Carbons from Biomass for Electrochemical Capacitors

  • Lu WeiEmail author
  • Wen Zhao
  • Gleb Yushin
Part of the Biofuels and Biorefineries book series (BIOBIO, volume 9)


Carbon materials with highly developed surface area, good conductivity, versatile form, chemical stability and moderate cost are the most common electrode materials for electrochemical energy storage. This chapter covers the progress on fabrication of conventional and novel nanostructured carbon materials, such as activated carbon, carbon nano-/microspheres, carbon fibers, carbon nanotubes and carbon nanosheets, from inexpensive biomass or biomass wastes and their application for electrochemical capacitors. The effect of carbon structures, including specific surface area, pore size distribution, pore shape, surface defects, surface functional groups, particle size and electrode thickness, on the electrochemical properties of carbon electrodes are summarized. The commercial potential of the biomass-derived carbons for high-performance electrochemical capacitors is discussed.


Activated carbon Carbon microspheres Carbon fibers Carbon nanotubes Carbon nanosheets Supercapacitors Biomass Electrode 


  1. 1.
    Wang Y, Song Y, Xia Y (2016) Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chem Soc Rev 45:5925–5950PubMedCrossRefGoogle Scholar
  2. 2.
    Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854PubMedCrossRefGoogle Scholar
  3. 3.
    Wei L, Sevilla M, Fuertes AB, Mokaya R, Yushin G (2012) Pollypyrrole-derived activated carbons for high-performance electrical double-layer capacitors with ionic liquid electrolyte. Adv Funct Mater 22:827–834CrossRefGoogle Scholar
  4. 4.
    Lin Z, Goikolea E, Balducci A, Naoi K, Taberna PL, Salanne M, Yushin G, Simon P (2018) Materials for supercapacitors: when Li-ion battery power is not enough. Mater Today 21:419–436CrossRefGoogle Scholar
  5. 5.
    Salanne M, Rotenberg B, Naoi K, Kaneko K, Taberna PL, Grey CP, Dunn B, Simon P (2016) Efficient storage mechanisms for building better supercapacitors. Nat Energy 1:16070CrossRefGoogle Scholar
  6. 6.
    Kang J, Zhang S, Zhang Z (2017) Three-dimensional binder-free nanoarchitectures for advanced pseudocapacitors. Adv Mater 29:1700515CrossRefGoogle Scholar
  7. 7.
    Zuo W, Li R, Zhou C, Li Y, Xia J, Liu J (2017) Battery-supercapacitor hybrid devices: recent progress and future prospects. Adv Sci 4:1600539CrossRefGoogle Scholar
  8. 8.
    Lin T, Chen I-W, Liu F, Yang C, Bi H, Xu F, Huang F (2015) Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage. Science 350:1508–1513PubMedCrossRefGoogle Scholar
  9. 9.
    Chmiola J, Yushin G, Gogotsi Y, Portet C, Simon P, Taberna PL (2006) Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 313:1760–1763PubMedCrossRefGoogle Scholar
  10. 10.
    Kajdos A, Kvit A, Jones F, Jagiello J, Yushin G (2010) Tailoring the pore alignment for rapid ion transport in microporous carbons. J Am Chem Soc 132:3252–3253PubMedCrossRefGoogle Scholar
  11. 11.
    Yushin G, Dash R, Jagiello J, Fischer JE, Gogotsi Y (2006) Carbide-derived carbons: effect of pore size on hydrogen uptake and heat of adsorption. Adv Funct Mater 16:2288–2293CrossRefGoogle Scholar
  12. 12.
    Korenblit Y, Rose M, Kockrick E, Borchardt L, Kvit A, Kaskel S, Yushin G (2010) High-rate electrochemical capacitors based on ordered mesoporous silicon carbide-derived carbon. ACS Nano 4:1337–1344PubMedCrossRefGoogle Scholar
  13. 13.
    Portet C, Yang Z, Korenblit Y, Gogotsi Y, Mokaya R, Yushin G (2009) Electrical double-layer capacitance of zeolite-templated carbon in organic electrolyte. J Electrochem Soc 156:A1–A6CrossRefGoogle Scholar
  14. 14.
    Ania CO, Khomenko V, Raymundo-Piñero E, Parra JB, Béguin F (2007) The large electrochemical capacitance of microporous doped carbon obtained by using a zeolite template. Adv Funct Mater 17:1828–1836CrossRefGoogle Scholar
  15. 15.
    Portet C, Yushin G, Gogotsi Y (2007) Electrochemical performance of carbon onions, nanodiamonds, carbon black and multiwalled nanotubes in electrical double layer capacitors. Carbon 45:2511–2518CrossRefGoogle Scholar
  16. 16.
    Izadi-Najafabadi A, Yamada T, Futaba DN, Hatori H, Iijima S, Hata K (2010) Impact of cell-voltage on energy and power performance of supercapacitors with single-walled carbon nanotube electrodes. Electrochem Commun 12:1678–1681CrossRefGoogle Scholar
  17. 17.
    Lota G, Fic K, Frackowiak E (2011) Carbon nanotubes and their composites in electrochemical applications. Energy Environ Sci 4:1592–1605CrossRefGoogle Scholar
  18. 18.
    Cakici M, Reddy KR, Alonso-Marroquin F (2017) Advanced electrochemical energy storage supercapacitors based on the flexible carbon fiber fabric-coated with uniform coral-like MnO2 structured electrodes. Chem Eng J 309:151–158CrossRefGoogle Scholar
  19. 19.
    Noh J, Yoon C-M, Kim YK, Jang J (2017) High performance asymmetric supercapacitor twisted from carbon fiber/MnO2 and carbon fiber/MoO3. Carbon 116:470–478CrossRefGoogle Scholar
  20. 20.
    Pech D, Brunet M, Durou H, Huang PH, Mochalin V, Gogotsi Y, Taberna PL, Simon P (2010) Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nat Nanotechnol 5:651–654PubMedCrossRefGoogle Scholar
  21. 21.
    Zeiger M, Jackel N, Mochalin VN, Presser V (2016) Review: carbon onions for electrochemical energy storage. J Mater Chem A 4:3172–3196CrossRefGoogle Scholar
  22. 22.
    Garcia BB, Candelaria SL, Liu DW, Sepheri S, Cruz JA, Cao GZ (2011) High performance high-purity sol-gel derived carbon supercapacitors from renewable sources. Renew Energ 36:1788–1794CrossRefGoogle Scholar
  23. 23.
    Halama A, Szubzda B, Pasciak G (2010) Carbon aerogels as electrode material for electrical double layer supercapacitors—synthesis and properties. Electrochim Acta 55:7501–7505CrossRefGoogle Scholar
  24. 24.
    Evanoff K, Khan J, Balandin AA, Magasinski A, Ready WJ, Fuller TF, Yushin G (2011) Towards ultrathick battery electrodes: aligned carbon nanotube-enabled architecture. Adv Mater 24:533–537PubMedCrossRefGoogle Scholar
  25. 25.
    Lota G, Tyczkowski J, Kapica R, Lota K, Frackowiak E (2010) Carbon materials modified by plasma treatment as electrodes for supercapacitors. J Power Sources 195:7535–7539CrossRefGoogle Scholar
  26. 26.
    Xu B, Yue SF, Sui ZY, Zhang XT, Hou SS, Cao GP, Yang YS (2011) What is the choice for supercapacitors: graphene or graphene oxide? Energy Environ Sci 4:2826–2830CrossRefGoogle Scholar
  27. 27.
    Sun Y, Wu Q, Shi G (2011) Graphene based new energy materials. Energy Environ Sci 4:1113–1132CrossRefGoogle Scholar
  28. 28.
    Miller JR, Outlaw RA, Holloway BC (2010) Graphene double-layer capacitor with ac line-filtering performance. Science 329:1637–1639PubMedCrossRefGoogle Scholar
  29. 29.
    Zhu YW, Murali S, Stoller MD, Ganesh KJ, Cai WW, Ferreira PJ, Pirkle A, Wallace RM, Cychosz KA, Thommes M, Su D, Stach EA, Ruoff RS (2011) Carbon-based supercapacitors produced by activation of graphene. Science 332:1537–1541PubMedCrossRefGoogle Scholar
  30. 30.
    Wei L, Yushin G (2011) Electrical double layer capacitors with activated sucrose-derived carbon electrodes. Carbon 49:4830–4838CrossRefGoogle Scholar
  31. 31.
    Wei L, Sevilla M, Fuertes AB, Mokaya R, Yushin G (2011) Hydrothermal carbonization of abundant renewable natural organic chemicals for high-performance supercapacitor electrodes. Adv Energy Mater 1:356–361CrossRefGoogle Scholar
  32. 32.
    Wei L, Sevilla M, Fuertes AB, Mokaya R, Yushin G (2012) Polypyrrole-derived activated carbons for high-performance electrical double-layer capacitors with ionic liquid electrolyte. Adv Funct Mater 22:827–834CrossRefGoogle Scholar
  33. 33.
    Cooney DO (1980) Activated charcoal: antidotal and other medical uses. M. Dekker, New YorkGoogle Scholar
  34. 34.
    Baker FS, Miller CE, Repik AJ (1992) Kirk-othmer encyclopedia of chemical technology. Wiley, New YorkGoogle Scholar
  35. 35.
    Wei L, Yushin G (2012) Nanostructured activated carbons from natural precursors for electrical double layer capacitors. Nano Energy 1:552–565CrossRefGoogle Scholar
  36. 36.
    Zhang LL, Zhao XS (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38:2520–2531PubMedCrossRefGoogle Scholar
  37. 37.
    Zhai YP, Dou YQ, Zhao DY, Fulvio PF, Mayes RT, Dai S (2011) Carbon materials for chemical capacitive energy storage. Adv Mater 23:4828–4850PubMedCrossRefGoogle Scholar
  38. 38.
    Zhou J, Qiu Z, Zhou J, Si W, Cui H, Zhuo S (2015) Hierarchical porous carbons from alkaline poplar bark extractive-based phenolic resins for supercapacitors. Electrochim Acta 180:1007–1013CrossRefGoogle Scholar
  39. 39.
    Wu C, Yang S, Cai J, Zhang Q, Zhu Y, Zhang K (2016) Activated microporous carbon derived from almond shells for high energy density asymmetric supercapacitors. ACS Appl Mater Interfaces 8:15288–15296PubMedCrossRefGoogle Scholar
  40. 40.
    Xu B, Chen YF, Wei G, Cao GP, Zhang H, Yang YS (2010) Activated carbon with high capacitance prepared by NaOH activation for supercapacitors. Mater Chem Phys 124:504–509CrossRefGoogle Scholar
  41. 41.
    Kim YJ, Lee BJ, Suezaki H, Chino T, Abe Y, Yanagiura T, Park KC, Endo M (2006) Preparation and characterization of bamboo-based activated carbons as electrode materials for electric double layer capacitors. Carbon 44:1592–1595CrossRefGoogle Scholar
  42. 42.
    Subramanian V, Luo C, Stephan AM, Nahm KS, Thomas S, Wei B (2007) Supercapacitors from activated carbon derived from banana fibers. J Phys Chem C 111:7527–7531CrossRefGoogle Scholar
  43. 43.
    Lee SG, Park KH, Shim WG, Balathanigaimani MS, Moon H (2011) Performance of electrochemical double layer capacitors using highly porous activated carbons prepared from beer lees. J Ind Eng Chem 17:450–454CrossRefGoogle Scholar
  44. 44.
    Olivares-Marin M, Fernandez JA, Lazaro MJ, Fernandez-Gonzalez C, Macias-Garcia A, Gomez-Serrano V, Stoeckli F, Centeno TA (2009) Cherry stones as precursor of activated carbons for supercapacitors. Mater Chem Phys 114:323–327CrossRefGoogle Scholar
  45. 45.
    Jain A, Xu C, Jayaraman S, Balasubramanian R, Lee JY, Srinivasan MP (2015) Mesoporous activated carbons with enhanced porosity by optimal hydrothermal pre-treatment of biomass for supercapacitor applications. Microporous Mesoporous Mater 218:55–61CrossRefGoogle Scholar
  46. 46.
    Rufford TE, Hulicova-Jurcakova D, Zhu ZH, Lu GQ (2008) Nanoporous carbon electrode from waste coffee beans for high performance supercapacitors. Electrochem Commun 10:1594–1597CrossRefGoogle Scholar
  47. 47.
    Rufford TE, Hulicova-Jurcakova D, Fiset E, Zhu ZH, Lu GQ (2009) Double-layer capacitance of waste coffee ground activated carbons in an organic electrolyte. Electrochem Commun 11:974–977CrossRefGoogle Scholar
  48. 48.
    Balathanigaimani MS, Shim WG, Lee MJ, Kim C, Lee JW, Moon H (2008) Highly porous electrodes from novel corn grains-based activated carbons for electrical double layer capacitors. Electrochem Commun 10:868–871CrossRefGoogle Scholar
  49. 49.
    Qiu Z, Wang Y, Bi X, Zhou T, Zhou J, Zhao J, Miao Z, Yi W, Fu P, Zhuo S (2018) Biochar-based carbons with hierarchical micro-meso-macro porosity for high rate and long cycle life supercapacitors. J Power Sources 376:82–90CrossRefGoogle Scholar
  50. 50.
    Karnan M, Subramani K, Srividhya PK, Sathish M (2017) Electrochemical studies on corncob derived activated porous carbon for supercapacitors application in aqueous and non-aqueous electrolytes. Electrochim Acta 228:586–596CrossRefGoogle Scholar
  51. 51.
    Zhang L, Xu L, Zhang Y, Zhou X, Zhang L, Yasin A, Wang L, Zhi K (2018) Facile synthesis of bio-based nitrogen- and oxygen-doped porous carbon derived from cotton for supercapacitors. RSC Adv 8:3869–3877CrossRefGoogle Scholar
  52. 52.
    Tian X, Ma H, Li Z, Yan S, Ma L, Yu F, Wang G, Guo X, Ma Y, Wong C (2017) Flute type micropores activated carbon from cotton stalk for high performance supercapacitors. J Power Sources 359:88–96CrossRefGoogle Scholar
  53. 53.
    Biswal M, Banerjee A, Deo M, Ogale S (2013) From dead leaves to high energy density supercapacitors. Energy Environ Sci 6:1249–1259CrossRefGoogle Scholar
  54. 54.
    Ba H, Wang W, Pronkin S, Romero T, Baaziz W, Nguyen-Dinh L, Chu W, Ersen O, Pham-Huu C (2018) Biosourced foam-like activated carbon materials as high-performance supercapacitors. Adv Sustain Syst 2:1700123CrossRefGoogle Scholar
  55. 55.
    Wu FC, Tseng RL, Hu CC, Wang CC (2004) Physical and electrochemical characterization of activated carbons prepared from firwoods for supercapacitors. J Power Sources 138:351–359CrossRefGoogle Scholar
  56. 56.
    Yu X, Wang Y, Li L, Li H, Shang Y (2017) Soft and wrinkled carbon membranes derived from petals for flexible supercapacitors. Sci Rep-UK 7:45378CrossRefGoogle Scholar
  57. 57.
    Sennu P, Aravindan V, Lee Y-S (2016) High energy asymmetric supercapacitor with 1D@2D structured NiCo2O4@Co3O4 and jackfruit derived high surface area porous carbon. J Power Sources 306:248–257CrossRefGoogle Scholar
  58. 58.
    Zequine C, Ranaweera CK, Wang Z, Dvornic PR, Kahol PK, Singh S, Tripathi P, Srivastava ON, Singh S, Gupta BK, Gupta G, Gupta RK (2017) High-performance flexible supercapacitors obtained via recycled jute: bio-waste to energy storage approach. Sci Rep-UK 7:1174CrossRefGoogle Scholar
  59. 59.
    Zeng J, Wei L, Guo X (2017) Bio-inspired high-performance solid-state supercapacitors with the electrolyte, separator, binder and electrodes entirely from kelp. J Mater Chem A 5:25282–25292CrossRefGoogle Scholar
  60. 60.
    Hao J, Huang Y, He C, Xu W, Yuan L, Shu D, Song X, Meng T (2018) Bio-templated fabrication of three-dimensional network activated carbons derived from mycelium pellets for supercapacitor applications. Sci Rep-UK 8:562CrossRefGoogle Scholar
  61. 61.
    Ajuria J, Redondo E, Arnaiz M, Mysyk R, Rojo T, Goikolea E (2017) Lithium and sodium ion capacitors with high energy and power densities based on carbons from recycled olive pits. J Power Sources 359:17–26CrossRefGoogle Scholar
  62. 62.
    Xu J, Gao Q, Zhang Y, Tan Y, Tian W, Zhu L, Jiang L (2014) Preparing two-dimensional microporous carbon from Pistachio nutshell with high areal capacitance as supercapacitor materials. Sci Rep-UK 4:5545CrossRefGoogle Scholar
  63. 63.
    Zhang Y, Liu X, Wang S, Dou S, Li L (2016) Interconnected honeycomb-like porous carbon derived from plane tree fluff for high performance supercapacitors. J Mater Chem A 4:10869–10877CrossRefGoogle Scholar
  64. 64.
    Zhao S, Wang CY, Chen MM, Wang J, Shi ZQ (2009) Potato starch-based activated carbon spheres as electrode material for electrochemical capacitor. J Phys Chem Solids 70:1256–1260CrossRefGoogle Scholar
  65. 65.
    Guo YP, Qi JR, Jiang YQ, Yang SF, Wang ZC, Xu HD (2003) Performance of electrical double layer capacitors with porous carbons derived from rice husk. Mater Chem Phys 80:704–709CrossRefGoogle Scholar
  66. 66.
    Jin H, Hu J, Wu S, Wang X, Zhang H, Xu H, Lian K (2018) Three-dimensional interconnected porous graphitic carbon derived from rice straw for high performance supercapacitors. J Power Sources 384:270–277CrossRefGoogle Scholar
  67. 67.
    Fabian Q-P, Ramiro R-R, Emilia M, Diego C-A (2016) Activated carbons prepared through H3PO4-assisted hydrothermal carbonisation from biomass wastes: porous texture and electrochemical performance. ChemPlusChem 81:1349–1359CrossRefGoogle Scholar
  68. 68.
    Cho SY, Yoon HJ, Kim NR, Yun YS, Jin H-J (2016) Sodium-ion supercapacitors based on nanoporous pyroproteins containing redox-active heteroatoms. J Power Sources 329:536–545CrossRefGoogle Scholar
  69. 69.
    Geng Z, Wang H, Wang R, Zhang P, Lang J, Wang C (2016) Facile synthesis of hierarchical porous carbon for supercapacitor with enhanced electrochemical performance. Mater Lett 182:1–5CrossRefGoogle Scholar
  70. 70.
    Cheng F, Liu W, Zhang Y, Wang H, Liu S, Hao E, Zhao S, Yang H (2017) Squid inks-derived nanocarbons with unique “shell@pearls” structure for high performance supercapacitors. J Power Sources 354:116–123CrossRefGoogle Scholar
  71. 71.
    Wei L, Yushin G (2011) Electrical double layer capacitors with sucrose derived carbon electrodes in ionic liquid electrolytes. J Power Sources 196:4072–4079CrossRefGoogle Scholar
  72. 72.
    Härmas M, Thomberg T, Romann T, Jänes A, Lust E (2017) Carbon for energy storage derived from granulated white sugar by hydrothermal carbonization and subsequent zinc chloride activation. J Electrochem Soc 164:A1866–A1872CrossRefGoogle Scholar
  73. 73.
    Rufford TE, Hulicova-Jurcakova D, Khosla K, Zhu ZH, Lu GQ (2010) Microstructure and electrochemical double-layer capacitance of carbon electrodes prepared by zinc chloride activation of sugar cane bagasse. J Power Sources 195:912–918CrossRefGoogle Scholar
  74. 74.
    Ma D, Wu G, Wan J, Ma F, Geng W, Song S (2015) Oxygen-enriched hierarchical porous carbon derived from biowaste sunflower heads for high performance supercapacitors. RSC Adv 5:107785CrossRefGoogle Scholar
  75. 75.
    Li XA, Xing W, Zhuo SP, Zhou J, Li F, Qiao SZ, Lu GQ (2011) Preparation of capacitor’s electrode from sunflower seed shell. Bioresour Technol 102:1118–1123PubMedCrossRefGoogle Scholar
  76. 76.
    Li X, Han C, Chen X, Shi C (2010) Preparation and performance of straw based activated carbon for supercapacitor in non-aqueous electrolytes. Microporous Mesoporous Mater 131:303–309CrossRefGoogle Scholar
  77. 77.
    Wang K, Zhao N, Lei S, Yan R, Tian X, Wang J, Song Y, Xu D, Guo Q, Liu L (2015) Promising biomass-based activated carbons derived from willow catkins for high performance supercapacitors. Electrochim Acta 166:1–11CrossRefGoogle Scholar
  78. 78.
    Bleda-Martinez MJ, Macia-Agullo JA, Lozano-Castello D, Morallon E, Cazorla-Amoros D, Linares-Solano A (2005) Role of surface chemistry on electric double layer capacitance of carbon materials. Carbon 43:2677–2684CrossRefGoogle Scholar
  79. 79.
    Okajima K, Ohta K, Sudoh M (2005) Capacitance behavior of activated carbon fibers with oxygen-plasma treatment. Electrochim Acta 50:2227–2231CrossRefGoogle Scholar
  80. 80.
    Lazzari M, Soavi F, Mastragostino M (2009) Dynamic pulse power and energy of ionic-liquid-based supercapacitor for HEV application. J Electrochem Soc 156:A661–A666CrossRefGoogle Scholar
  81. 81.
    Largeot C, Portet C, Chmiola J, Taberna P-L, Gogotsi Y, Simon P (2008) Relation between the ion size and pore size for an electric double-layer capacitor. J Am Chem Soc 130:2730–2731PubMedCrossRefGoogle Scholar
  82. 82.
    Zhu B, Liu B, Qu C, Zhang H, Guo W, Liang Z, Chen F, Zou R (2018) Tailoring biomass-derived carbon for high-performance supercapacitors from controllably cultivated algae microspheres. J Mater Chem A 6:1523–1530CrossRefGoogle Scholar
  83. 83.
    Duan B, Gao X, Yao X, Fang Y, Huang L, Zhou J, Zhang L (2016) Unique elastic N-doped carbon nanofibrous microspheres with hierarchical porosity derived from renewable chitin for high rate supercapacitors. Nano Energy 27:482–491CrossRefGoogle Scholar
  84. 84.
    Divyashree A, Shoriya ABAM, Yallappa S, Chaitra K, Kathyayini N, Gurumurthy H (2016) Low cost, high performance supercapacitor electrode using coconut wastes: eco-friendly approach. J Energy Chem 25:880–887CrossRefGoogle Scholar
  85. 85.
    Wang S, Wang R, Zhang Y, Jin D, Zhang L (2018) Scalable and sustainable synthesis of carbon microspheres via a purification-free strategy for sodium-ion capacitors. J Power Sources 379:33–40CrossRefGoogle Scholar
  86. 86.
    Pang J, Zhang WF, Zhang JL, Zhang HM, Cao GP, Han MF, Yang YS (2018) Oxygen and nitrogen co-enriched sustainable porous carbon hollow microspheres from sodium lignosulfonate for supercapacitors with high volumetric energy densities. ChemElectroChem 5:1306–1320CrossRefGoogle Scholar
  87. 87.
    Wei L, Tian K, Zhang X, Jin Y, Shi T, Guo X (2016) 3D porous hierarchical microspheres of activated carbon from nature through nanotechnology for electrochemical double-layer capacitors. ACS Sustain Chem Eng 4:6463–6472CrossRefGoogle Scholar
  88. 88.
    Du SH, Wang LQ, Fu XT, Chen MM, Wang CY (2013) Hierarchical porous carbon microspheres derived from porous starch for use in high-rate electrochemical double-layer capacitors. Bioresour Technol 139:406–409PubMedCrossRefGoogle Scholar
  89. 89.
    Ali GAM, Divyashree A, Supriya S, Chong KF, Ethiraj AS, Reddy MV, Algarni H, Hegde G (2017) Carbon nanospheres derived from Lablab purpureus for high performance supercapacitor electrodes: a green approach. Dalton Trans 46:14034–14044PubMedCrossRefGoogle Scholar
  90. 90.
    Jin Y, Tian K, Wei L, Zhang X, Guo X (2016) Hierarchical porous microspheres of activated carbon with a high surface area from spores for electrochemical double-layer capacitors. J Mater Chem A 4:15968–11597CrossRefGoogle Scholar
  91. 91.
    Dong X, Jin H, Wang R, Zhang J, Feng X, Yan C, Chen S, Wang S, Wang J, Lu J (2018) High volumetric capacitance, ultralong life supercapacitors enabled by waxberry-derived hierarchical porous carbon materials. Adv Energy Mater 8:1702695CrossRefGoogle Scholar
  92. 92.
    Huang Y, Peng L, Liu Y, Zhao G, Chen JY, Yu G (2016) Biobased nano porous active carbon fibers for high-performance supercapacitors. ACS Appl Mater Interfaces 8:15205–15215PubMedCrossRefGoogle Scholar
  93. 93.
    Tan H, Wang X, Jia D, Hao P, Sang Y, Liu H (2017) Structure-dependent electrode properties of hollow carbon micro-fibers derived from Platanus fruit and willow catkins for high-performance supercapacitors. J Mater Chem A 5:2580–2591CrossRefGoogle Scholar
  94. 94.
    Hao X, Wang J, Ding B, Wang Y, Chang Z, Dou H, Zhang X (2017) Bacterial-cellulose-derived interconnected meso-microporous carbon nanofiber networks as binder-free electrodes for high-performance supercapacitors. J Power Sources 352:34–41CrossRefGoogle Scholar
  95. 95.
    Zheng X, Chen M, Ma Y, Dong X, Xi F, Liu J (2017) Enhanced electrochemical performance of straw-based porous carbon fibers for supercapacitor. J Solid State Electrochem 21:3449–3458CrossRefGoogle Scholar
  96. 96.
    Yu M, Han Y, Li J, Wang L (2017) CO2-activated porous carbon derived from cattail biomass for removal of malachite green dye and application as supercapacitors. Chem Eng J 317:493–502CrossRefGoogle Scholar
  97. 97.
    Jiang L, Nelson GW, Han SO, Kim H, Sim IN, Foord JS (2016) Natural cellulose materials for supercapacitors. Electrochim Acta 192:251–258CrossRefGoogle Scholar
  98. 98.
    Chen L, Ji T, Mu L, Zhu J (2017) Cotton fabric derived hierarchically porous carbon and nitrogen doping for sustainable capacitor electrode. Carbon 111:839–848CrossRefGoogle Scholar
  99. 99.
    Cheng P, Li T, Yu H, Zhi L, Liu Z, Lei Z (2016) Biomass-derived carbon fiber aerogel as a binder-free electrode for high-rate supercapacitors. J Phys Chem C 120:2079–2086CrossRefGoogle Scholar
  100. 100.
    Liu Y, Shi Z, Gao Y, An W, Cao Z, Liu J (2016) Biomass-swelling assisted synthesis of hierarchical porous carbon fibers for supercapacitor electrodes. ACS Appl Mater Interfaces 8:28283–28290PubMedCrossRefGoogle Scholar
  101. 101.
    Berenguer R, García-Mateos FJ, Ruiz-Rosas R, Cazorla-Amorós D, Morallón E, Rodríguez-Mirasol J, Cordero T (2016) Biomass-derived binderless fibrous carbon electrodes for ultrafast energy storage. Green Chem 18:1506–1515CrossRefGoogle Scholar
  102. 102.
    Li D, Lv C, Liu L, Xia Y, She X, Guo S, Yang D (2015) Egg-Box structure in cobalt alginate: a new approach to multifunctional hierarchical mesoporous N-doped carbon nanofibers for efficient catalysis and energy storage. ACS Cent Sci 1:261–269PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Shen W, Hu T, Wang P, Sun H, Fan W (2014) Hollow porous carbon fiber from cotton with nitrogen doping. ChemPlusChem 79:284–289CrossRefGoogle Scholar
  104. 104.
    Lai F, Miao YE, Zuo L, Lu H, Huang Y, Liu T (2016) Biomass-derived nitrogen-doped carbon nanofiber network: a facile template for decoration of ultrathin nickel-cobalt layered double hydroxide nanosheets as high-performance asymmetric supercapacitor electrode. Small 12:3235–3244PubMedCrossRefGoogle Scholar
  105. 105.
    Jiang Y, Zhang L, Zhang H, Zhang C, Liu S (2016) Hierarchical Ni0.54Co0.46O2 nanowire and nanosheet arrays grown on carbon fiber cloth for high-performance supercapacitors. J Power Sources 329:473–483CrossRefGoogle Scholar
  106. 106.
    Senthilkumar ST, Fu N, Liu Y, Wang Y, Zhou L, Huang H (2016) Flexible fiber hybrid supercapacitor with NiCo2O4 nanograss@carbon fiber and bio-waste derived high surface area porous carbon. Electrochim Acta 211:411–419CrossRefGoogle Scholar
  107. 107.
    Zhao J, Li Y, Wang G, Wei T, Liu Z, Cheng K, Ye K, Zhu K, Cao D, Fan Z (2017) Enabling high-volumetric-energy-density supercapacitors: designing open, low-tortuosity heteroatom-doped porous carbon-tube bundle electrodes. J Mater Chem A 5:23085–23093CrossRefGoogle Scholar
  108. 108.
    Qu Y, Zan G, Wang J, Wu Q (2016) Preparation of eggplant-derived macroporous carbon tubes and composites of EDMCT/Co(OH)(CO3)0.5 nano-cone-arrays for high-performance supercapacitors. J Mater Chem A 4:4296–4304CrossRefGoogle Scholar
  109. 109.
    Liu S, Xu J, Zhu J, Chang Y, Wang H, Liu Z, Xu Y, Zhang C, Liu T (2017) Leaf-inspired interwoven carbon nanosheet/nanotube homostructures for supercapacitors with high energy and power densities. J Mater Chem A 5:19997–20004CrossRefGoogle Scholar
  110. 110.
    Wang N, Wang Y, Cui S, Hou H, Mi L, Chen W (2017) A hollow tube-on-tube architecture of carbon-tube-supported nickel cobalt sulfide nanotubes for advanced supercapacitors. ChemNanoMat 3:269–276CrossRefGoogle Scholar
  111. 111.
    Dolah BNM, Deraman M, Othman MAR, Farm R, Taer E, Awitdrus BNH, Talib IA, Omar R, Nor NSM (2014) A method to produce binderless supercapacitor electrode monoliths from biomass carbon and carbon nanotubes. Mater Res Bull 60:10–19CrossRefGoogle Scholar
  112. 112.
    Li Q, Lu C, Xiao D, Zhang H, Chen C, Xie L, Liu Y, Yuan S, Kong Q, Zheng K, Yin J (2018) β-Ni(OH)2 nanosheet arrays grown on biomass-derived hollow carbon microtubes for high-performance asymmetric supercapacitors. ChemElectroChem.
  113. 113.
    Xie L, Sun G, Su F, Guo X, Kong Q, Li X, Huang X, Wan L, Song W, Li K, Lv C, Chen CM (2016) Hierarchical porous carbon microtubes derived from willow catkins for supercapacitor applications. J Mater Chem A 4:1637–1646CrossRefGoogle Scholar
  114. 114.
    Wang K, Yan R, Zhao N, Tian X, Li X, Lei S, Song Y, Guo Q, Liu L (2016) Bio-inspired hollow activated carbon microtubes derived from willow catkins for supercapacitors with high volumetric performance. Mater Lett 174:249–252CrossRefGoogle Scholar
  115. 115.
    Wang C, Wu D, Wang H, Gao Z, Xu F, Jiang K (2018) Biomass derived nitrogen-doped hierarchical porous carbon sheets for supercapacitors with high performance. J Colloid Interface Sci 523:133–143PubMedCrossRefGoogle Scholar
  116. 116.
    Sun L, Tian C, Li M, Meng X, Wang L, Wang R, Yin J, Fu H (2013) From coconut shell to porous graphene-like nanosheets for high-power supercapacitors. J Mater Chem A 1:6462–6470CrossRefGoogle Scholar
  117. 117.
    Genovese M, Jiang J, Lian K, Holm N (2015) High capacitive performance of exfoliated biochar nanosheets from biomass waste corn cob. J Mater Chem A 3:2903–2913CrossRefGoogle Scholar
  118. 118.
    Wang D, Wang Y, Xu W, Xu W (2018) Tunable synthesis of nanocarbon architectures and their application in advanced symmetric supercapacitors. Appl Surf Sci 443:291–300CrossRefGoogle Scholar
  119. 119.
    Li Z, Lv W, Zhang C, Li B, Kang F, Yang QH (2015) A sheet-like porous carbon for high-rate supercapacitors produced by the carbonization of an eggplant. Carbon 92:11–14CrossRefGoogle Scholar
  120. 120.
    Zhao Y, Cui Y, Shi J, Liu W, Shi Z, Chen S, Wang X, Wang H (2017) Two-dimensional biomass-derived carbon nanosheets and MnO/carbon electrodes for high-performance Li-ion capacitors. J Mater Chem A 5:15243–15252CrossRefGoogle Scholar
  121. 121.
    Sodtipinta J, Ieosakulrat C, Poonyayant N, Kidkhunthod P, Chanlek N, Amornsakchai T, Pakawatpanurut P (2017) Interconnected open-channel carbon nanosheets derived from pineapple leaf fiber as a sustainable active material for supercapacitors. Ind Crop Prod 104:13–20CrossRefGoogle Scholar
  122. 122.
    Li Y, Wang G, Wei T, Fan Z, Yan P (2016) Nitrogen and sulfur co-doped porous carbon nanosheets derived from willow catkin for supercapacitors. Nano Energy 19:165–175CrossRefGoogle Scholar
  123. 123.
    Shi H (1996) Activated carbons and double layer capacitance. Electrochim Acta 41:1633–1639CrossRefGoogle Scholar
  124. 124.
    Salitra G, Soffer A, Eliad L, Cohen Y, Aurbach D (2000) Carbon electrodes for double-layer capacitors-I. Relations between ion and pore dimensions. J Electrochem Soc 147:2486–2493CrossRefGoogle Scholar
  125. 125.
    Raymundo-Piñero E, Kierzek K, Machnikowski J, Beguin F (2006) Relationship between the nanoporous texture of activated carbons and their capacitance properties in different electrolytes. Carbon 44:2498–2507CrossRefGoogle Scholar
  126. 126.
    Huang J, Sumpter B, Meunier V (2010) Theoretical model for nanoporous carbon supercapacitors. Angew Chem Int Ed 47:520–524CrossRefGoogle Scholar
  127. 127.
    Eliad L, Pollak E, Levy N, Salitra G, Soffer A, Aurbach D (2006) Assessing optimal pore-to-ion size relations in the design of porous poly (vinylidene chloride) carbons for EDL capacitors. Appl Phys A Mater Sci Process 82:607–613CrossRefGoogle Scholar
  128. 128.
    Gallagher KG, Yushin G, Fuller TF (2010) The role of nanostructure in the electrochemical oxidation of model-carbon materials in acidic environments. J Electrochem Soc 157:B820–B830CrossRefGoogle Scholar
  129. 129.
    Kim SJ, Hwang SW, Hyun SH (2005) Preparation of carbon aerogel electrodes for supercapacitor and their electrochemical characteristics. J Mater Sci 40:725–731CrossRefGoogle Scholar
  130. 130.
    Hwang SW, Hyun SH (2004) Capacitance control of carbon aerogel electrodes. J Non-Cryst Solids 347:238–245CrossRefGoogle Scholar
  131. 131.
    Pandolfo AG, Hollenkamp AF (2006) Carbon properties and their role in supercapacitors. J Power Sources 157:11–27CrossRefGoogle Scholar
  132. 132.
    Bispo-Fonseca I, Aggar J, Sarrazin C, Simon P, Fauvarque JF (1999) Possible improvements in making carbon electrodes for organic supercapacitors. J Power Sources 79:238–241CrossRefGoogle Scholar
  133. 133.
    Inagaki M, Konno H, Tanaike O (2010) Carbon materials for electrochemical capacitors. J Power Sources 195:7880–7903CrossRefGoogle Scholar
  134. 134.
    Hsieh CT, Teng H (2002) Influence of oxygen treatment on electric double-layer capacitance of activated carbon fabrics. Carbon 40:667–674CrossRefGoogle Scholar
  135. 135.
    Ruiz V, Blanco C, Raymundo-Pinero E, Khomenko V, Beguin F, Santamaria R (2007) Effects of thermal treatment of activated carbon on the electrochemical behaviour in supercapacitors. Electrochim Acta 52:4969–4973CrossRefGoogle Scholar
  136. 136.
    Oda H, Yamashita A, Minoura S, Okamoto M, Morimoto T (2006) Modification of the oxygen-containing functional group on activated carbon fiber in electrodes of an electric double-layer capacitor. J Power Sources 158:1510–1516CrossRefGoogle Scholar
  137. 137.
    Hu CC, Wang CC (2004) Effects of electrolytes and electrochemical pretreatments on the capacitive characteristics of activated carbon fabrics for supercapacitors. J Power Sources 125:299–308CrossRefGoogle Scholar
  138. 138.
    Oh YJ, Yoo JJ, Kim YI, Yoon JK, Yoon HN, Kim J-H, Park SB (2014) Oxygen functional groups and electrochemical capacitive behavior of incompletely reduced graphene oxides as a thin-film electrode of supercapacitor. Electrochim Acta 116:118–128CrossRefGoogle Scholar
  139. 139.
    Fang Y, Luo B, Jia Y, Li X, Wang B, Song Q, Kang F, Zhi L (2012) Renewing functionalized graphene as electrodes for high-performance supercapacitors. Adv Mater 24:6348–6355PubMedCrossRefGoogle Scholar
  140. 140.
    Chen CM, Zhang Q, Zhao XC, Zhang B, Kong QQ, Yang MG, Yang QH, Wang MZ, Yang YG, Schlogl R, Su DS (2012) Hierarchically aminated graphene honeycombs for electrochemical capacitive energy storage. J Mater Chem 22:14076–14084CrossRefGoogle Scholar
  141. 141.
    Boehm HP (2002) Surface oxides on carbon and their analysis: a critical assessment. Carbon 40:145–149CrossRefGoogle Scholar
  142. 142.
    Figueiredo JL, Pereira MFR, Freitas MMA, Órfão JJM (1999) Modification of the surface chemistry of activated carbons. Carbon 37:1379–1389CrossRefGoogle Scholar
  143. 143.
    Conway BE, Birss V, Wojtowicz J (1997) The role and utilization of pseudocapacitance for energy storage by supercapacitors. J Power Sources 66:1–14CrossRefGoogle Scholar
  144. 144.
    Noked M, Soffer A, Aurbach D (2011) The electrochemistry of activated carbonaceous materials: past, present, and future. J Solid State Electrochem 15:1563–1578CrossRefGoogle Scholar
  145. 145.
    Bleda-Martinez MJ, Lozano-Castello D, Morallon E, Cazorla-Amoros D, Linares-Solano A (2006) Chemical and electrochemical characterization of porous carbon materials. Carbon 44:2642–2651CrossRefGoogle Scholar
  146. 146.
    Qu D (2002) Studies of the activated carbons used in double-layer supercapacitors. J Power Sources 109:403–411CrossRefGoogle Scholar
  147. 147.
    Lu W, Qu L, Henry K, Dai L (2009) High performance electrochemical capacitors from aligned carbon nanotube electrodes and ionic liquid electrolytes. J Power Sources 189:1270–1277CrossRefGoogle Scholar
  148. 148.
    Fic K, Lota G, Meller M, Frackowiak E (2012) Novel insight into neutral medium as electrolyte for high-voltage supercapacitors. Energy Environ Sci 5:5842–5850CrossRefGoogle Scholar
  149. 149.
    Portet C, Yushin G, Gogotsi Y (2008) Effect of carbon particle size on electrochemical performance of EDLC. J Electrochem Soc 155:A531–A536CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringHuazhong University of Science and TechnologyWuhanChina
  2. 2.School of Materials Science and EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations