Mater Res Soc Symp Proc 1313:43–53. CrossRefGoogle Scholar
  10. 10.
    Song H-Y, Fukutsuka T, Miyazaki K, Abe T (2016) Suppression of co-intercalation reaction of propylene carbonate and lithium ion into graphite negative electrode by addition of diglyme. J Electrochem Soc 163:A1265–A1269. CrossRefGoogle Scholar
  11. 11.
    Placke T, Kloepsch R, Dühnen S, Winter M (2017) Lithium ion, lithium metal, and alternative rechargeable battery technologies: the odyssey for high energy density. J Solid State Electrochem 21:1939–1964. CrossRefGoogle Scholar
  12. 12.
    Peled E, Menkin S (2017) Review—SEI: past, present and future. J Electrochem Soc 164:A1703–A1719. CrossRefGoogle Scholar
  13. 13.
    Kaskhedikar NA, Maier J (2009) Lithium storage in carbon nanostructures. Adv Mater 21:2664–2680. CrossRefGoogle Scholar
  14. 14.
    Jiang L, Sheng L, Fan Z (2018) Biomass-derived carbon materials with structural diversities and their applications in energy storage. Sci China Mater 61:133–158. CrossRefGoogle Scholar
  15. 15.
    Keller M, Buchholz D, Passerini S (2016) Layered Na-ion cathodes with outstanding performance resulting from the synergetic effect of mixed P-and O-type phases. Adv Energy Mater 6:1501555. CrossRefPubMedGoogle Scholar
  16. 16.
    Lux SF, Placke T, Engelhardt C, Nowak S, Bieker P, Wirth K-E, Passerini S, Winter M, Meyer H-W (2012) Enhanced electrochemical performance of graphite anodes for lithium-ion batteries by dry coating with hydrophobic fumed silica. J Electrochem Soc 159:A1849–A1855. CrossRefGoogle Scholar
  17. 17.
    Read JA, Cresce AV, Ervin MH, Xu K (2014) Dual-graphite chemistry enabled by a high voltage electrolyte. Energy Environ Sci 7:617–620. CrossRefGoogle Scholar
  18. 18.
    Rothermel S, Meister P, Schmuelling G, Fromm O, Meyer HW, Nowak S, Winter M, Placke T (2014) Dual-graphite cells based on the reversible intercalation of bis(trifluoromethanesulfonyl)imide anions from an ionic liquid electrolyte. Energy Environ Sci 7:3412–3423. CrossRefGoogle Scholar
  19. 19.
    Fromm O, Heckmann A, Rodehorst UC, Frerichs J, Becker D, Winter M, Placke T (2018) Carbons from biomass precursors as anode materials for lithium ion batteries: new insights into carbonization and graphitization behavior and into their correlation to electrochemical performance. Carbon N Y 128:147–163. CrossRefGoogle Scholar
  20. 20.
    Jiang L, Sheng L, Fan Z (2017) Biomas-derived carbon materials with structural diversities and their applications in energy storage. Sci China Mater 5:133–158Google Scholar
  21. 21.
    Yin CY, Aroua MK, Daud WMAW (2007) Review of modifications of activated carbon for enhancing contaminant uptakes from aqueous solutions. Sep Purif Technol 52:403–415. CrossRefGoogle Scholar
  22. 22.
    Deng J, Li M, Wang Y (2016) Biomass-derived carbon: synthesis and applications in energy storage and conversion. Green Chem 18:4824–4854. CrossRefGoogle Scholar
  23. 23.
    Blomgren GE (2017) The development and future of lithium ion batteries. J Electrochem Soc 164:A5019–A5025. CrossRefGoogle Scholar
  24. 24.
    Yang H, Yan R, Chen H, Lee DH, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:1781–1788. CrossRefGoogle Scholar
  25. 25.
    Fey GTK, Chen CL (2001) High-capacity carbons for lithium-ion batteries prepared from rice husk. J Power Sources 97–98:47–51. CrossRefGoogle Scholar
  26. 26.
    Gao Z, Zhang Y, Song N, Li X (2017) Biomass-derived renewable carbon materials for electrochemical energy storage. Mater Res Lett 5:69–88. CrossRefGoogle Scholar
  27. 27.
    Safari F, Norouzi O, Tavasoli A (2016) Hydrothermal gasification of Cladophora glomerata macroalgae over its hydrochar as a catalyst for hydrogen-rich gas production. Bioresour Technol 222:232–241. CrossRefPubMedGoogle Scholar
  28. 28.
    Holtstiege F, Koç T, Hundehege T, Siozios V, Winter M, Placke T (2018) Toward high power batteries: pre-lithiated carbon nanospheres as high rate anode material for lithium ion batteries. ACS Appl Energy Mater 1:4321–4331. CrossRefGoogle Scholar
  29. 29.
    Rabenau A (1985) The role of hydrothermal synthesis in preparative chemistry. Angew Chem Int Ed English 24:1026–1040. CrossRefGoogle Scholar
  30. 30.
    Axelsson L, Franzén M, Ostwald M, Berndes G, Lakshmi G, Ravindranath NH (2012) Perspective: Jatropha cultivation in southern India: assessing farmers’ experiences, biofuels. Bioprod Bioref 6:246–256. CrossRefGoogle Scholar
  31. 31.
    Salimi P, Javadian S, Norouzi O, Gharibi H (2017) Turning an environmental problem into an opportunity: potential use of biochar derived from a harmful marine biomass named Cladophora glomerata as anode electrode for Li-ion batteries. Environ Sci Pollut Res 24:27974–27984. CrossRefGoogle Scholar
  32. 32.
    Liu T, Kavian R, Chen Z, Cruz SS, Noda S, Lee SW (2016) Biomass-derived carbonaceous positive electrodes for sustainable lithium-ion storage. Nanoscale 8:3671–3677. CrossRefPubMedGoogle Scholar
  33. 33.
    Williams PT, Reed AR (2006) Development of activated carbon pore structure via physical and chemical activation of biomass fibre waste. Biomass Bioenergy 30:144–152. CrossRefGoogle Scholar
  34. 34.
    Sevilla M, Fuertes AB, Mokaya R (2011) High density hydrogen storage in superactivated carbons from hydrothermally carbonized renewable organic materials. Energy Environ Sci 4:1400. CrossRefGoogle Scholar
  35. 35.
    Wang J, Kaskel S (2012) KOH activation of carbon-based materials for energy storage. J Mater Chem 22:23710. CrossRefGoogle Scholar
  36. 36.
    Deng J, Xiong T, Wang H, Zheng A, Wang Y (2016) Effects of cellulose, hemicellulose, and lignin on the structure and morphology of porous carbons. ACS Sustain Chem Eng 4:3750–3756. CrossRefGoogle Scholar
  37. 37.
    Pourhosseini SEM, Norouzi O, Naderi HR (2017) Study of micro/macro ordered porous carbon with olive-shaped structure derived from Cladophora glomerata macroalgae as efficient working electrodes of supercapacitors. Biomass Bioenergy 107:287–298. CrossRefGoogle Scholar
  38. 38.
    Stark A (2010) Part III ionic liquids in green engineeringGoogle Scholar
  39. 39.
    Zhang P, Gong Y, Wei Z, Wang J, Zhang Z, Li H, Dai S, Wang Y (2014) Updating biomass into functional carbon material in ionothermal manner. ACS Appl Mater Interfaces 6:12515–12522. CrossRefPubMedGoogle Scholar
  40. 40.
    Liu Y, Huang B, Lin X, Xie Z (2017) Biomass-derived hierarchical porous carbons: boosting the energy density of supercapacitors via an ionothermal approach. J Mater Chem A 5:13009–13018. CrossRefGoogle Scholar
  41. 41.
    Zhang P, Gong Y, Lv Y, Guo Y, Wang Y, Wang C, Li H (2012) Ionic liquids with metal chelate anions. Chem Commun 48:2334. CrossRefGoogle Scholar
  42. 42.
    Pourhosseini SEM, Norouzi O, Salimi P, Naderi HR (2018) Synthesis of a novel interconnected 3D pore network algal biochar constituting iron nanoparticles derived from a harmful marine biomass as high-performance asymmetric supercapacitor electrodes. ACS Sustain Chem Eng 6:4746–4758. CrossRefGoogle Scholar
  43. 43.
    Yan L, Yu J, Houston J, Flores N, Luo H (2017) Biomass derived porous nitrogen doped carbon for electrochemical devices. Green Energy Environ 2:84–99. CrossRefGoogle Scholar
  44. 44.
    Hou J, Cao C, Idrees F, Ma X (2015) Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors. ACS Nano 9:2556–2564. CrossRefPubMedGoogle Scholar
  45. 45.
    Chen L, Zhang Y, Lin C, Yang W, Meng Y, Guo Y, Li M, Xiao D (2014) Hierarchically porous nitrogen-rich carbon derived from wheat straw as an ultra-high-rate anode for lithium ion batteries. J Mater Chem A 2:9684–9690. CrossRefGoogle Scholar
  46. 46.
    Yu W, Wang H, Liu S, Mao N, Liu X, Shi J, Liu W, Chen S, Wang X (2016) N, O-codoped hierarchical porous carbons derived from algae for high-capacity supercapacitors and battery anodes. J Mater Chem A 4:5973–5983. CrossRefGoogle Scholar
  47. 47.
    Zheng P, Liu T, Zhang J, Zhang L, Liu Y, Huang J, Guo S (2015) Sweet potato-derived carbon nanoparticles as anode for lithium ion battery. RSC Adv 5:40737–40741. CrossRefGoogle Scholar
  48. 48.
    Han SW, Jung DW, Jeong JH, Oh ES (2014) Effect of pyrolysis temperature on carbon obtained from green tea biomass for superior lithium ion battery anodes. Chem Eng J 254:597–604. CrossRefGoogle Scholar
  49. 49.
    Jiang Q, Zhang Z, Yin S, Guo Z, Wang S, Feng C (2016) Biomass carbon micro/nano-structures derived from ramie fibers and corncobs as anode materials for lithium-ion and sodium-ion batteries. Appl Surf Sci 379:73–82. CrossRefGoogle Scholar
  50. 50.
    Lisowska-Oleksiak A, Nowak AP, Wicikowska B (2014) Aquatic biomass containing porous silica as an anode for lithium ion batteries. RSC Adv 4:40439–40443. CrossRefGoogle Scholar
  51. 51.
    Niu J, Shao R, Liang J, Dou M, Li Z, Huang Y, Wang F (2017) Biomass-derived mesopore-dominant porous carbons with large specific surface area and high defect density as high performance electrode materials for Li-ion batteries and supercapacitors. Nano Energy 36:322–330. CrossRefGoogle Scholar
  52. 52.
    Ryu D-J, Oh R-G, Seo Y-D, Oh S-Y, Ryu K-S (2015) Recovery and electrochemical performance in lithium secondary batteries of biochar derived from rice straw. Environ Sci Pollut Res 22:10405–10412. CrossRefGoogle Scholar
  53. 53.
    Norouzi O, Jafarian S, Safari F, Tavasoli A, Nejati B (2016) Promotion of hydrogen-rich gas and phenolic-rich bio-oil production from green macroalgae Cladophora glomerata via pyrolysis over its bio-char. Bioresour Technol 219:643–651. CrossRefPubMedGoogle Scholar
  54. 54.
    Yu K, Li J, Qi H, Liang C (2018) High-capacity activated carbon anode material for lithium-ion batteries prepared from rice husk by a facile method. Diam Relat Mater.
  55. 55.
    Li Y, Wang F, Liang J, Hu X, Yu K (2016) Preparation of disordered carbon from rice husks for lithium-ion batteries. New J Chem 40:325–329. CrossRefGoogle Scholar
  56. 56.
    Wang L, Schnepp Z, Titirici MM (2013) Rice husk-derived carbon anodes for lithium ion batteries. J Mater Chem A 1:5269. CrossRefGoogle Scholar
  57. 57.
    Liu N, Huo K, McDowell MT, Zhao J, Cui Y (2013) Rice husks as a sustainable source of nanostructured silicon for high performance Li-ion battery anodes. Sci Rep 3:1–7. CrossRefGoogle Scholar
  58. 58.
    Shao D, Tang D, Mai Y, Zhang L (2013) Nanostructured silicon/porous carbon spherical composite as a high capacity anode for Li-ion batteries. J Mater Chem A 1:15068. CrossRefGoogle Scholar
  59. 59.
    Xiang J, Lv W, Mu C, Zhao J, Wang B (2017) Activated hard carbon from orange peel for lithium/sodium ion battery anode with long cycle life. J Alloys Compd 701:870–874. CrossRefGoogle Scholar
  60. 60.
    Ou J, Zhang Y, Chen L, Zhao Q, Meng Y, Guo Y, Xiao D (2015) Nitrogen-rich porous carbon derived from biomass as a high performance anode material for lithium ion batteries. J Mater Chem A 3:6534–6541. CrossRefGoogle Scholar
  61. 61.
    Ou J, Yang L, Zhang Z, Xi X (2016) Honeysuckle-derived hierarchical porous nitrogen, sulfur, dual-doped carbon for ultra-high rate lithium ion battery anodes. J Power Sources 333:193–202. CrossRefGoogle Scholar
  62. 62.
    Lu Z-J, Bao S-J, Gou Y-T, Cai C-J, Ji C-C, Xu M-W, Song J, Wang R (2013) Nitrogen-doped reduced-graphene oxide as an efficient metal-free electrocatalyst for oxygen reduction in fuel cells. RSC Adv 3:3990. CrossRefGoogle Scholar
  63. 63.
    Endo M, Hayashi T, Hong S-H, Enoki T, Dresselhaus MS (2001) Scanning tunneling microscope study of boron-doped highly oriented pyrolytic graphite. J Appl Phys 90:5670–5674. CrossRefGoogle Scholar
  64. 64.
    Li Z, Xu Z, Wang H, Ding J, Zahiri B, Holt CMB, Tan X, Mitlin D (2014) Colossal pseudocapacitance in a high functionality–high surface area carbon anode doubles the energy of an asymmetric supercapacitor. Energy Environ Sci 7:1708–1718. CrossRefGoogle Scholar
  65. 65.
    Jaiswal A (2017) Lithium-ion battery based renewable energy solution for off-grid electricity: a techno-economic analysis. Renew Sust Energ Rev 72:922–934. CrossRefGoogle Scholar
  66. 66.
    Wang S, Wang H, Zhang R, Zhao L, Wu X, Xie H, Zhang J, Sun H (2018) Egg yolk-derived carbon: achieving excellent fluorescent carbon dots and high performance lithium-ion batteries. J Alloys Compd 746:567–575. CrossRefGoogle Scholar
  67. 67.
    Ou J, Zhang Y, Chen L, Yuan H, Xiao D (2014) Heteroatom doped porous carbon derived from hair as an anode with high performance for lithium ion batteries. RSC Adv 4:63784–63791. CrossRefGoogle Scholar
  68. 68.
    Li Y, Li C, Qi H, Yu K, Liang C (2018) Mesoporous activated carbon from corn stalk core for lithium ion batteries. Chem Phys 506:10–16. CrossRefGoogle Scholar
  69. 69.
    Chen H, Armand M, Demailly G, Dolhem F, Poizot P, Tarascon JM (2008) From biomass to a renewable LiXC6O6 organic electrode for sustainable li-ion batteries. ChemSusChem 1:348–355. CrossRefPubMedGoogle Scholar
  70. 70.
    Liang Y, Zhang P, Yang S, Tao Z, Chen J (2013) Fused heteroaromatic organic compounds for high-power electrodes of rechargeable lithium batteries. Adv Energy Mater 3:600–605. CrossRefGoogle Scholar
  71. 71.
    Song Z, Zhan H, Zhou Y (2009) Anthraquinone based polymer as high performance cathode material for rechargeable lithium batteries. Chem Commun 4:448–450. CrossRefGoogle Scholar
  72. 72.
    Yao M, Ando H, Kiyobayashi T (2013) Dialkoxybenzoquinone-type active materials for rechargeable lithium batteries: the effect of the alkoxy group length on the cycle-stability. Energy Procedia 34:880–887. CrossRefGoogle Scholar
  73. 73.
    Yao M, Numoto T, Araki M, Ando H, Takeshita HT, Kiyobayashi T (2014) Long cycle-life organic electrode material based on an ionic naphthoquinone derivative for rechargeable batteries. Energy Procedia 56:228–236. CrossRefGoogle Scholar
  74. 74.
    Wang S, Wang L, Zhang K, Zhu Z, Tao Z, Chen J (2013) Organic Li 4 C 8 H 2 O 6 nanosheets for lithium-ion batteries. Nano Lett 13:6–11Google Scholar
  75. 75.
    Singh VK, Rao OS, Singh RA (1996) Rechargeable organic batteries based on charge-transfer materials-II: compositional dependence and charge-discharge characteristics of aromatic diamine-iodine systems. Indian J Eng Mater Sci 3:201–206. CrossRefGoogle Scholar
  76. 76.
    Walker W, Grugeon S, Mentre O, Laruelle S, Tarascon JM, Wudl F (2010) Ethoxycarbonyl-based organic electrode for Li-batteries. J Am Chem Soc 132:6517–6523. CrossRefPubMedGoogle Scholar
  77. 77.
    Rong Y, Ku Z, Mei A, Liu T, Xu M, Ko S, Li X, Han H (2014) Hole-conductor-free mesoscopic TiO2/CH3NH 3PbI3 heterojunction solar cells based on anatase nanosheets and carbon counter electrodes. J Phys Chem Lett 5:2160–2164. CrossRefPubMedGoogle Scholar
  78. 78.
    Xu X, Meng Z, Zhu X, Zhang S, Han WQ (2018) Biomass carbon composited FeS2as cathode materials for high-rate rechargeable lithium-ion battery. J Power Sources 380:12–17. CrossRefGoogle Scholar
  79. 79.
    Versaci D, Nasi R, Zubair U, Amici J, Sgroi M, Dumitrescu MA, Francia C, Bodoardo S, Penazzi N (2017) New eco-friendly low-cost binders for Li-ion anodes. J Solid State Electrochem 21:3429–3435. CrossRefGoogle Scholar
  80. 80.
    Liu J, Zhang Q, Wu Z-Y, Wu J-H, Li J-T, Huang L, Sun S-G (2014) A high-performance alginate hydrogel binder for the Si/C anode of a Li-ion battery. Chem Commun 50:6386. CrossRefGoogle Scholar
  81. 81.
    Kovalenko I, Zdyrko B, Magasinski A, Hertzberg B, Milicev Z, Burtovyy R, Luzinov I, Yushin G (2011) A major constituent of brown algae for use in high-capacity Li-ion batteries. Science (80-.) 334:75–79. CrossRefGoogle Scholar
  82. 82.
    Wu ZH, Yang JY, Yu B, Shi BM, Zhao CR, Yu ZL (2016) Self-healing alginate–carboxymethyl chitosan porous scaffold as an effective binder for silicon anodes in lithium-ion batteries. Rare Metals:1–8.

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Omid Norouzi
    • 1
    • 2
  • Pejman Salimi
    • 3
  • Francesco Di Maria
    • 1
    • 2
    Email author
  • S. E. M. Pourhosseini
    • 4
  • Farid Safari
    • 5
  1. 1.Department of EngineeringUniversity of PerugiaPerugiaItaly
  2. 2.LAR5 Laboratory, Dipertimento di IngegneriaUniversity of PerugiaPerugiaItaly
  3. 3.Department of Physical Chemistry, Faculty of ScienceTarbiat Modares UniversityTehranIran
  4. 4.School of Chemistry, College of ScienceUniversity of TehranTehranIran
  5. 5.Faculty of Engineering and Applied ScienceUniversity of Ontario Institute of TechnologyOshawaCanada

Personalised recommendations