Carbonaceous Catalysts from Biomass

  • Melanie J. Hazlett
  • Ross A. Arnold
  • Vicente Montes
  • Ye Xiao
  • Josephine M. HillEmail author
Part of the Biofuels and Biorefineries book series (BIOBIO, volume 9)


The recent interest in using biomass as a sustainable precursor for carbonaceous catalysts has resulted in a variety of studies involving different chemical reactions. Biomass is often pyrolysed to biochar and then may be further processed to activated carbon. Both the biochar and activated carbon can be used as carbonaceous catalysts, potentially with functionalisation to carbocatalysts. This chapter summarizes work to date on these biomass-derived catalysts with comparison to catalysts from other carbon sources and materials, and provides a perspective on their future use. Specific topics include the emergence of biomass-derived carbonaceous catalysts as base catalysts to take advantage of their alkali content, as functionalised acid carbocatalysts for biodiesel production, as gasification catalysts, and as catalysts for the electro-Fenton oxidation reaction. Suitable biomass feedstocks, their properties, and the properties of the prepared catalysts are also reviewed.


Biomass Activated carbon Catalytic reactions Carbocatalysts Carbonaceous catalysts 



We thank the Natural Sciences and Engineering Research Council (NSERC) of Canada and the Canada Research Chairs Program for funding this work. Individual funding was provided by an Eyes High Postdoctoral Scholars Award (VMJ) and NSERC post-graduate scholarship (RAA).


  1. 1.
    Auer E, Freund A, Pietsch J, Tacke T (1998) Carbons as supports for industrial precious metal catalysts. Appl Catal A Gen 173(2):259–271CrossRefGoogle Scholar
  2. 2.
    González-García P (2018) Activated carbon from lignocellulosics precursors: a review of the synthesis methods, characterization techniques and applications. Renew Sust Energ Rev 82:1393–1414CrossRefGoogle Scholar
  3. 3.
    Chia CH, Downie A, Munroe P (2015) Characteristics of biochar – physical and structural properties. Lehmann J, Joseph S (eds). 2nd Routledge, Abingdon, pp 89–108Google Scholar
  4. 4.
    Boro J, Deka D, Thakur AJ (2012) A review on solid oxide derived from waste shells as catalyst for biodiesel production. Renew Sust Energ Rev 16(1):904–910CrossRefGoogle Scholar
  5. 5.
    Cao X, Sun S, Sun R (2017) Application of biochar-based catalysts in biomass upgrading: a review. RSC Adv 7(77):48793–48805CrossRefGoogle Scholar
  6. 6.
    Bazargan A, Kostić MD, Stamenković OS, Veljković VB, McKay G (2015) A calcium oxide-based catalyst derived from palm kernel shell gasification residues for biodiesel production. Fuel 150:519–525CrossRefGoogle Scholar
  7. 7.
    Dias JM, Alvim-Ferraz MCM, Almeida MF, Rivera-Utrilla J, Sánchez-Polo M (2007) Waste materials for activated carbon preparation and its use in aqueous-phase treatment: a review. J Environ Manag 85(4):833–846CrossRefGoogle Scholar
  8. 8.
    Li K, Liu J, Li J, Wan Z (2018) Effects of N mono- and N/P dual-doping on H2O2, [rad]OH generation, and MB electrochemical degradation efficiency of activated carbon fiber electrodes. Chemosphere 193:800–810PubMedCrossRefGoogle Scholar
  9. 9.
    Brewer CE, Unger R, Schmidt-Rohr K, Brown RC (2011) Criteria to select biochars for field studies based on biochar chemical properties. Bioenergy Res 4(4):312–323CrossRefGoogle Scholar
  10. 10.
    Molino A, Donatelli A, Marino T, Aloise A, Rimauro J, Iovane P (2018) Waste tire recycling process for production of steam activated carbon in a pilot plant. Resour Conserv Recycl 129:102–111CrossRefGoogle Scholar
  11. 11.
    Boyjoo Y, Cheng Y, Zhong H, Tian H, Pan J, Pareek VK, Jiang SP, Lamonier J-F, Jaroniec M, Liu J (2017) From waste Coca Cola® to activated carbons with impressive capabilities for CO2 adsorption and supercapacitors. Carbon 116:490–499CrossRefGoogle Scholar
  12. 12.
    Chen X, Wu K, Gao B, Xiao Q, Kong J, Xiong Q, Peng X, Zhang X, Fu J (2016) Three-dimensional activated carbon recycled from rotten potatoes for high-performance supercapacitors. Waste Biomass Valorization 7(3):551–557CrossRefGoogle Scholar
  13. 13.
    Sahasrabudhe A, Kapri S, Bhattacharyya S (2016) Graphitic porous carbon derived from human hair as ‘green’ counter electrode in quantum dot sensitized solar cells. Carbon 107:395–404CrossRefGoogle Scholar
  14. 14.
    Virla LD, Montes V, Wu J, Ketep SF, Hill JM (2016) Synthesis of porous carbon from petroleum coke using steam, potassium and sodium: combining treatments to create mesoporosity. Microporous Mesoporous Mater 234:239–247CrossRefGoogle Scholar
  15. 15.
    Makowski P, Demir Cakan R, Antonietti M, Goettmann F, Titirici M-M (2008) Selective partial hydrogenation of hydroxy aromatic derivatives with palladium nanoparticles supported on hydrophilic carbon. Chem Commun 8:999–999CrossRefGoogle Scholar
  16. 16.
    Huang K, Xue L, Hu YC, Huang MY, Jiang YY (2002) Catalytic behaviors of silica-supported starch-polysulfosiloxane-Pt complexes in asymmetric hydrogenation of 4-methyl-2-pentanone. React Funct Polym 50(3):199–203CrossRefGoogle Scholar
  17. 17.
    Wei WL, Zhu HY, Zhao CL, Huang MY, Jiang YY (2004) Asymmetric hydrogenation of furfuryl alcohol catalyzed by a biopolymer-metal complex, silica-supported alginic acid-amino acid-Pt complex. React Funct Polym 59(1):33–39CrossRefGoogle Scholar
  18. 18.
    Li W, Yang K, Peng J, Zhang L, Guo S, Xia H (2008) Effects of carbonisation temperatures on characteristics of porosity in coconut shell chars and activated carbons derived from carbonized coconut shell chars. Ind Crop Prod 28(2):190–198CrossRefGoogle Scholar
  19. 19.
    Lee J, Kim KH, Kwon EE (2017) Biochar as a catalyst. Renew Sust Energ Rev 77(February):70–79CrossRefGoogle Scholar
  20. 20.
    Yan Q, Lu Y, To F, Li Y, Yu F (2015) Synthesis of tungsten carbide nanoparticles in biochar matrix as a catalyst for dry reforming of methane to syngas. Cat Sci Technol 5(6):3270–3280CrossRefGoogle Scholar
  21. 21.
    Kohn MP, Lee J, Basinger ML, Castaldi MJ (2011) Performance of an internal combustion engine operating on landfill gas and the effect of syngas addition. Ind Eng Chem Res 50(6):3570–3579CrossRefGoogle Scholar
  22. 22.
    Shen Y, Areeprasert C, Prabowo B, Takahashi F, Yoshikawa K (2014) Metal nickel nanoparticles in situ generated in rice husk char for catalytic reformation of tar and syngas from biomass pyrolytic gasification. RSC Adv 4(77):40651–40664CrossRefGoogle Scholar
  23. 23.
    Abdullah SHYS, Hanapi NHM, Azid A, Umar R, Juahir H, Khatoon H, Endut A (2017) A review of biomass-derived heterogeneous catalyst for a sustainable biodiesel production. Renew Sust Energ Rev 70(December 2016):1040–1051CrossRefGoogle Scholar
  24. 24.
    Kostić MD, Bazargan A, Stamenković OS, Veljković VB, McKay G (2016) Optimization and kinetics of sunflower oil methanolysis catalyzed by calcium oxide-based catalyst derived from palm kernel shell biochar. Fuel 163:304–313CrossRefGoogle Scholar
  25. 25.
    Toda M, Takagaki A, Okamura M, Kondo JN, Hayashi S, Domen K, Hara M (2005) Biodiesel made with sugar catalyst. Nature 438(7065):177–178CrossRefGoogle Scholar
  26. 26.
    Kastner JR, Miller J, Geller DP, Locklin J, Keith LH, Johnson T (2012) Catalytic esterification of fatty acids using solid acid catalysts generated from biochar and activated carbon. Catal Today 190(1):122–132CrossRefGoogle Scholar
  27. 27.
    Nakajima K, Hara M (2012) Amorphous carbon with SO3H groups as a solid brønsted acid catalyst. ACS Catal 2(7):1296–1304CrossRefGoogle Scholar
  28. 28.
    Dehkhoda AM, West AH, Ellis N (2010) Biochar based solid acid catalyst for biodiesel production. Appl Catal A Gen 382(2):197–204CrossRefGoogle Scholar
  29. 29.
    Zong M-H, Duan Z-Q, Lou W-Y, Smith TJ, Wu H (2007) Preparation of a sugar catalyst and its use for highly efficient production of biodiesel. Green Chem 9(5):434–434CrossRefGoogle Scholar
  30. 30.
    Tao ML, Guan HY, Wang XH, Liu YC, Louh RF (2015) Fabrication of sulfonated carbon catalyst from biomass waste and its use for glycerol esterification. Fuel Process Technol 138:355–360CrossRefGoogle Scholar
  31. 31.
    Ngaosuwan K, Goodwin JG, Prasertdham P (2016) A green sulfonated carbon-based catalyst derived from coffee residue for esterification. Renew Energy 86:262–269CrossRefGoogle Scholar
  32. 32.
    Yu JT, Dehkhoda AM, Ellis N (2011) Development of biochar-based catalyst for transesterification of canola oil. Energy Fuel 25(1):337–344CrossRefGoogle Scholar
  33. 33.
    Li M, Zheng Y, Chen Y, Zhu X (2014) Biodiesel production from waste cooking oil using a heterogeneous catalyst from pyrolyzed rice husk. Bioresour Technol 154:345–348PubMedCrossRefGoogle Scholar
  34. 34.
    Chakraborty R, Bepari S, Banerjee A (2010) Transesterification of soybean oil catalyzed by fly ash and egg shell derived solid catalysts. Chem Eng J 165(3):798–805CrossRefGoogle Scholar
  35. 35.
    Ofori-Boateng C, Lee KT (2013) The potential of using cocoa pod husks as green solid base catalysts for the transesterification of soybean oil into biodiesel: effects of biodiesel on engine performance. Chem Eng J 220:395–401CrossRefGoogle Scholar
  36. 36.
    Shen B, Chen J, Yue S, Li G (2015) A comparative study of modified cotton biochar and activated carbon based catalysts in low temperature SCR. Fuel 156:47–53CrossRefGoogle Scholar
  37. 37.
    Yan Q, Wan C, Liu J, Gao J, Yu F, Zhang J, Cai Z (2013) Iron nanoparticles in situ encapsulated in biochar-based carbon as an effective catalyst for the conversion of biomass-derived syngas to liquid hydrocarbons. Green Chem 15(6):1631–1640CrossRefGoogle Scholar
  38. 38.
    Singh S, Nahil MA, Sun X, Wu C, Chen J, Shen B, Williams PT (2013) Novel application of cotton stalk as a waste derived catalyst in the low temperature SCR-deNOx process. Fuel 105:585–594CrossRefGoogle Scholar
  39. 39.
    Cha JS, Choi JC, Ko JH, Park YK, Park SH, Jeong KE, Kim SS, Jeon JK (2010) The low-temperature SCR of NO over rice straw and sewage sludge derived char. Chem Eng J 156(2):321–327CrossRefGoogle Scholar
  40. 40.
    Szymańska M, Malaika A, Rechnia P, Miklaszewska A, Kozłowski M (2015) Metal/activated carbon systems as catalysts of methane decomposition reaction. Catal Today 249:94–102CrossRefGoogle Scholar
  41. 41.
    Habibi R, Kopyscinski J, Masnadi MS, Lam J, Grace JR, Mims CA, Hill JM (2012) Co-gasification of biomass and non-biomass feedstocks: synergistic and inhibition effects of switchgrass mixed with sub-bituminous coal and fluid coke during CO2 gasification. Energy Fuel 27(1):494–500CrossRefGoogle Scholar
  42. 42.
    Hongrapipat J, Saw WL, Pang S (2015) Co-gasification of blended lignite and wood pellets in a dual fluidized bed steam gasifier: the influence of lignite to fuel ratio on NH3 and H2S concentrations in the producer gas. Fuel 139(0):494–501CrossRefGoogle Scholar
  43. 43.
    Jeong HJ, Hwang IS, Hwang J (2015) Co-gasification of bituminous coal–pine sawdust blended char with H2O at temperatures of 750–850°C. Fuel 156(0):26–29CrossRefGoogle Scholar
  44. 44.
    Yu MM, Masnadi MS, Grace JR, Bi XT, Lim CJ, Li Y (2015) Co-gasification of biosolids with biomass: thermogravimetric analysis and pilot scale study in a bubbling fluidized bed reactor. Bioresour Technol 175(0):51–58PubMedCrossRefGoogle Scholar
  45. 45.
    Zhu L, Yin S, Yin Q, Wang H, Wang S (2015) Biochar: a new promising catalyst support using methanation as a probe reaction. Energy Sci Eng 3(2):126–134CrossRefGoogle Scholar
  46. 46.
    Xiong X, Yu IKM, Cao L, Tsang DCW, Zhang S, Ok YS (2017) A review of biochar-based catalysts for chemical synthesis, biofuel production, and pollution control. Bioresour Technol 246:254–270PubMedCrossRefGoogle Scholar
  47. 47.
    Nieva Lobos ML, Sieben JM, Comignani V, Duarte M, Volpe MA, Moyano EL (2016) Biochar from pyrolysis of cellulose: an alternative catalyst support for the electro-oxidation of methanol. Int J Hydrog Energy 41(25):10695–10706CrossRefGoogle Scholar
  48. 48.
    Wei J, Liang Y, Hu Y, Kong B, Simon GP, Zhang J, Jiang SP, Wang H (2016) A versatile iron-tannin-framework ink coating strategy to fabricate biomass-derived iron carbide/Fe-N-carbon catalysts for efficient oxygen reduction. Angew Chem Int Ed 55(4):1355–1359CrossRefGoogle Scholar
  49. 49.
    Kim JR, Kan E (2016) Heterogeneous photocatalytic degradation of sulfamethoxazole in water using a biochar-supported TiO2photocatalyst. J Environ Manag 180:94–101CrossRefGoogle Scholar
  50. 50.
    Su DS, Wen G, Wu S, Peng F, Schlögl R (2017) Carbocatalysis in liquid-phase reactions. Angew Chem Int Ed 56(4):936–964CrossRefGoogle Scholar
  51. 51.
    Wang G, Shen X, Wang B, Yao J, Park J (2009) Synthesis and characterisation of hydrophilic and organophilic graphene nanosheets. Carbon 47(5):1359–1364CrossRefGoogle Scholar
  52. 52.
    Schlögl R (2013) Carbon in catalysis, vol 56, 1st edn. Elsevier, AmsterdamGoogle Scholar
  53. 53.
    Russo CJ, Passmore LA (2014) Controlling protein adsorption on graphene for cryo-EM using low-energy hydrogen plasmas. Nat Methods 11(6):649–652PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Xu Z, Ao Z, Chu D, Younis A, Li CM, Li S (2014) Reversible hydrophobic to hydrophilic transition in graphene via water splitting induced by UV irradiation. Sci Rep 4:6450PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Larouche N, Stansfield BL (2010) Classifying nanostructured carbons using graphitic indices derived from Raman spectra. Carbon 48(3):620–629CrossRefGoogle Scholar
  56. 56.
    Pardanaud C, Martin C, Roubin P (2014) Multiwavelength Raman spectroscopy analysis of a large sampling of disordered carbons extracted from the Tore Supra tokamak. Vib Spectrosc 70:187–192CrossRefGoogle Scholar
  57. 57.
    Lazzarini A, Piovano A, Pellegrini R, Agostini G, Rudić S, Lamberti C, Groppo E (2016) Graphitization of activated carbons: a molecular-level investigation by INS, DRIFT, XRD and Raman techniques. Phys Procedia 85:20–26CrossRefGoogle Scholar
  58. 58.
    Arrigo R, Hävecker M, Wrabetz S, Blume R, Lerch M, McGregor J, Parrott EPJ, Zeitler JA, Gladden LF, Knop-Gericke A, Schlögl R, Su DS (2010) Tuning the acid/base properties of nanocarbons by functionalisation via amination. J Am Chem Soc 132(28):9616–9630PubMedCrossRefGoogle Scholar
  59. 59.
    Smith MA, Lobo RF (2006) The local and surface structure of ordered mesoporous carbons from nitrogen sorption, NEXAFS and synchrotron radiation studies. Microporous Mesoporous Mater 92(1):81–93CrossRefGoogle Scholar
  60. 60.
    Brown RA, Kercher AK, Nguyen TH, Nagle DC, Ball WP (2006) Production and characterization of synthetic wood chars for use as surrogates for natural sorbents. Org Geochem 37(3):321–333CrossRefGoogle Scholar
  61. 61.
    Brewer CE, Schmidt-Rohr K, Satrio JA, Brown RC (2009) Characterization of biochar from fast pyrolysis and gasification systems. Environ Prog Sustain Energy 28(3):386–396CrossRefGoogle Scholar
  62. 62.
    Oberlin A (2002) Pyrocarbons. Carbon 40(1):7–24CrossRefGoogle Scholar
  63. 63.
    Jankowska H, Swiatkowski A, Choma J (1991) Active carbon. Ellis Horwood, New YorkGoogle Scholar
  64. 64.
    Emmett PH (1948) Adsorption and pore-size measurements on charcoals and whetlerites. Chem Rev 43(1):69–148PubMedCrossRefGoogle Scholar
  65. 65.
    Aygün A, Yenisoy-Karakaş S, Duman I (2003) Production of granular activated carbon from fruit stones and nutshells and evaluation of their physical, chemical and adsorption properties. Microporous Mesoporous Mater 66(2–3):189–195CrossRefGoogle Scholar
  66. 66.
    Maciejewska AK, Veringa H, Sanders JPM, Peteves SD (2006) Co-firing of biomass with coal: constraints and role of biomass pretreatment. Office for Official Publications of the European Communities, LuxembourgGoogle Scholar
  67. 67.
    Livingston W (2005) A review of the recent experience in Britain with the co-firing of biomass with coal in large pulverised coal-fired boilers. In: IEA Exco Workshop on Biomass Co-firing, CopenhagenGoogle Scholar
  68. 68.
    Işıkel Şanlı L, Bayram V, Ghobadi S, Düzen N, Alkan Gürsel S (2017) Engineered catalyst layer design with graphene-carbon black hybrid supports for enhanced platinum utilization in PEM fuel cell. Int J Hydrog Energy 42(2):1085–1092CrossRefGoogle Scholar
  69. 69.
    Li HQ, Wang YG, Wang CX, Xia YY (2008) A competitive candidate material for aqueous supercapacitors: high surface-area graphite. J Power Sources 185(2):1557–1562CrossRefGoogle Scholar
  70. 70.
    Chae HK, Kim J, Go YB (2004) A route to high surface area, porosity and inclusion of large molecules in crystals. Nature 427(February):523–527PubMedCrossRefGoogle Scholar
  71. 71.
    Kong H, Li HY, Lin GD, Zhang HB (2011) Pd-decorated CNT-promoted Pd-Ga2O3 catalyst for hydrogenation of CO2 to methanol. Catal Lett 141(6):886–894CrossRefGoogle Scholar
  72. 72.
    Bezemer GL, Radstake PB, Falke U, Oosterbeek H, Kuipers HPCE, Van Dillen AJ, De Jong KP (2006) Investigation of promoter effects of manganese oxide on carbon nanofiber-supported cobalt catalysts for Fischer-Tropsch synthesis. J Catal 237(1):152–161CrossRefGoogle Scholar
  73. 73.
    Peigney A, Laurent C, Flahaut E, Bacsa RR, Rousset A (2001) Specific surface area of carbon nanotubes and bundles of carbon nanotubes. Carbon 39(4):507–514CrossRefGoogle Scholar
  74. 74.
    Titirici M-M, White RJ, Brun N, Budarin VL, Su DS, del Monte F, Clark JH, MacLachlan MJ (2015) Sustainable carbon materials. Chem Soc Rev 44(1):250–290PubMedCrossRefGoogle Scholar
  75. 75.
    Anderson P, Bates A, Frogner K (2010) The Biochar revolution: transforming agriculture & environment. Global Publishing Group, Mt EvelynGoogle Scholar
  76. 76.
    Pereira BLC, Carneiro ADCO, Carvalho AMML, Colodette JL, Oliveira AC, Fontes MPF (2013) Influence of chemical composition of Eucalyptus wood on gravimetric yield and charcoal properties. Bioresources 8(3):4574–4592CrossRefGoogle Scholar
  77. 77.
    Yahya MA, Al-Qodah Z, Ngah CWZ (2015) Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: a review. Renew Sust Energ Rev 46:218–235CrossRefGoogle Scholar
  78. 78.
    Boehm HP (1994) Some aspects of the surface chemistry of carbon blacks and other carbons. Carbon 32(5):759–769CrossRefGoogle Scholar
  79. 79.
    Cameron DS, Cooper SJ, Dodgson IL, Harrison B, Jenkins JW (1990) Carbons as supports for precious metal catalysts. Catal Today 7(12):113–137CrossRefGoogle Scholar
  80. 80.
    Antal MJ, Grønli M (2003) The art, science, and technology of charcoal production. Ind Eng Chem Res 42(8):1619–1640CrossRefGoogle Scholar
  81. 81.
    Pierce C, Wiley JW, Smith RN (1949) Capillarity and surface area of charcoal. J Phys Colloid Chem 53(5):669–683PubMedCrossRefGoogle Scholar
  82. 82.
    Bai Z, Chen H, Li W, Li B (2006) Hydrogen production by methane decomposition over coal char. Int J Hydrog Energy 31(7):899–905CrossRefGoogle Scholar
  83. 83.
    Ferreira-Aparicio P (2011) In: Sanders IJ, Peeten TL (eds) Carbon blacks in electrochemical energy conversion devices: uses and applications in fuel cells. Nova Science Publishers Incorporated, New York, pp 1–40Google Scholar
  84. 84.
    Lazaro MJ, Calvillo L, Celorrio V, Pardo JI, Perathoner S, Moliner R (2011) In: Sanders IJ, Peeten TL (eds) Study and application of Vulcan XC-72 in low temperature fuel cells. Nova Science Publishers Incorporated, New York, pp 41–68Google Scholar
  85. 85.
    Haria N (2005) Evaluation of carbon blacks and binders in polymer thick film resistors. Loughborough University, LoughboroughGoogle Scholar
  86. 86.
    Wang X, Zhang H, Zhang J, Xu H, Zhu X, Chen J, Yi B (2006) A bi-functional micro-porous layer with composite carbon black for PEM fuel cells. J Power Sources 162(1):474–479CrossRefGoogle Scholar
  87. 87.
    Hill JM, Karimi A, Malekshahian M (2014) Characterization, gasification, activation, and potential uses for the millions of tonnes of petroleum coke produced in Canada each year. Can J Chem Eng 92(9):1618–1626CrossRefGoogle Scholar
  88. 88.
    Jia L, Anthony EJ, Lau I, Wang J (2006) Study of coal and coke ignition in fluidized beds. Fuel 85(5–6):635–642CrossRefGoogle Scholar
  89. 89.
    DiPanfilo R, Egiebor NO (1996) Activated carbon production from synthetic crude coke. Fuel Process Technol 46(3):157–169CrossRefGoogle Scholar
  90. 90.
    Wu M, Wang Y, Wang D, Tan M, Li P, Wu W, Tsubaki N (2016) SO3H-modified petroleum coke derived porous carbon as an efficient solid acid catalyst for esterification of oleic acid. J Porous Mater 23(1):263–271CrossRefGoogle Scholar
  91. 91.
    Hita I, Palos R, Arandes JM, Hill JM, Castaño P (2016) Petcoke-derived functionalized activated carbon as support in a bifunctional catalyst for tire oil hydroprocessing. Fuel Process Technol 144:239–247CrossRefGoogle Scholar
  92. 92.
    Murthy BN, Sawarkar AN, Deshmukh NA, Mathew T, Joshi JB (2014) Petroleum coke gasification: a review. Can J Chem Eng 92(3):441–468CrossRefGoogle Scholar
  93. 93.
    Choi J, Barnard ZG, Zhang S, Hill JM (2012) Ni catalysts supported on activated carbon from petcoke and their activity for toluene hydrogenation. Can J Chem Eng 90(3):631–636CrossRefGoogle Scholar
  94. 94.
    Chua CK, Sofer Z, Pumera M (2012) Graphite oxides: effects of permanganate and chlorate oxidants on the oxygen composition. Chem Eur J 18(42):13453–13459PubMedCrossRefGoogle Scholar
  95. 95.
    Li M, Xu F, Li H, Wang Y (2016) Nitrogen-doped porous carbon materials: promising catalysts or catalyst supports for heterogeneous hydrogenation and oxidation. Cat Sci Technol 6(11):3670–3693CrossRefGoogle Scholar
  96. 96.
    Porosoff MD, Yan B, Chen JG (2016) Catalytic reduction of CO2 by H2 for synthesis of CO, methanol and hydrocarbons: challenges and opportunities. Energy Environ Sci 9(1):62–73CrossRefGoogle Scholar
  97. 97.
    Liang XL, Xie JR, Liu ZM (2015) A novel Pd-decorated carbon nanotubes-promoted Pd-ZnO catalyst for CO2 hydrogenation to methanol. Catal Lett 145(5):1138–1147CrossRefGoogle Scholar
  98. 98.
    Ud Din I, Shaharun MS, Subbarao D, Naeem A (2015) Synthesis, characterization and activity pattern of carbon nanofibers based copper/zirconia catalysts for carbon dioxide hydrogenation to methanol: influence of calcination temperature. J Power Sources 274:619–628CrossRefGoogle Scholar
  99. 99.
    Wang G, Chen L, Sun Y, Wu J, Fu M, Ye D (2015) Carbon dioxide hydrogenation to methanol over Cu/ZrO2/CNTs: effect of carbon surface chemistry. R Soc Chem Adv 5(56):45320–45330Google Scholar
  100. 100.
    Xu B, Yue S, Sui Z, Zhang X, Hou S, Cao G, Yang Y (2011) What is the choice for supercapacitors: graphene or graphene oxide? Energy Environ Sci 4(8):2826–2826CrossRefGoogle Scholar
  101. 101.
    Pereira P, Csencsits R, Somorjai GA, Heinemann H (1990) Steam gasification of graphite and chars at temperatures <1000 K over potassium-calcium-oxide catalysts. J Catal 123(2):463–476CrossRefGoogle Scholar
  102. 102.
    Zhao N, Yang X, Zhang J, Zhu L, Lv Y (2017) Adsorption mechanisms of dodecylbenzene sulfonic acid by corn straw and poplar leaf biochars. Materials 10(10):1119–1119PubMedCentralCrossRefPubMedGoogle Scholar
  103. 103.
    Suhas, Carrott PJM, Ribeiro Carrott MML (2007) Lignin – from natural adsorbent to activated carbon: a review. Bioresour Technol 98(12):2301–2312PubMedCrossRefGoogle Scholar
  104. 104.
    Gillet S, Aguedo M, Petitjean L, Morais ARC, da Costa Lopes AM, Lukasik RM, Anastas PT (2017) Lignin transformations for high value applications: towards targeted modifications using green chemistry. Green Chem 19(18):4200–4233CrossRefGoogle Scholar
  105. 105.
    Tan XF, Liu S-B, Liu YG, Gu Y-L, Zeng GM, Hu XJ, Wang X, Liu SH, Jiang L-H (2017) Biochar as potential sustainable precursors for activated carbon production: multiple applications in environmental protection and energy storage. Bioresour Technol 227:359–372PubMedCrossRefGoogle Scholar
  106. 106.
    Prati L, Bergna D, Villa A, Spontoni P, Bianchi CL, Hu T, Romar H, Lassi U (2018) Carbons from second generation biomass as sustainable supports for catalytic systems. Catal Today 301:239–243CrossRefGoogle Scholar
  107. 107.
    Laine J, Yunes S (1992) Effect of the preparation method on the pore size distribution of activated carbon from coconut shell. Carbon 30(4):601–604CrossRefGoogle Scholar
  108. 108.
    Malaika A, Wower K, Kozlowski M (2010) Chemically modified activated carbons as catalysts of oxidative dehydrogenation of n-butane. Acta Phys Pol A 118(3):459–464CrossRefGoogle Scholar
  109. 109.
    Szymański GS, Rychlicki G (1991) Importance of oxygen surface groups in catalytic dehydration and dehydrogenation of butan-2-ol promoted by carbon catalysts. Carbon 29(4–5):489–498CrossRefGoogle Scholar
  110. 110.
    Chiang Y-C, Chiang P-C, Chiang EE (2001) Effects of surface characteristics of activated carbons on VOC adsorption. J Environ Eng 127(1):54–62CrossRefGoogle Scholar
  111. 111.
    Xiao Y, Hill JM (2017) Impact of pore size on Fenton oxidation of methyl Orange adsorbed on magnetic carbon materials: trade-off between capacity and regenerability. Environ Sci Technol 51(8):4567–4575PubMedCrossRefGoogle Scholar
  112. 112.
    Carabineiro SA, Fernandes FB, Vital JS, Ramos AM, Fonseca IM (2003) NO conversion using binary vanadium mixtures supported on activated carbon. Appl Catal B Environ 44(3):227–235CrossRefGoogle Scholar
  113. 113.
    Bommier C, Xu R, Wang W, Wang X, Wen D, Lu J, Ji X (2015) Self-activation of cellulose: a new preparation methodology for activated carbon electrodes in electrochemical capacitors. Nano Energy 13:709–717CrossRefGoogle Scholar
  114. 114.
    Val Loo S, Koppejan J (2008) The handbook of biomass combustion and co-firing. Earthscan Publications, LondonGoogle Scholar
  115. 115.
    Mourão PAM, Laginhas C, Custódio F, Nabais JMV, Carrott PJM, Carrott MMLR (2011) Influence of oxidation process on the adsorption capacity of activated carbons from lignocellulosic precursors. Fuel Process Technol 92(2):241–246CrossRefGoogle Scholar
  116. 116.
    Rajender Reddy K, Kumar NS, Surendra Reddy P, Sreedhar B, Lakshmi Kantam M (2006) Cellulose supported palladium(0) catalyst for Heck and Sonogashira coupling reactions. J Mol Catal A Chem 252(1–2):12–16CrossRefGoogle Scholar
  117. 117.
    Puziy AM, Poddubnaya OI, Sevastyanova O (2018) Carbon materials from technical lignins: recent advances. Top Curr Chem (Z) 376:33Google Scholar
  118. 118.
    Horne PA, Williams PT (1996) Influence of temperature on the products from the flash pyrolysis of biomass. Fuel 75(9):1051–1059CrossRefGoogle Scholar
  119. 119.
    Hill JM (2017) Sustainable and/or waste sources for catalysts: porous carbon development and gasification. Catal Today 285:204–210CrossRefGoogle Scholar
  120. 120.
    Veksha A, Bhuiyan TI, Hill JM (2016) Activation of aspen wood with carbon dioxide and phosphoric acid for removal of total organic carbon from oil sands produced water: increasing the yield with bio-oil recycling. Materials 9(1):20PubMedCentralCrossRefPubMedGoogle Scholar
  121. 121.
    Jain A, Balasubramanian R, Srinivasan MP (2016) Hydrothermal conversion of biomass waste to activated carbon with high porosity: a review. Chem Eng J 283:789–805CrossRefGoogle Scholar
  122. 122.
    Al-Qayim K, Nimmo W, Hughes K, Pourkashanian M (2017) Kinetic parameters of the intrinsic reactivity of woody biomass and coal chars via thermogravimetric analysis. Fuel 210(August):811–825CrossRefGoogle Scholar
  123. 123.
    Chunlan L, Shaoping X, Yixiong G, Shuqin L, Changhou L (2005) Effect of pre-carbonisation of petroleum cokes on chemical activation process with KOH. Carbon 43(11):2295–2301CrossRefGoogle Scholar
  124. 124.
    Tan X, Liu Y, Zeng G, Wang X, Hu X, Gu Y, Yang Z (2015) Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere 125:70–85PubMedCrossRefGoogle Scholar
  125. 125.
    Nzihou A, Stanmore B, Sharrock P (2013) A review of catalysts for the gasification of biomass char, with some reference to coal. Energy 58:305–317CrossRefGoogle Scholar
  126. 126.
    Asadullah M, Zhang S, Min Z, Yimsiri P, Li CZ (2010) Effects of biomass char structure on its gasification reactivity. Bioresour Technol 101(20):7935–7943PubMedCrossRefGoogle Scholar
  127. 127.
    Das O, Sarmah AK, Bhattacharyya D (2015) Structure-mechanics property relationship of waste derived biochars. Sci Total Environ 538:611–620PubMedCrossRefGoogle Scholar
  128. 128.
    Xu C, Ruan C-Q, Li Y, Lindh J, Strømme M (2018) High-performance activated carbons synthesized from nanocellulose for CO2 capture and extremely selective removal of volatile organic compounds. Adv Sustain Syst 2(2):1700147. –n/aCrossRefGoogle Scholar
  129. 129.
    Diao Y, Walawender WP, Fan LT (2002) Activated carbons prepared from phosphoric acid activation of grain sorghum. Bioresour Technol 81(1):45–52PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    Guo J, Lua AC (2003) Textural and chemical properties of adsorbent prepared from palm shell by phosphoric acid activation. Mater Chem Phys 80(1):114–119CrossRefGoogle Scholar
  131. 131.
    Montes V, Hill JM (2018) Pore enlargement of carbonaceous materials by metal oxide catalysts in the presence of steam: influence of metal oxide size and porosity of starting material. Microporous Mesoporous Mater 256:91–101CrossRefGoogle Scholar
  132. 132.
    Sevilla M, Ferrero GA, Fuertes AB (2017) Beyond KOH activation for the synthesis of superactivated carbons from hydrochar. Carbon 114:50–58CrossRefGoogle Scholar
  133. 133.
    Nahata M, Seo CY, Krishnakumar P, Schwank J (2018) New approaches to water purification for resource-constrained settings: production of activated biochar by chemical activation with diammonium hydrogenphosphate. Front Chem Sci Eng 12(1):194–208CrossRefGoogle Scholar
  134. 134.
    Pérez-Cadenas M, Plaza-Recobert M, Trautwein G, Alcañiz-Monge J (2018) Development of tailored mesoporosity in carbonised cocoa bean husk. Microporous Mesoporous Mater 256:128–139CrossRefGoogle Scholar
  135. 135.
    Karimi A, Semagina N, Gray MR (2011) Kinetics of catalytic steam gasification of bitumen coke. Fuel 90(3):1285–1291CrossRefGoogle Scholar
  136. 136.
    Yuan M, Kim Y, Jia CQ (2012) Feasibility of recycling KOH in chemical activation of oil-sands petroleum coke. Can J Chem Eng 90(6):1472–1478CrossRefGoogle Scholar
  137. 137.
    Nowrouzi M, Behin J, Younesi H, Bahramifar N, Charpentier PA, Rohani S (2017) An enhanced counter-current approach towards activated carbon from waste tissue with zero liquid discharge. Chem Eng J 326(Supplement C):934–944CrossRefGoogle Scholar
  138. 138.
    Montes V, Hill JM (2018) Activated carbon production: recycling KOH to minimize waste. Mater Lett 220:238–240CrossRefGoogle Scholar
  139. 139.
    Lee J, Kim J, Hyeon T (2006) Recent progress in the synthesis of porous carbon materials. Adv Mater 18(16):2073–2094CrossRefGoogle Scholar
  140. 140.
    Chengdu L, Zuojiang L, Sheng D (2008) Mesoporous carbon materials: synthesis and modification. Angew Chem Int Ed 47(20):3696–3717CrossRefGoogle Scholar
  141. 141.
    Mohamed AR, Mohammadi M, Darzi GN (2010) Preparation of carbon molecular sieve from lignocellulosic biomass: a review. Renew Sust Energ Rev 14(6):1591–1599CrossRefGoogle Scholar
  142. 142.
    Cordero-Lanzac T, Palos R, Arandes JM, Castaño P, Rodríguez-Mirasol J, Cordero T, Bilbao J (2017) Stability of an acid activated carbon based bifunctional catalyst for the raw bio-oil hydrodeoxygenation. Appl Catal B Environ 203:389–399CrossRefGoogle Scholar
  143. 143.
    Matos I, Bernardo M, Fonseca I (2017) Porous carbon: a versatile material for catalysis. Catal Today 285:194–203CrossRefGoogle Scholar
  144. 144.
    Prati L, Chan-Thaw CE, Campisi S, Villa A (2016) N-modified carbon-based materials: nanoscience for catalysis. Chem Rec 16(5):2187–2197PubMedCrossRefGoogle Scholar
  145. 145.
    Subramanian NP, Li X, Nallathambi V, Kumaraguru SP, Colon-Mercado H, Wu G, Lee JW, Popov BN (2009) Nitrogen-modified carbon-based catalysts for oxygen reduction reaction in polymer electrolyte membrane fuel cells. J Power Sources 188(1):38–44CrossRefGoogle Scholar
  146. 146.
    Rodríguez-Reinoso F (1998) The role of carbon materials in heterogeneous catalysis. Carbon 36(3):159–175CrossRefGoogle Scholar
  147. 147.
    Li C, Xu G, Zhai Y, Liu X, Ma Y, Zhang Y (2017) Hydrogenation of biomass-derived ethyl levulinate into γ-valerolactone by activated carbon supported bimetallic Ni and Fe catalysts. Fuel 203:23–31CrossRefGoogle Scholar
  148. 148.
    Rioux RM, Vannice MA (2003) Hydrogenation/dehydrogenation reactions: isopropanol dehydrogenation over copper catalysts. J Catal 216(1–2):362–376CrossRefGoogle Scholar
  149. 149.
    Rioux RM, Vannice MA (2005) Dehydrogenation of isopropyl alcohol on carbon-supported Pt and Cu-Pt catalysts. J Catal 233(1):147–165CrossRefGoogle Scholar
  150. 150.
    Gonçalves M, Mantovani M, Carvalho WA, Rodrigues R, Mandelli D, Silvestre Albero J (2014) Biodiesel wastes: an abundant and promising source for the preparation of acidic catalysts for utilization in etherification reaction. Chem Eng J 256:468–474CrossRefGoogle Scholar
  151. 151.
    Carrasco-Marín FC, Mueden A, Moreno-Castilla C (1998) Surface-treated activated carbons as catalysts for the dehydration and dehydrogenation reactions of ethanol. J Phys Chem B 102:9239–9244CrossRefGoogle Scholar
  152. 152.
    Moreno-Castilla C, Carrasco-Marín F, Parejo-Pérez C, López Ramón MV (2001) Dehydration of methanol to dimethyl ether catalyzed by oxidized activated carbons with varying surface acidic character. Carbon 39(6):869–875CrossRefGoogle Scholar
  153. 153.
    Peng F, Zhang L, Wang H, Lv P, Yu H (2005) Sulfonated carbon nanotubes as a strong protonic acid catalyst. Carbon 43(11):2405–2408CrossRefGoogle Scholar
  154. 154.
    Rocha RP, Pereira MFR, Figueiredo JL (2013) Carbon as a catalyst: esterification of acetic acid with ethanol. Catal Today 218-219:51–56CrossRefGoogle Scholar
  155. 155.
    Kamel DA, Farag HA, Amin NK, Fouad YO (2017) Biodiesel synthesis from non-edible oils by transesterification using the activated carbon as heterogeneous catalyst. Int J Environ Sci Technol 14(4):785–794CrossRefGoogle Scholar
  156. 156.
    Liu XY, Huang M, Ma HL, Zhang ZQ, Gao JM, Zhu YL, Han XJ, Guo XY (2010) Preparation of a carbon-based solid acid catalyst by sulfonating activated carbon in a chemical reduction process. Molecules 15(10):7188–7196PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Monteiro De Castro MC, Cunha IT, Gomes De Mendonça F, Augusti R, De Mesquita JP, Araujo MH, Martínez Escandell M, Molina Sabio M, Lago RM, Rodríguez Reinoso F (2017) Micromesoporous activated carbons as catalysts for the efficient oxidation of aqueous sulfide. Langmuir 33(43):11857–11861PubMedCrossRefGoogle Scholar
  158. 158.
    Valente A, Palma C, Fonseca IM, Ramos AM, Vital J (2003) Oxidation of pinane over phthalocyanine complexes supported on activated carbon: effect of the support surface treatment. Carbon 41(14):2793–2803CrossRefGoogle Scholar
  159. 159.
    Hu X, Lei L, Chu HP, Yue PL (1999) Copper/activated carbon as catalyst for organic wastewater treatment. Carbon 37(4):631–637CrossRefGoogle Scholar
  160. 160.
    Singhania A, Gupta SM (2018) Low-temperature CO oxidation: effect of the second metal on activated carbon supported Pd catalysts. Catal Lett 148(3):946–952CrossRefGoogle Scholar
  161. 161.
    Adamska A, Malaika A, Kozɫowski M (2010) Carbon-catalyzed decomposition of methane in the presence of carbon dioxide. Energy Fuel 24:3307–3312CrossRefGoogle Scholar
  162. 162.
    Gomes HT, Miranda SM, Sampaio MJ, Silva AMT, Faria JL (2010) Activated carbons treated with sulphuric acid: catalysts for catalytic wet peroxide oxidation. Catal Today 151(1–2):153–158CrossRefGoogle Scholar
  163. 163.
    Vega E, Valdés H (2018) New evidence of the effect of the chemical structure of activated carbon on the activity to promote radical generation in an advanced oxidation process using hydrogen peroxide. Microporous Mesoporous Mater 259:1–8CrossRefGoogle Scholar
  164. 164.
    Arnold RA, Habibi R, Kopyscinski J, Hill JM (2017) Interaction of potassium and calcium in the catalytic gasification of biosolids and switchgrass. Energy Fuel 31:6240–6247CrossRefGoogle Scholar
  165. 165.
    Brillas E, Sirés I, Oturan MA (2009) Electro-Fenton process and related electrochemical technologies based on fenton’s reaction chemistry. Chem Rev 109(12):6570–6631PubMedCrossRefGoogle Scholar
  166. 166.
    Wang J, Nie P, Ding B, Dong S, Hao X, Dou H, Zhang X (2017) Biomass derived carbon for energy storage devices. J Mater Chem A 5(6):2411–2428CrossRefGoogle Scholar
  167. 167.
    Wang Y-J, Fan H, Ignaszak A, Zhang L, Shao S, Wilkinson DP, Zhang J (2018) Compositing doped-carbon with metals, non-metals, metal oxides, metal nitrides and other materials to form bifunctional electrocatalysts to enhance metal-air battery oxygen reduction and evolution reactions. Chem Eng J 348:416–437CrossRefGoogle Scholar
  168. 168.
    Liu D, Tao L, Yan D, Zou Y, Wang S (2018) Recent advances on non-precious metal porous carbon-based electrocatalysts for oxygen reduction reaction. Chem Electron Chem 5(14):1775–1785Google Scholar
  169. 169.
    Murthy AP, Madhavan J, Murugan K (2018) Recent advances in hydrogen evolution reaction catalysts on carbon/carbon-based supports in acid media. J Power Sources 398:9–26CrossRefGoogle Scholar
  170. 170.
    Yang W, Dastafkan K, Jia C, Zhao C (2018) Design of electrocatalysts and electrochemical cells for carbon dioxide reduction reactions. Adv Mater Technol 3(9):1700377CrossRefGoogle Scholar
  171. 171.
    Brillas E, Baños MÁ, Skoumal M, Cabot PL, Garrido JA, Rodríguez RM (2007) Degradation of the herbicide 2,4-DP by anodic oxidation, electro-Fenton and photoelectro-Fenton using platinum and boron-doped diamond anodes. Chemosphere 68(2):199–209PubMedCrossRefGoogle Scholar
  172. 172.
    Ganiyu SO, Huong Le TX, Bechelany M, Esposito G, van Hullebusch ED, Oturan MA, Cretin M (2017) A hierarchical CoFe-layered double hydroxide modified carbon-felt cathode for heterogeneous electro-Fenton process. J Mater Chem A 5(7):3655–3666CrossRefGoogle Scholar
  173. 173.
    Petrucci E, Montanaro D, Le Donne S (2009) Effect of carbon material on the performance of a gas diffusion electrode in electro-Fenton process. J Environ Eng Manag 19(5):299–305Google Scholar
  174. 174.
    Xie J, Torres Galvis HM, Koeken ACJ, Kirilin A, Dugulan AI, Ruitenbeek M, De Jong KP (2016) Size and promoter effects on stability of carbon-nanofiber-supported iron-based Fischer-Tropsch catalysts. ACS Catal 6(6):4017–4024PubMedPubMedCentralCrossRefGoogle Scholar
  175. 175.
    Galvis HMT, Bitter JH, Davidian T, Ruitenbeek M, Dugulan AI, De Jong KP (2012) Iron particle size effects for direct production of lower olefins from synthesis gas. J Am Chem Soc 134(39):16207–16215CrossRefGoogle Scholar
  176. 176.
    Galvis HMT, Bitter JH, Khare CB, Ruitenbeek M, Dugulan AI, de Jong KP (2012) Supported Iron nanoparticles as catalysts for sustainable production of lower olefins. Science 835(February):1–5Google Scholar
  177. 177.
    Lu J, Yang L, Xu B, Wu Q, Zhang D, Yuan S, Zhai Y, Wang X, Fan Y, Hu Z (2014) Promotion effects of nitrogen doping into carbon nanotubes on supported iron fischer − tropsch catalysts for lower olefins. ACS Catal 4(2):613–621CrossRefGoogle Scholar
  178. 178.
    Collett CH, McGregor J (2016) Things go better with coke: the beneficial role of carbonaceous deposits in heterogeneous catalysis. Catal Sci Technol 6(2):363–378CrossRefGoogle Scholar
  179. 179.
    Figueiredo JL, Pereira MFR (2010) The role of surface chemistry in catalysis with carbons. Catal Today 150(1–2):2–7CrossRefGoogle Scholar
  180. 180.
    Wang S, Zhu ZH (2004) Catalytic conversion of alkanes to olefins by carbon dioxide oxidative dehydrogenation – a review. Energy Fuel 18(4):1126–1139CrossRefGoogle Scholar
  181. 181.
    Sakurai Y, Suzaki T, Ikenaga NO, Suzuki T (2000) Dehydrogenation of ethylbenzene with an activated carbon-supported vanadium catalyst. Appl Catal A Gen 192(2):281–288CrossRefGoogle Scholar
  182. 182.
    Kvande I, Chen D, Rønning M, Venvik HJ, Holmen A (2005) Highly active Cu-based catalysts on carbon nanofibers for isopropanol dehydrogenation. Catal Today 100(3–4):391–395CrossRefGoogle Scholar
  183. 183.
    Szymański GS, Rychlicki G (1991) Catalytic conversion of 2-propanol on cation-substituted forms of oxidized carbon. React Kinet Catal Lett 43(2):475–479CrossRefGoogle Scholar
  184. 184.
    Wang S, Wang H, Yin Q, Zhu L, Yin S (2014) Methanation of bio-syngas over a biochar supported catalyst. New J Chem 38(9):4471–4477CrossRefGoogle Scholar
  185. 185.
    Khayoon MS, Hameed BH (2011) Acetylation of glycerol to biofuel additives over sulfated activated carbon catalyst. Bioresour Technol 102(19):9229–9235PubMedCrossRefGoogle Scholar
  186. 186.
    Shu Q, Nawaz Z, Gao J, Liao Y, Zhang Q, Wang D, Wang J (2010) Synthesis of biodiesel from a model waste oil feedstock using a carbon-based solid acid catalyst: reaction and separation. Bioresour Technol 101(14):5374–5384PubMedCrossRefGoogle Scholar
  187. 187.
    Lotero E, Liu Y, Lopez DE, Suwannakarn K, Bruce DA, Goodwin JG (2005) Synthesis of biodiesel via acid catalysis. Ind Eng Chem Res 44(14):5353–5363CrossRefGoogle Scholar
  188. 188.
    Vassilev SV, Braekman-Danheux C, Moliner R, Suelves I, Lázaro MJ, Thiemann T (2002) Low cost catalytic sorbents for NOx reduction – 1. Preparation and characterization of coal char impregnated with model vanadium components and petroleum coke ash. Fuel 81(10):1281–1296CrossRefGoogle Scholar
  189. 189.
    Klinik J, Samojeden B, Grzybek T, Suprun W, Papp H, Gläser R (2011) Nitrogen promoted activated carbons as DeNOxcatalysts. 2. The influence of water on the catalytic performance. Catal Today 176(1):303–308CrossRefGoogle Scholar
  190. 190.
    Okamura M, Takagaki A, Toda M, Kondo JN, Domen K, Tatsumi T, Hara M, Hayashi S (2006) Acid-catalyzed reactions on flexible polycyclic aromatic carbon in amorphous carbon. Chem Mater 18(13):3039–3045CrossRefGoogle Scholar
  191. 191.
    Fraga AC, Quitete CPB, Ximenes VL, Sousa-Aguiar EF, Fonseca IM, Rego AMB (2016) Biomass derived solid acids as effective hydrolysis catalysts. J Mol Catal A Chem 422:248–257CrossRefGoogle Scholar
  192. 192.
    Ormsby R, Kastner JR, Miller J (2012) Hemicellulose hydrolysis using solid acid catalysts generated from biochar. Catal Today 190(1):89–97CrossRefGoogle Scholar
  193. 193.
    Qi X, Lian Y, Yan L, Smith RL (2014) One-step preparation of carbonaceous solid acid catalysts by hydrothermal carbonisation of glucose for cellulose hydrolysis. Catal Commun 57:50–54CrossRefGoogle Scholar
  194. 194.
    Wu Y, Fu Z, Yin D, Xu Q, Liu F, Lu C, Mao L (2010) Microwave-assisted hydrolysis of crystalline cellulose catalyzed by biomass char sulfonic acids. Green Chem 12(4):696–696CrossRefGoogle Scholar
  195. 195.
    Wataniyakul P, Boonnoun P, Quitain AT, Kida T, Laosiripojana N, Shotipruk A (2018) Preparation of hydrothermal carbon acid catalyst from defatted rice bran. Ind Crop Prod 117(February):286–294CrossRefGoogle Scholar
  196. 196.
    Kobayashi H, Komanoya T, Hara K, Fukuoka A (2010) Water-tolerant mesoporous-carbon-supported ruthenium catalysts for the hydrolysis of cellulose to glucose. ChemSusChem 3(4):440–443PubMedCrossRefGoogle Scholar
  197. 197.
    Bai Z, Chen H, Li B, Li W (2007) Methane decomposition over Ni loaded activated carbon for hydrogen production and the formation of filamentous carbon. Int J Hydrog Energy 32(1):32–37CrossRefGoogle Scholar
  198. 198.
    Schaper H, Doesburg EBM, De Korte PHM, Van Reijen LL (1985) Thermal stabilization of high surface area alumina. Solid State Ionics 16(C):261–265CrossRefGoogle Scholar
  199. 199.
    Saib AM, Claeys M, van Steen E (2002) Silica supported cobalt Fischer-Tropsch catalysts: effect of pore diameter of support. Catal Today 71(3–4):395–402CrossRefGoogle Scholar
  200. 200.
    Serrano DP, Aguado J, Escola JM, Rodríguez JM, Peral A (2006) Hierarchical zeolites with enhanced textural and catalytic properties synthesized from organofunctionalized seeds. Chem Mater 18(10):2462–2464CrossRefGoogle Scholar
  201. 201.
    Tancredi N, Rodriguez JJ, Rodriguez-Mirasol J (1996) Activated carbons eucalyptus wood from Uruguayan. Fuel 75(15):1701–1706CrossRefGoogle Scholar
  202. 202.
    Tancredi N, Cordero T, Rodriguez-Mirasol J, Rodriguez JJ (1997) Activated carbons from eucalyptus wood. Influence of the carbonisation temperature. Sep Sci Technol 32(6):1115–1126CrossRefGoogle Scholar
  203. 203.
    Deiana AC, Granados DL, Petkovic LM, Sardella MF, Silva HS (2004) Use of grape must as a binder to obtain activated carbon briquettes. Braz J Chem Eng 21(4):585–591CrossRefGoogle Scholar
  204. 204.
    Amaya A, Medero N, Tancredi N, Silva H, Deiana C (2007) Activated carbon briquettes from biomass materials. Bioresour Technol 98(8):1635–1641PubMedCrossRefGoogle Scholar
  205. 205.
    Sorokina NE, Khaskov MA, Avdeev VV, Nikol'skaya IV (2005) Reaction of graphite with sulfuric acid in the presence of KMnO4. Russ J Gen Chem 75(2):162–168CrossRefGoogle Scholar
  206. 206.
    Kovtyukhova NI, Wang Y, Berkdemir A, Cruz-Silva R, Terrones M, Crespi VH, Mallouk TE (2014) Non-oxidative intercalation and exfoliation of graphite by Brønsted acids. Nat Chem 6(11):957–963PubMedCrossRefGoogle Scholar
  207. 207.
    Gu F, Cheng X, Wang S, Wang X, Lee PS (2015) Oxidative intercalation for monometallic Ni2+-Ni3+layered double hydroxide and enhanced capacitance in exfoliated nanosheets. Small 11(17):2044–2050PubMedCrossRefGoogle Scholar
  208. 208.
    Novoselov KS, Geim AK, Morozov SV, Jiang DA, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669PubMedCrossRefGoogle Scholar
  209. 209.
    Pérez-Mayoral E, Calvino-Casilda V, Soriano E (2016) Metal-supported carbon-based materials: opportunities and challenges in the synthesis of valuable products. Cat Sci Technol 6(5):1265–1291CrossRefGoogle Scholar
  210. 210.
    Gurrath M, Kuretzky T, Boehm HP, Okhlopkova LB, Lisitsyn AS, Likholobov VA (2000) Palladium catalysts on activated carbon supports influence of reduction temperature, origin of the support and pretreatments of the carbon surface. Carbon 38(8):1241–1255CrossRefGoogle Scholar
  211. 211.
    Park ED, Lee JS (1999) Effects of pretreatment conditions on CO oxidation over supported Au catalysts. J Catal 186(1):1–11CrossRefGoogle Scholar
  212. 212.
    Coccia F, Tonucci L, D’Alessandro N, D’Ambrosio P, Bressan M (2013) Palladium nanoparticles, stabilized by lignin, as catalyst for cross-coupling reactions in water. Inorg Chim Acta 399:12–18CrossRefGoogle Scholar
  213. 213.
    Vaddula BR, Saha A, Varma RS, Leazer J (2012) Tsuji-trost N-allylation with allylic acetates by using a cellulose-palladium catalyst. Eur J Org Chem 34:6707–6709CrossRefGoogle Scholar
  214. 214.
    Materials PC-FaR (1998) World nylon 6 and 66 supply|demand report. SeafordGoogle Scholar
  215. 215.
    Zhang X, Geng Y, Han B, Ying M-Y, Huang M-Y, Jiang Y-Y (2001) Asymmetric hydrogenation of ketones catalyzed by zeolite-supported gelatin ± Fe complex. Polym Adv Technol 12:642–646CrossRefGoogle Scholar
  216. 216.
    Risso R, Ferraz P, Meireles S, Fonseca I, Vital J (2018) Highly active CaO catalysts from waste shells of egg, oyster and clam for biodiesel production. Appl Catal A Gen 567:56–64CrossRefGoogle Scholar
  217. 217.
    Marinković DM, Stanković MV, Veličković AV, Avramović JM, Miladinović MR, Stamenković OO, Veljković VB, Jovanović DM (2016) Calcium oxide as a promising heterogeneous catalyst for biodiesel production: current state and perspectives. Renew Sust Energ Rev 56:1387–1408CrossRefGoogle Scholar
  218. 218.
    Liang S, Liu H, Jiang T, Song J, Yang G, Han B (2011) Highly efficient synthesis of cyclic carbonates from CO2 and epoxides over cellulose/KI. Chem Commun 47(7):2131–2133CrossRefGoogle Scholar
  219. 219.
    Landwehr J, Steldinger H, Etzold BJM (2018) Introducing sulphur surface groups in microporous carbons: a mechanistic study on carbide derived carbons. Catal Today 301(January 2017):191–195CrossRefGoogle Scholar
  220. 220.
    Figueiredo JL, Pereira MFR, Freitas MMA, Órfão JJM (1999) Modification of the surface chemistry of activated carbons. Carbon 37:1379–1389CrossRefGoogle Scholar
  221. 221.
    Shaabani A, Maleki A (2007) Cellulose sulfuric acid as a bio-supported and recyclable solid acid catalyst for the one-pot three-component synthesis of α-amino nitriles. Appl Catal A Gen 331(1):149–151CrossRefGoogle Scholar
  222. 222.
    Gomes HT, Miranda SM, Sampaio MJ, Figueiredo JL, Silva AMT, Faria JL (2011) The role of activated carbons functionalized with thiol and sulfonic acid groups in catalytic wet peroxide oxidation. Appl Catal B Environ 106(3–4):390–397CrossRefGoogle Scholar
  223. 223.
    Figueiredo JL, Pereira MFR (2009) In: Serp P, Figueiredo JL (eds) Carbon as catalyst. Wiley, Hoboken, pp 177–218Google Scholar
  224. 224.
    Wang Y, Yao J, Li H, Su D, Antonietti M (2011) Highly selective hydrogenation of phenol and derivatives over a pd@carbon nitride catalyst in aqueous media. J Am Chem Soc 133(8):2362–2365PubMedCrossRefGoogle Scholar
  225. 225.
    Shafeeyan MS, Daud WMAW, Houshmand A, Shamiri A (2010) A review on surface modification of activated carbon for carbon dioxide adsorption. J Anal Appl Pyrolysis 89(2):143–151CrossRefGoogle Scholar
  226. 226.
    Pevida C, Plaza MG, Arias B, Fermoso J, Rubiera F, Pis JJ (2008) Surface modification of activated carbons for CO2 capture. Appl Surf Sci 254(22):7165–7172CrossRefGoogle Scholar
  227. 227.
    Chen P, Wang L-K, Wang G, Gao M-R, Ge J, Yuan W-J, Shen Y-H, Xie A-J, Yu S-H (2014) Nitrogen-doped nanoporous carbon nanosheets derived from plant biomass: an efficient catalyst for oxygen reduction reaction. Energy Environ Sci 7(12):4095–4103CrossRefGoogle Scholar
  228. 228.
    Liu X, Zhou Y, Zhou W, Li L, Huang S, Chen S (2015) Biomass-derived nitrogen self-doped porous carbon as effective metal-free catalysts for oxygen reduction reaction. Nanoscale 7(14):6136–6142PubMedCrossRefGoogle Scholar
  229. 229.
    Brun N, Wohlgemuth SA, Osiceanu P, Titirici MM (2013) Original design of nitrogen-doped carbon aerogels from sustainable precursors: application as metal-free oxygen reduction catalysts. Green Chem 15(9):2514–2514CrossRefGoogle Scholar
  230. 230.
    Dhawane SH, Kumar T, Halder G (2018) Recent advancement and prospective of heterogeneous carbonaceous catalysts in chemical and enzymatic transformation of biodiesel. Energy Convers Manag 167(April):176–202CrossRefGoogle Scholar
  231. 231.
    López DE, Goodwin JG, Bruce DA (2007) Transesterification of triacetin with methanol on Nafion®acid resins. J Catal 245(2):381–391CrossRefGoogle Scholar
  232. 232.
    Fraile JM, García-Bordejé E, Pires E, Roldán L (2014) New insights into the strength and accessibility of acid sites of sulfonated hydrothermal carbon. Carbon 77:1157–1167CrossRefGoogle Scholar
  233. 233.
    Cordero-Lanzac T, Hita I, Veloso A, Arandes JM, Rodríguez-Mirasol J, Bilbao J, Cordero T, Castaño P (2017) Characterization and controlled combustion of carbonaceous deactivating species deposited on an activated carbon-based catalyst. Chem Eng J 327:454–464CrossRefGoogle Scholar
  234. 234.
    Hita I, Cordero-Lanzac T, Gallardo A, Arandes JM, Rodríguez-Mirasol J, Bilbao J, Cordero T, Castaño P (2016) Phosphorus-containing activated carbon as acid support in a bifunctional Pt-Pd catalyst for tire oil hydrocracking. Catal Commun 78:48–51CrossRefGoogle Scholar
  235. 235.
    Furimsky E (1998) Gasification of oil sand coke: review. Fuel Process Technol 56(3):263–290CrossRefGoogle Scholar
  236. 236.
    Broer KM, Woolcock PJ, Johnston PA, Brown RC (2015) Steam/oxygen gasification system for the production of clean syngas from switchgrass. Fuel 140:282–292CrossRefGoogle Scholar
  237. 237.
    Higman C, Van der Burgt M (2011) Gasification. Gulf Professional Publishing, OxfordGoogle Scholar
  238. 238.
    Zhou J, Chen Q, Zhao H, Cao X, Mei Q, Luo Z, Cen K (2009) Biomass–oxygen gasification in a high-temperature entrained-flow gasifier. Biotechnol Adv 27(5):606–611PubMedCrossRefGoogle Scholar
  239. 239.
    McKee DW (1983) Mechanisms of the alkali metal catalysed gasification of carbon. Fuel 62(2):170–175CrossRefGoogle Scholar
  240. 240.
    Pinto F, Lopes H, André RN, Gulyurtlu I, Cabrita I (2007) Effect of catalysts in the quality of syngas and by-products obtained by co-gasification of coal and wastes. 1. Tars and nitrogen compounds abatement. Fuel 86(14):2052–2063CrossRefGoogle Scholar
  241. 241.
    Wen W-Y (1980) Mechanisms of alkali metal catalysis in the gasification of coal, char, or graphite. Catal Rev 22(1):1–28CrossRefGoogle Scholar
  242. 242.
    Suzuki T, Ohme H, Watanabe Y (1994) Mechanisms of alkaline-earth metals catalyzed CO2 gasification of carbon. Energy Fuel 8(3):649–658CrossRefGoogle Scholar
  243. 243.
    Abu El-Rub Z, Bramer EA, Brem G (2004) Review of catalysts for tar elimination in biomass gasification processes. Ind Eng Chem Res 43(22):6911–6919CrossRefGoogle Scholar
  244. 244.
    Leboda R, Skubiszewska-Ziba J, Grzegorczyk W (1998) Effect of calcium catalyst loading procedure on the porous structure of active carbon from plum stones modified in the steam gasification process. Carbon 36(4):417–425CrossRefGoogle Scholar
  245. 245.
    Said M, Cassayre L, Dirion J-L, Joulia X, Nzihou A (2017) Effect of nickel impregnation on wood gasification mechanism. Waste Biomass Valorization 8(8):2843–2852CrossRefGoogle Scholar
  246. 246.
    Liew SC, Hill JM (2015) Impacts of vanadium and coke deposits on the CO2 gasification of nickel catalysts supported on activated carbon from petroleum coke. Appl Catal A Gen 504:420–428CrossRefGoogle Scholar
  247. 247.
    Zamboni I, Courson C, Kiennemann A (2017) Fe-Ca interactions in Fe-based/CaO catalyst/sorbent for CO2 sorption and hydrogen production from toluene steam reforming. Appl Catal B Environ 203:154–165CrossRefGoogle Scholar
  248. 248.
    Chen G, Chen S, Zhang Y, Hong Y, Song Z, Zhao X, Ma C (2016) Transformation of potassium and sodium in lignite during the supercritical water gasification process. J Anal Appl Pyrolysis 120:231–237CrossRefGoogle Scholar
  249. 249.
    Kramb J, DeMartini N, Perander M, Moilanen A, Konttinen J (2016) Modeling of the catalytic effects of potassium and calcium on spruce wood gasification in CO2. Fuel Process Technol 148:50–59CrossRefGoogle Scholar
  250. 250.
    Kaknics J, Michel R, Poirier J, de Bilbao E (2017) Experimental study and thermodynamic modelling of high temperature interactions between molten miscanthus ashes and bed particles in fluidized bed reactors. Waste Biomass Valorization 8(8):2771–2790CrossRefGoogle Scholar
  251. 251.
    Perondi D, Poletto P, Restelatto D, Manera C, Silva JP, Junges J, Collazzo GC, Dettmer A, Godinho M, Vilela ACF (2017) Steam gasification of poultry litter biochar for bio-syngas production. Process Saf Environ Prot 109:478–488CrossRefGoogle Scholar
  252. 252.
    Perander M, DeMartini N, Brink A, Kramb J, Karlström O, Hemming J, Moilanen A, Konttinen J, Hupa M (2015) Catalytic effect of Ca and K on CO2 gasification of spruce wood char. Fuel 150(Supplement C):464–472CrossRefGoogle Scholar
  253. 253.
    Li X, Dong Z, Dou J, Yu J, Tahmasebi A (2016) Catalytic reduction of NO using iron oxide impregnated biomass and lignite char for flue gas treatment. Fuel Process Technol 148:91–98CrossRefGoogle Scholar
  254. 254.
    Kühn L, Plogmann H (1983) Reaction of catalysts with mineral matter during coal gasification. Fuel 62(2):205–208CrossRefGoogle Scholar
  255. 255.
    Kopyscinski J, Rahman M, Gupta R, Mims CA, Hill JM (2014) K2CO3 catalyzed CO2 gasification of ash-free coal. Interactions of the catalyst with carbon in N2 and CO2 atmosphere. Fuel 117(Part B):1181–1189CrossRefGoogle Scholar
  256. 256.
    Jiang M-Q, Zhou R, Hu J, Wang F-C, Wang J (2012) Calcium-promoted catalytic activity of potassium carbonate for steam gasification of coal char: influences of calcium species. Fuel 99:64–71CrossRefGoogle Scholar
  257. 257.
    Tang J, Guo R, Wang J (2013) Inhibition of interaction between kaolinite and K2CO3 by pretreatment using calcium additive. J Therm Anal Calorim 114(1):153–160CrossRefGoogle Scholar
  258. 258.
    Mani S, Kastner JR, Juneja A (2013) Catalytic decomposition of toluene using a biomass derived catalyst. Fuel Process Technol 114:118–125CrossRefGoogle Scholar
  259. 259.
    Abu El-Rub Z, Bramer EA, Brem G (2008) Experimental comparison of biomass chars with other catalysts for tar reduction. Fuel 87(10):2243–2252CrossRefGoogle Scholar
  260. 260.
    Shen Y (2015) Chars as carbonaceous adsorbents/catalysts for tar elimination during biomass pyrolysis or gasification. Renew Sust Energ Rev 43:281–295CrossRefGoogle Scholar
  261. 261.
    Liu W-J, Zeng F-X, Jiang H, Zhang X-S (2011) Preparation of high adsorption capacity bio-chars from waste biomass. Bioresour Technol 102(17):8247–8252PubMedCrossRefGoogle Scholar
  262. 262.
    Feng D, Zhang Y, Zhao Y, Sun S, Gao J (2018) Improvement and maintenance of biochar catalytic activity for in-situ biomass tar reforming during pyrolysis and H2O/CO2 gasification. Fuel Process Technol 172:106–114CrossRefGoogle Scholar
  263. 263.
    Zhang S, Asadullah M, Dong L, Tay H-L, Li C-Z (2013) An advanced biomass gasification technology with integrated catalytic hot gas cleaning. Part II: tar reforming using char as a catalyst or as a catalyst support. Fuel 112:646–653CrossRefGoogle Scholar
  264. 264.
    Stern D, Bell AT, Heinemann H (1985) Experimental and theoretical studies of Fischer—Tropsch synthesis over ruthenium in a bubble-column reactor. Chem Eng Sci 40(10):1917–1924CrossRefGoogle Scholar
  265. 265.
    Zhang S, Chen L, Zhou S, Zhao D, Wu L (2010) Facile synthesis of hierarchically ordered porous carbon via in situ self-assembly of colloidal polymer and silica spheres and its use as a catalyst support. Chem Mater 22(11):3433–3440CrossRefGoogle Scholar
  266. 266.
    Khodakov AY, Griboval-Constant A, Bechara R, Zholobenko VL (2002) Pore size effects in Fischer Tropsch synthesis over cobalt-supported mesoporous Silicas. J Catal 206(2):230–241CrossRefGoogle Scholar
  267. 267.
    Tavasoli A, Sadagiani K, Khorashe F, Seifkordi AA, Rohani AA, Nakhaeipour A (2008) Cobalt supported on carbon nanotubes—a promising novel Fischer–Tropsch synthesis catalyst. Fuel Process Technol 89(5):491–498CrossRefGoogle Scholar
  268. 268.
    Lai J, Nsabimana A, Luque R, Xu G (2018) 3D porous carbonaceous electrodes for electrocatalytic applications. Joule 2(1):76–93CrossRefGoogle Scholar
  269. 269.
    Xu Z, Ma J, Shi M, Xie Y, Feng C (2018) Biomass based iron and nitrogen co-doped 3D porous carbon as an efficient oxygen reduction catalyst. J Colloid Interface Sci 523:144–150PubMedCrossRefGoogle Scholar
  270. 270.
    Sirés I, Brillas E, Oturan M, Rodrigo M, Panizza M (2014) Electrochemical advanced oxidation processes: today and tomorrow. A review. Environ Sci Pollut Res 21(14):8336–8367CrossRefGoogle Scholar
  271. 271.
    Song C, Zhang J (2008) Electrocatalytic oxygen reduction reaction. In: Zhang J (ed) PEM fuel cell electrocatalysts and catalyst layers: fundamentals and applications. Springer, London, pp 89–134CrossRefGoogle Scholar
  272. 272.
    Cheng Y, Zhang J, Jiang SP (2015) Are metal-free pristine carbon nanotubes electrocatalytically active? Chem Commun 51(72):13764–13767CrossRefGoogle Scholar
  273. 273.
    Daneshvar N, Aber S, Vatanpour V, Rasoulifard MH (2008) Electro-Fenton treatment of dye solution containing Orange II: influence of operational parameters. J Electroanal Chem 615(2):165–174CrossRefGoogle Scholar
  274. 274.
    Ge X, Sumboja A, Wuu D, An T, Li B, Goh FWT, Hor TSA, Zong Y, Liu Z (2015) Oxygen reduction in alkaline media: from mechanisms to recent advances of catalysts. ACS Catal 5(8):4643–4667CrossRefGoogle Scholar
  275. 275.
    Byers JC, Güell AG, Unwin PR (2014) Nanoscale electrocatalysis: visualizing oxygen reduction at pristine, kinked, and oxidized sites on individual carbon nanotubes. J Am Chem Soc 136(32):11252–11255PubMedPubMedCentralCrossRefGoogle Scholar
  276. 276.
    Miao J, Zhu H, Tang Y, Chen Y, Wan P (2014) Graphite felt electrochemically modified in H2SO4 solution used as a cathode to produce H2O2 for pre-oxidation of drinking water. Chem Eng J 250:312–318CrossRefGoogle Scholar
  277. 277.
    Randviir EP, Banks CE (2014) The oxygen reduction reaction at graphene modified electrodes. Electroanalysis 26(1):76–83CrossRefGoogle Scholar
  278. 278.
    Lu Z, Chen G, Siahrostami S, Chen Z, Liu K, Xie J, Liao L, Wu T, Lin D, Liu Y, Jaramillo TF, Nørskov JK, Cui Y (2018) High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials. Nat Catal 1(2):156–162CrossRefGoogle Scholar
  279. 279.
    Jürmann G, Tammeveski K (2006) Electroreduction of oxygen on multi-walled carbon nanotubes modified highly oriented pyrolytic graphite electrodes in alkaline solution. J Electroanal Chem 597(2):119–126CrossRefGoogle Scholar
  280. 280.
    Sun Y, Sinev I, Ju W, Bergmann A, Dresp S, Kühl S, Spöri C, Schmies H, Wang H, Bernsmeier D, Paul B, Schmack R, Kraehnert R, Roldan Cuenya B, Strasser P (2018) Efficient electrochemical hydrogen peroxide production from molecular oxygen on nitrogen-doped mesoporous carbon catalysts. ACS Catal 8:2844–2856CrossRefGoogle Scholar
  281. 281.
    Park J, Nabae Y, Hayakawa T, M-A K (2014) Highly selective two-electron oxygen reduction catalyzed by mesoporous nitrogen-doped carbon. ACS Catal 4(10):3749–3754CrossRefGoogle Scholar
  282. 282.
    Liu Y, Quan X, Fan X, Wang H, Chen S (2015) High-yield electrosynthesis of hydrogen peroxide from oxygen reduction by hierarchically porous carbon. Angew Chem Int Ed 54(23):6837–6841CrossRefGoogle Scholar
  283. 283.
    Petrucci E, Da Pozzo A, Di Palma L (2016) On the ability to electrogenerate hydrogen peroxide and to regenerate ferrous ions of three selected carbon-based cathodes for electro-Fenton processes. Chem Eng J 283:750–758CrossRefGoogle Scholar
  284. 284.
    Yatagai T, Ohkawa Y, Kubo D, Kawase Y (2017) Hydroxyl radical generation in electro-Fenton process with a gas-diffusion electrode: linkages with electro-chemical generation of hydrogen peroxide and iron redox cycle. J Environ Sci Health Part A 52(1):74–83CrossRefGoogle Scholar
  285. 285.
    Sirés I, Garrido JA, Rodríguez RM, Brillas E, Oturan N, Oturan MA (2007) Catalytic behavior of the Fe3+/Fe2+ system in the electro-Fenton degradation of the antimicrobial chlorophene. Appl Catal B Environ 72(3):382–394CrossRefGoogle Scholar
  286. 286.
    Zhao H, Wang Y, Wang Y, Cao T, Zhao G (2012) Electro-Fenton oxidation of pesticides with a novel Fe3O4@Fe2O3/activated carbon aerogel cathode: high activity, wide pH range and catalytic mechanism. Appl Catal B 125:120–127CrossRefGoogle Scholar
  287. 287.
    Sopaj F, Oturan N, Pinson J, Podvorica F, Oturan MA (2016) Effect of the anode materials on the efficiency of the electro-Fenton process for the mineralization of the antibiotic sulfamethazine. Appl Catal B 199:331–341CrossRefGoogle Scholar
  288. 288.
    Lin H, Oturan N, Wu J, Zhang H, Oturan MA (2017) Cold incineration of sucralose in aqueous solution by electro-Fenton process. Sep Purif Technol 173:218–225CrossRefGoogle Scholar
  289. 289.
    Chen Y, Wang M, Tian M, Zhu Y, Wei X, Jiang T, Gao S (2017) An innovative electro-fenton degradation system self-powered by triboelectric nanogenerator using biomass-derived carbon materials as cathode catalyst. Nano Energy 42:314–321CrossRefGoogle Scholar
  290. 290.
    Jin T, Wan J, Dai C, Qu S, Shao J, Ma F (2018) A simple method to prepare high specific surface area reed straw activated carbon cathodes for in situ generation of H2O2 and OH for phenol degradation in wastewater. J Appl Electrochem 48(3):343–353CrossRefGoogle Scholar
  291. 291.
    Bañuelos JA, El-Ghenymy A, Rodríguez FJ, Manríquez J, Bustos E, Rodríguez A, Brillas E, Godínez LA (2014) Study of an air diffusion activated carbon packed electrode for an electro-Fenton wastewater treatment. Electrochim Acta 140:412–418CrossRefGoogle Scholar
  292. 292.
    Zarei M, Salari D, Niaei A, Khataee A (2009) Peroxi-coagulation degradation of C.I. Basic Yellow 2 based on carbon-PTFE and carbon nanotube-PTFE electrodes as cathode. Electrochim Acta 54(26):6651–6660CrossRefGoogle Scholar
  293. 293.
    Zhou M, Yu Q, Lei L (2008) The preparation and characterization of a graphite–PTFE cathode system for the decolorization of C.I. Acid Red 2. Dyes Pigments 77(1):129–136CrossRefGoogle Scholar
  294. 294.
    Liu L, Liu H, Cui M, Hu Y, Wang J (2013) Calcium-promoted catalytic activity of potassium carbonate for steam gasification of coal char: transformations of sulfur. Fuel 112:687–694CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Melanie J. Hazlett
    • 1
  • Ross A. Arnold
    • 1
  • Vicente Montes
    • 2
  • Ye Xiao
    • 1
  • Josephine M. Hill
    • 1
    Email author
  1. 1.Department of Chemical and Petroleum EngineeringUniversity of CalgaryCalgaryCanada
  2. 2.Department of Organic ChemistryUniversity of CordobaCordobaSpain

Personalised recommendations