Production, Characterization and Alternative Applications of Biochar

  • Aldrich Ngan
  • Charles Q. JiaEmail author
  • Shi-Tang Tong
Part of the Biofuels and Biorefineries book series (BIOBIO, volume 9)


Biochar is a carbon-rich porous solid material derived mostly via pyrolysis of lignocellulosic biomass. Given the origin of carbon in biochar, large-scale production and utilization of biochar are considered a viable means of carbon sequestration and storage. Nature has been producing biochar via forest fire long before the arrival of humankind on Earth, and benefits of biochar to agriculture have been realized by humanity for thousands of years. Today, soil amendment remains the most important application of biochar by total usage. Biochar and its precursor-biomass have also been used as carbon neutral energy sources. Recently, there has been a rapid expansion of its application area, driven largely by its availability, diversity, hierarchical porous structure, tunable surface chemistry and bulk physical properties. In this chapter, a state-of-the-art overview in biochar production, characterization and applications in non-traditional areas is given. On the production side, the emphasis is on pyrolysis – the primary production method, specifically the effects of pyrolysis conditions on biochar yield and characteristics. Characterization methods include ones for both pores and carbon matrix in biochar, such as pore size distribution, surface chemistry, morphology, crystallinity and bonding structure. Alternative applications range from environmental remediation, electrical energy storage, through electrochemical sensors to catalysis. While biochar’s potential in clean environment and sustainable energy has been widely demonstrated, new applications are emerging everyday, promising a bright future for biochar research and development.


Biochar production Pyrolysis Characterization Biochar properties Alternative applications Environmental remediation Sustainable energy 


  1. 1.
    Manyà JJ (2012) Pyrolysis for biochar purposes: a review to establish current knowledge gaps and research needs. Environ Sci Technol 46:7939–7954PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Ronsse F, Van Hecke S, Dickinson D, Prins W (2013) Production and characterization of slow pyrolysis biochar: influence of feedstock type and pyrolysis conditions. GCB Bioenergy 5:104–115CrossRefGoogle Scholar
  3. 3.
    Nagle DC, Byrne CE (2000) Carbonized wood and materials formed there from US6051096AGoogle Scholar
  4. 4.
    Yanchus DA, Kirk DW, Jia CQ (2018) Investigating the effects of biochar electrode macrostructure and dimension on electrical double-layer capacitor performance. J Electrochem Soc 165:A305–A313CrossRefGoogle Scholar
  5. 5.
    Heinze T (2015) Cellulose: structure and properties. In: Anonymous cellulose chemistry and properties: fibers, nanocelluloses and advanced materials, 1st edn. Springer, pp 1–52Google Scholar
  6. 6.
    Van de Velden M, Baeyens J, Brems A, Janssens B, Dewil R (2010) Fundamentals, kinetics and endothermicity of the biomass pyrolysis reaction. Renew Energy 35:232–242CrossRefGoogle Scholar
  7. 7.
    Stefanidis SD, Kalogiannis KG, Iliopoulou EF, Michailof CM, Pilavachi PA, Lappas AA (2014) A study of lignocellulosic biomass pyrolysis via the pyrolysis of cellulose, hemicellulose and lignin. J Anal Appl Pyrolysis 105:143–150CrossRefGoogle Scholar
  8. 8.
    Ebringerova A, Heinze T (2000) Xylan and xylan derivatives–biopolymers with valuable properties, 1. Naturally occurring xylans structures, isolation procedures and properties. Macromol Rapid Commun 21:542–556CrossRefGoogle Scholar
  9. 9.
    Gellerstedt G, Henriksson G (2008) Lignins: major sources, structure and properties. In: Anonymous monomers, polymers and composites from renewable resources, 1st edn. Elsevier, pp 201–224Google Scholar
  10. 10.
    Kan T, Strezov V, Evans TJ (2016) Lignocellulosic biomass pyrolysis: a review of product properties and effects of pyrolysis parameters. Renew Sust Energ Rev 57:1126–1140CrossRefGoogle Scholar
  11. 11.
    Caballero J, Conesa J, Font R, Marcilla A (1997) Pyrolysis kinetics of almond shells and olive stones considering their organic fractions. J Anal Appl Pyrolysis 42:159–175CrossRefGoogle Scholar
  12. 12.
    Demirbas A (2004) Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural residues. J Anal Appl Pyrolysis 72:243–248CrossRefGoogle Scholar
  13. 13.
    Chen G, Andries J, Luo Z, Spliethoff H (2003) Biomass pyrolysis/gasification for product gas production: the overall investigation of parametric effects. Energy Convers Manag 44:1875–1884CrossRefGoogle Scholar
  14. 14.
    Al-Wabel MI, Al-Omran A, El-Naggar AH, Nadeem M, Usman AR (2013) Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes. Bioresour Technol 131:374–379PubMedCrossRefGoogle Scholar
  15. 15.
    Inguanzo M, Domınguez A, Menéndez J, Blanco C, Pis J (2002) On the pyrolysis of sewage sludge: the influence of pyrolysis conditions on solid, liquid and gas fractions. J Anal Appl Pyrolysis 63:209–222CrossRefGoogle Scholar
  16. 16.
    Ahmad M, Lee SS, Dou X, Mohan D, Sung J, Yang JE, Ok YS (2012) Effects of pyrolysis temperature on soybean stover-and peanut shell-derived biochar properties and TCE adsorption in water. Bioresour Technol 118:536–544PubMedCrossRefGoogle Scholar
  17. 17.
    Lee JW, Kidder M, Evans BR, Paik S, Buchanan Iii A, Garten CT, Brown RC (2010) Characterization of biochars produced from cornstovers for soil amendment. Environ Sci Technol 44:7970–7974PubMedCrossRefGoogle Scholar
  18. 18.
    Burhenne L, Damiani M, Aicher T (2013) Effect of feedstock water content and pyrolysis temperature on the structure and reactivity of spruce wood char produced in fixed bed pyrolysis. Fuel 107:836–847CrossRefGoogle Scholar
  19. 19.
    de Jonge H, Mittelmeijer-Hazeleger MC (1996) Adsorption of CO2 and N2 on soil organic matter: nature of porosity, surface area, and diffusion mechanisms. Environ Sci Technol 30:408–413CrossRefGoogle Scholar
  20. 20.
    Zhang J, Liu J, Liu R (2015) Effects of pyrolysis temperature and heating time on biochar obtained from the pyrolysis of straw and lignosulfonate. Bioresour Technol 176:288–291PubMedCrossRefGoogle Scholar
  21. 21.
    Demirbas A, Arin G (2002) An overview of biomass pyrolysis. Energy Sources 24:471–482CrossRefGoogle Scholar
  22. 22.
    Bahng M, Mukarakate C, Robichaud DJ, Nimlos MR (2009) Current technologies for analysis of biomass thermochemical processing: a review. Anal Chim Acta 651:117–138PubMedCrossRefGoogle Scholar
  23. 23.
    Tripathi M, Sahu JN, Ganesan P (2016) Effect of process parameters on production of biochar from biomass waste through pyrolysis: a review. Renew Sust Energ Rev 55:467–481CrossRefGoogle Scholar
  24. 24.
    Lu G, Low J, Liu C, Lua A (1995) Surface area development of sewage sludge during pyrolysis. Fuel 74:344–348CrossRefGoogle Scholar
  25. 25.
    Bandosz TJ, Block K (2006) Effect of pyrolysis temperature and time on catalytic performance of sewage sludge/industrial sludge-based composite adsorbents. Appl Catal B 67:77–85CrossRefGoogle Scholar
  26. 26.
    Cha JS, Park SH, Jung S, Ryu C, Jeon J, Shin M, Park Y (2016) Production and utilization of biochar: a review. J Ind Eng Chem 40:1–15CrossRefGoogle Scholar
  27. 27.
    Román S, Nabais J, Laginhas C, Ledesma B, González J (2012) Hydrothermal carbonization as an effective way of densifying the energy content of biomass. Fuel Process Technol 103:78–83CrossRefGoogle Scholar
  28. 28.
    Xiao L, Shi Z, Xu F, Sun R (2012) Hydrothermal carbonization of lignocellulosic biomass. Bioresour Technol 118:619–623PubMedCrossRefGoogle Scholar
  29. 29.
    Chan YH, Yusup S, Quitain AT, Uemura Y, Sasaki M (2014) Bio-oil production from oil palm biomass via subcritical and supercritical hydrothermal liquefaction. J Supercrit Fluids 95:407–412CrossRefGoogle Scholar
  30. 30.
    Sabio E, Álvarez-Murillo A, Román S, Ledesma B (2016) Conversion of tomato-peel waste into solid fuel by hydrothermal carbonization: influence of the processing variables. Waste Manag 47:122–132PubMedCrossRefGoogle Scholar
  31. 31.
    Shen B, Chen J, Yue S, Li G (2015) A comparative study of modified cotton biochar and activated carbon based catalysts in low temperature SCR. Fuel 156:47–53CrossRefGoogle Scholar
  32. 32.
    Fu K, Yue Q, Gao B, Sun Y, Zhu L (2013) Preparation, characterization and application of lignin-based activated carbon from black liquor lignin by steam activation. Chem Eng J 228:1074–1082CrossRefGoogle Scholar
  33. 33.
    González J, Román S, Encinar J, Martínez G (2009) Pyrolysis of various biomass residues and char utilization for the production of activated carbons. J Anal Appl Pyrolysis 85:134–141CrossRefGoogle Scholar
  34. 34.
    Jung S, Kim J (2014) Production of biochars by intermediate pyrolysis and activated carbons from oak by three activation methods using CO2. J Anal Appl Pyrolysis 107:116–122CrossRefGoogle Scholar
  35. 35.
    Shao J, Zhang J, Zhang X, Feng Y, Zhang H, Zhang S, Chen H (2018) Enhance SO 2 adsorption performance of biochar modified by CO 2 activation and amine impregnation. Fuel 224:138–146CrossRefGoogle Scholar
  36. 36.
    Kastner JR, Miller J, Das K (2009) Pyrolysis conditions and ozone oxidation effects on ammonia adsorption in biomass generated chars. J Hazard Mater 164:1420–1427PubMedCrossRefGoogle Scholar
  37. 37.
    Jimenez-Cordero D, Heras F, Alonso-Morales N, Gilarranz MA, Rodriguez JJ (2015) Ozone as oxidation agent in cyclic activation of biochar. Fuel Process Technol 139:42–48CrossRefGoogle Scholar
  38. 38.
    Wang J, Kaskel S (2012) KOH activation of carbon-based materials for energy storage. J Mater Chem 22:23710–23725CrossRefGoogle Scholar
  39. 39.
    Basta A, Fierro V, El-Saied H, Celzard A (2009) 2-steps KOH activation of rice straw: an efficient method for preparing high-performance activated carbons. Bioresour Technol 100:3941–3947PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Otowa T, Nojima Y, Miyazaki T (1997) Development of KOH activated high surface area carbon and its application to drinking water purification. Carbon 35:1315–1319CrossRefGoogle Scholar
  41. 41.
    ASTM International (2015) ASTM E1755-01, Standard test method for ash in biomassGoogle Scholar
  42. 42.
    Budai A, Zimmerman A, Cowie A, Webber J, Singh B, Glaser B, Masiello C, Andersson D, Shields F, Lehmann J (2013) Biochar carbon stability test method: an assessment of methods to determine biochar carbon stability. Int Biochar InitiativeGoogle Scholar
  43. 43.
    Ok YS, Uchimiya SM, Chang SX, Bolan N (2015) Biochar: production, characterization, and applications. CRC Press, Boca RatonCrossRefGoogle Scholar
  44. 44.
    Mimmo T, Panzacchi P, Baratieri M, Davies C, Tonon G (2014) Effect of pyrolysis temperature on miscanthus (Miscanthus× giganteus) biochar physical, chemical and functional properties. Biomass Bioenergy 62:149–157CrossRefGoogle Scholar
  45. 45.
    Chan K, Van Zwieten L, Meszaros I, Downie A, Joseph S (2008) Agronomic values of greenwaste biochar as a soil amendment. Soil Res 45:629–634CrossRefGoogle Scholar
  46. 46.
    Laird DA, Fleming P, Davis DD, Horton R, Wang B, Karlen DL (2010) Impact of biochar amendments on the quality of a typical Midwestern agricultural soil. Geoderma 158:443–449CrossRefGoogle Scholar
  47. 47.
    Rajkovich S, Enders A, Hanley K, Hyland C, Zimmerman AR, Lehmann J (2012) Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil. Biol Fertil Soils 48:271–284CrossRefGoogle Scholar
  48. 48.
    Inyang M, Gao B, Yao Y, Xue Y, Zimmerman AR, Pullammanappallil P, Cao X (2012) Removal of heavy metals from aqueous solution by biochars derived from anaerobically digested biomass. Bioresour Technol 110:50–56PubMedCrossRefGoogle Scholar
  49. 49.
    International Biochar Initiative (2012) Standardized product definition and product testing guidelines for biochar that is used in soil. IBI biochar standardsGoogle Scholar
  50. 50.
    Stefaniuk M, Oleszczuk P (2015) Characterization of biochars produced from residues from biogas production. J Anal Appl Pyrolysis 115:157–165CrossRefGoogle Scholar
  51. 51.
    Sun L, Wan S, Luo W (2013) Biochars prepared from anaerobic digestion residue, palm bark, and eucalyptus for adsorption of cationic methylene blue dye: characterization, equilibrium, and kinetic studies. Bioresour Technol 140:406–413PubMedCrossRefGoogle Scholar
  52. 52.
    Davies A, Yu A (2011) Material advancements in supercapacitors: from activated carbon to carbon nanotube and graphene. Can J Chem Eng 89:1342–1357CrossRefGoogle Scholar
  53. 53.
    Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854PubMedCrossRefGoogle Scholar
  54. 54.
    Gabhi RS, Kirk DW, Jia CQ (2017) Preliminary investigation of electrical conductivity of monolithic biochar. Carbon 116:435–442CrossRefGoogle Scholar
  55. 55.
    Rajapaksha AU, Vithanage M, Zhang M, Ahmad M, Mohan D, Chang SX, Ok YS (2014) Pyrolysis condition affected sulfamethazine sorption by tea waste biochars. Bioresour Technol 166:303–308PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Gul S, Whalen JK, Thomas BW, Sachdeva V, Deng H (2015) Physico-chemical properties and microbial responses in biochar-amended soils: mechanisms and future directions. Agric Ecosyst Environ 206:46–59CrossRefGoogle Scholar
  57. 57.
    Singh B, Singh BP, Cowie AL (2010) Characterisation and evaluation of biochars for their application as a soil amendment. Soil Res 48:516–525CrossRefGoogle Scholar
  58. 58.
    Wu W, Yang M, Feng Q, McGrouther K, Wang H, Lu H, Chen Y (2012) Chemical characterization of rice straw-derived biochar for soil amendment. Biomass Bioenergy 47:268–276CrossRefGoogle Scholar
  59. 59.
    Hendershot WH, Duquette M (1986) A simple barium chloride method for determining cation exchange capacity and exchangeable cations 1. Soil Sci Soc Am J 50:605–608CrossRefGoogle Scholar
  60. 60.
    Ross DS, Ketterings Q (1995) Recommended methods for determining soil cation exchange capacity. Northeast Coordinating Comm Soil Test 2:62–70Google Scholar
  61. 61.
    Rizwan M, Ali S, Qayyum MF, Ibrahim M, Zia-ur-Rehman M, Abbas T, Ok YS (2016) Mechanisms of biochar-mediated alleviation of toxicity of trace elements in plants: a critical review. Environ Sci Pollut Res Int 23:2230–2248PubMedCrossRefGoogle Scholar
  62. 62.
    Mohan D, Sarswat A, Ok YS, Pittman CU Jr (2014) Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent–a critical review. Bioresour Technol 160:191–202PubMedCrossRefGoogle Scholar
  63. 63.
    Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41:797–828PubMedCrossRefGoogle Scholar
  64. 64.
    Sharma P, Bhatti T (2010) A review on electrochemical double-layer capacitors. Energy Convers Manag 51:2901–2912CrossRefGoogle Scholar
  65. 65.
    Wang Q, Yan J, Fan Z (2016) Carbon materials for high volumetric performance supercapacitors: design, progress, challenges and opportunities. Energy Environ Sci 9:729–762CrossRefGoogle Scholar
  66. 66.
    Conway BE (2013) Electrochemical supercapacitors: scientific fundamentals and technological applications. Springer Science & Business Media, New YorkGoogle Scholar
  67. 67.
    Brewer CE, Chuang VJ, Masiello CA, Gonnermann H, Gao X, Dugan B, Driver LE, Panzacchi P, Zygourakis K, Davies CA (2014) New approaches to measuring biochar density and porosity. Biomass Bioenergy 66:176–185CrossRefGoogle Scholar
  68. 68.
    Landers J, Gor GY, Neimark AV (2013) Density functional theory methods for characterization of porous materials. Colloids Surf A Physicochem Eng Asp 437:3–32CrossRefGoogle Scholar
  69. 69.
    Caguiat JN, Kirk DW, Jia CQ (2014) Uncertainties in characterization of nanoporous carbons using density functional theory-based gas physisorption. Carbon 72:47–56CrossRefGoogle Scholar
  70. 70.
    Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KS (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 87:1051–1069CrossRefGoogle Scholar
  71. 71.
    Giesche H (2006) Mercury porosimetry: a general (practical) overview. Part Part Syst Charact 23:9–19CrossRefGoogle Scholar
  72. 72.
    Abdel-Fattah TM, Mahmoud ME, Ahmed SB, Huff MD, Lee JW, Kumar S (2015) Biochar from woody biomass for removing metal contaminants and carbon sequestration. J Ind Eng Chem 22:103–109CrossRefGoogle Scholar
  73. 73.
    Yan Q, Wan C, Liu J, Gao J, Yu F, Zhang J, Cai Z (2013) Iron nanoparticles in situ encapsulated in biochar-based carbon as an effective catalyst for the conversion of biomass-derived syngas to liquid hydrocarbons. Green Chem 15:1631–1640CrossRefGoogle Scholar
  74. 74.
    Yao Y, Gao B, Chen J, Yang L (2013) Engineered biochar reclaiming phosphate from aqueous solutions: mechanisms and potential application as a slow-release fertilizer. Environ Sci Technol 47:8700–8708PubMedCrossRefGoogle Scholar
  75. 75.
    Yao Y, Gao B, Fang J, Zhang M, Chen H, Zhou Y, Creamer AE, Sun Y, Yang L (2014) Characterization and environmental applications of clay–biochar composites. Chem Eng J 242:136–143CrossRefGoogle Scholar
  76. 76.
    Moon DH, Park J, Chang Y, Ok YS, Lee SS, Ahmad M, Koutsospyros A, Park J, Baek K (2013) Immobilization of lead in contaminated firing range soil using biochar. Environ Sci Pollut Res Int 20:8464–8471PubMedCrossRefGoogle Scholar
  77. 77.
    Beesley L, Marmiroli M (2011) The immobilisation and retention of soluble arsenic, cadmium and zinc by biochar. Environ Pollut 159:474–480PubMedCrossRefGoogle Scholar
  78. 78.
    Lu H, Zhang W, Yang Y, Huang X, Wang S, Qiu R (2012) Relative distribution of Pb2 sorption mechanisms by sludge-derived biochar. Water Res 46:854–862PubMedCrossRefGoogle Scholar
  79. 79.
    Vithanage M, Rajapaksha AU, Ahmad M, Uchimiya M, Dou X, Alessi DS, Ok YS (2015) Mechanisms of antimony adsorption onto soybean stover-derived biochar in aqueous solutions. J Environ Manag 151:443–449CrossRefGoogle Scholar
  80. 80.
    Lin Y, Munroe P, Joseph S, Ziolkowski A, Van Zwieten L, Kimber S, Rust J (2013) Chemical and structural analysis of enhanced biochars: thermally treated mixtures of biochar, chicken litter, clay and minerals. Chemosphere 91:35–40PubMedCrossRefGoogle Scholar
  81. 81.
    Igalavithana AD, Mandal S, Niazi NK, Vithanage M, Parikh SJ, Mukome FN, Rizwan M, Oleszczuk P, Al-Wabel M, Bolan N (2017) Advances and future directions of biochar characterization methods and applications. Crit Rev Environ Sci Technol 47:2275–2330CrossRefGoogle Scholar
  82. 82.
    Boehm H (1994) Some aspects of the surface chemistry of carbon blacks and other carbons. Carbon 32:759–769CrossRefGoogle Scholar
  83. 83.
    Parikh SJ, Goyne KW, Margenot AJ, Mukome FN, Calderón FJ (2014) Soil chemical insights provided through vibrational spectroscopy. In: Anonymous advances in agronomy, 1st edn. Elsevier, p 1–148Google Scholar
  84. 84.
    Smith BC (2011) Fundamentals of Fourier transform infrared spectroscopy. CRC press, Boca RatonCrossRefGoogle Scholar
  85. 85.
    Ahmad M, Rajapaksha AU, Lim JE, Zhang M, Bolan N, Mohan D, Vithanage M, Lee SS, Ok YS (2014) Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere 99:19–33PubMedCrossRefGoogle Scholar
  86. 86.
    Pereira RC, Kaal J, Arbestain MC, Lorenzo RP, Aitkenhead W, Hedley M, Macías F, Hindmarsh J, Maciá-Agulló J (2011) Contribution to characterisation of biochar to estimate the labile fraction of carbon. Org Geochem 42:1331–1342CrossRefGoogle Scholar
  87. 87.
    Plumridge T, Waigh R (2002) Water structure theory and some implications for drug design. J Pharm Pharmacol 54:1155–1179PubMedCrossRefGoogle Scholar
  88. 88.
    Torapava N, Radkevich A, Davydov D, Titov A, Persson I (2009) Composition and structure of polynuclear chromium (III) hydroxo complexes. Inorg Chem 48:10383–10388PubMedCrossRefGoogle Scholar
  89. 89.
    Padhye LP (2017) Influence of surface chemistry of carbon materials on their interactions with inorganic nitrogen contaminants in soil and water. Chemosphere 184:532–547PubMedCrossRefGoogle Scholar
  90. 90.
    Jung K, Lee S, Lee YJ (2017) Synthesis of novel magnesium ferrite (MgFe2O4)/biochar magnetic composites and its adsorption behavior for phosphate in aqueous solutions. Bioresour Technol 245:751–759PubMedCrossRefGoogle Scholar
  91. 91.
    Oliveira FR, Patel AK, Jaisi DP, Adhikari S, Lu H, Khanal SK (2017) Environmental application of biochar: current status and perspectives. Bioresour Technol 246:110–122PubMedCrossRefGoogle Scholar
  92. 92.
    Bhandari PN, Kumar A, Huhnke RL (2014) Simultaneous removal of toluene (model tar), NH3, and H2S, from biomass-generated producer gas using biochar-based and mixed-metal oxide catalysts. Energy Fuel 28:1918–1925CrossRefGoogle Scholar
  93. 93.
    Liu H, Dong Y, Liu Y, Wang H (2010) Screening of novel low-cost adsorbents from agricultural residues to remove ammonia nitrogen from aqueous solution. J Hazard Mater 178:1132–1136PubMedCrossRefGoogle Scholar
  94. 94.
    Jung K, Ahn K (2016) Fabrication of porosity-enhanced MgO/biochar for removal of phosphate from aqueous solution: application of a novel combined electrochemical modification method. Bioresour Technol 200:1029–1032PubMedCrossRefGoogle Scholar
  95. 95.
    Zhou Y, Gao B, Zimmerman AR, Chen H, Zhang M, Cao X (2014) Biochar-supported zerovalent iron for removal of various contaminants from aqueous solutions. Bioresour Technol 152:538–542PubMedCrossRefGoogle Scholar
  96. 96.
    Xue L, Gao B, Wan Y, Fang J, Wang S, Li Y, Muñoz-Carpena R, Yang L (2016) High efficiency and selectivity of MgFe-LDH modified wheat-straw biochar in the removal of nitrate from aqueous solutions. J Taiwan Inst Chem Eng 63:312–317CrossRefGoogle Scholar
  97. 97.
    Zhang M, Gao B, Yao Y, Inyang M (2013) Phosphate removal ability of biochar/MgAl-LDH ultra-fine composites prepared by liquid-phase deposition. Chemosphere 92:1042–1047PubMedCrossRefGoogle Scholar
  98. 98.
    Li R, Wang JJ, Zhou B, Zhang Z, Liu S, Lei S, Xiao R (2017) Simultaneous capture removal of phosphate, ammonium and organic substances by MgO impregnated biochar and its potential use in swine wastewater treatment. J Clean Prod 147:96–107CrossRefGoogle Scholar
  99. 99.
    Chen L, Chen XL, Zhou CH, Yang HM, Ji SF, Tong DS, Zhong ZK, Yu WH, Chu MQ (2017) Environmental-friendly montmorillonite-biochar composites: facile production and tunable adsorption-release of ammonium and phosphate. J Clean Prod 156:648–659CrossRefGoogle Scholar
  100. 100.
    Wang Z, Shen D, Shen F, Li T (2016) Phosphate adsorption on lanthanum loaded biochar. Chemosphere 150:1–7PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Chen B, Chen Z, Lv S (2011) A novel magnetic biochar efficiently sorbs organic pollutants and phosphate. Bioresour Technol 102:716–723PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Zhang J, Wang Q (2016) Sustainable mechanisms of biochar derived from brewers’ spent grain and sewage sludge for ammonia–nitrogen capture. J Clean Prod 112:3927–3934CrossRefGoogle Scholar
  103. 103.
    Li R, Wang JJ, Zhou B, Awasthi MK, Ali A, Zhang Z, Gaston LA, Lahori AH, Mahar A (2016) Enhancing phosphate adsorption by Mg/Al layered double hydroxide functionalized biochar with different Mg/Al ratios. Sci Total Environ 559:121–129PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    El Hanandeh A, Bhuvaneswaran A, de Rozari P (2017) Removal of nitrate, ammonia and phosphate from aqueous solutions in packed bed filter using biochar augmented sand media. MATEC Web Conf 120:05004CrossRefGoogle Scholar
  105. 105.
    Wei S, Zhang H, Huang Y, Wang W, Xia Y, Yu Z (2011) Pig bone derived hierarchical porous carbon and its enhanced cycling performance of lithium–sulfur batteries. Energy Environ Sci 4:736–740CrossRefGoogle Scholar
  106. 106.
    Li H, Dong X, da Silva EB, de Oliveira LM, Chen Y, Ma LQ (2017) Mechanisms of metal sorption by biochars: biochar characteristics and modifications. Chemosphere 178:466–478PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Tan X, Liu Y, Gu Y, Xu Y, Zeng G, Hu X, Liu S, Wang X, Liu S, Li J (2016) Biochar-based nano-composites for the decontamination of wastewater: a review. Bioresour Technol 212:318–333PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Li S, Wang W, Liang F, Zhang W (2017) Heavy metal removal using nanoscale zero-valent iron (nZVI): theory and application. J Hazard Mater 322:163–171PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Ho S, Zhu S, Chang J (2017) Recent advances in nanoscale-metal assisted biochar derived from waste biomass used for heavy metals removal. Bioresour Technol 246:123–134PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Cho D, Yoon K, Kwon EE, Biswas JK, Song H (2017) Fabrication of magnetic biochar as a treatment medium for As (V) via pyrolysis of FeCl3-pretreated spent coffee ground. Environ Pollut 229:942–949PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Trakal L, Michálková Z, Beesley L, Vítková M, Ouředníček P, Barceló AP, Ettler V, Číhalová S, Komárek M (2018) AMOchar: amorphous manganese oxide coating of biochar improves its efficiency at removing metal (loid) s from aqueous solutions. Sci Total Environ 625:71–78PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Jung K, Lee SY, Lee YJ (2018) Hydrothermal synthesis of hierarchically structured birnessite-type MnO2/biochar composites for the adsorptive removal of Cu (II) from aqueous media. Bioresour Technol 260:204–212PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Zhang M, Liu Y, Li T, Xu W, Zheng B, Tan X, Wang H, Guo Y, Guo F, Wang S (2015) Chitosan modification of magnetic biochar produced from Eichhornia crassipes for enhanced sorption of Cr (vi) from aqueous solution. RSC Adv 5:46955–46964CrossRefGoogle Scholar
  114. 114.
    Zhou Q, Liao B, Lin L, Qiu W, Song Z (2018) Adsorption of Cu (II) and Cd (II) from aqueous solutions by ferromanganese binary oxide–biochar composites. Sci Total Environ 615:115–122PubMedCrossRefGoogle Scholar
  115. 115.
    Wan S, Wu J, Zhou S, Wang R, Gao B, He F (2018) Enhanced lead and cadmium removal using biochar-supported hydrated manganese oxide (HMO) nanoparticles: behavior and mechanism. Sci Total Environ 616:1298–1306PubMedCrossRefGoogle Scholar
  116. 116.
    Ling L, Liu W, Zhang S, Jiang H (2017) Magnesium oxide embedded nitrogen self-doped biochar composites: fast and high-efficiency adsorption of heavy metals in an aqueous solution. Environ Sci Technol 51:10081–10089PubMedCrossRefGoogle Scholar
  117. 117.
    Hua M, Zhang S, Pan B, Zhang W, Lv L, Zhang Q (2012) Heavy metal removal from water/wastewater by nanosized metal oxides: a review. J Hazard Mater 211:317–331PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Wang M, Sheng G, Qiu Y (2015) A novel manganese-oxide/biochar composite for efficient removal of lead (II) from aqueous solutions. Int J Environ Sci Technol 12:1719–1726CrossRefGoogle Scholar
  119. 119.
    He R, Peng Z, Lyu H, Huang H, Nan Q, Tang J (2018) Synthesis and characterization of an iron-impregnated biochar for aqueous arsenic removal. Sci Total Environ 612:1177–1186. CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Yi Y, Li C, Zhao L, Du X, Gao L, Chen J, Zhai Y, Zeng G (2017) The synthetic evaluation of CuO-MnOx-modified pinecone biochar for simultaneous removal formaldehyde and elemental mercury from simulated flue gas. Environ Sci Pollut Res Int 25:4761–4775PubMedCrossRefGoogle Scholar
  121. 121.
    Roberts C (2013) Effluent limitations guidelines and standards for the steam electric power generating point source category. Proposed Rule 78 Fed. Reg. 34,432Google Scholar
  122. 122.
    Chen C, Tang Y, Liu Y, Liang Y, Zhang K, Wang S, Liang Y (2017) Effect of competitive adsorption on zinc removal from aqueous solution and zinc smelting effluent by eucalyptus leaf-based magnetic biosorbent. J Environ Sci Health A 52:873–889CrossRefGoogle Scholar
  123. 123.
    Kołodyńska D, Krukowska J, Thomas P (2017) Comparison of sorption and desorption studies of heavy metal ions from biochar and commercial active carbon. Chem Eng J 307:353–363CrossRefGoogle Scholar
  124. 124.
    Li R, Wang JJ, Gaston LA, Zhou B, Li M, Xiao R, Wang Q, Zhang Z, Huang H, Liang W (2018) An overview of carbothermal synthesis of metal–biochar composites for the removal of oxyanion contaminants from aqueous solution. Carbon 129:674–687CrossRefGoogle Scholar
  125. 125.
    Thamilselvan A, Nesaraj A, Noel M (2016) Review on carbon-based electrode materials for application in capacitive deionization process. Int J Environ Sci Technol 13:2961–2976CrossRefGoogle Scholar
  126. 126.
    Liu Y, Nie C, Liu X, Xu X, Sun Z, Pan L (2015) Review on carbon-based composite materials for capacitive deionization. RSC Adv 5:15205–15225CrossRefGoogle Scholar
  127. 127.
    Dehkhoda AM, Ellis N, Gyenge E (2016) Effect of activated biochar porous structure on the capacitive deionization of NaCl and ZnCl2 solutions. Microporous Mesoporous Mater 224:217–228CrossRefGoogle Scholar
  128. 128.
    Zhu S, Ho S, Huang X, Wang D, Yang F, Wang L, Wang C, Cao X, Ma F (2017) Magnetic nanoscale zerovalent iron assisted biochar: interfacial chemical behaviors and heavy metals remediation performance. ACS Sustain Chem Eng 5:9673–9682CrossRefGoogle Scholar
  129. 129.
    Giorcelli M, Khan AA, Tagliaferro A, Savi P, Berruti F (2016) Microwave characterization of polymer composite based on biochar: a comparison of composite behaviour for biochar and MWCNTs. IEEE INEC:1–2Google Scholar
  130. 130.
    Son E, Poo K, Mohamed HO, Choi Y, Cho W, Chae K (2018) A novel approach to developing a reusable marine macro-algae adsorbent with chitosan and ferric oxide for simultaneous efficient heavy metal removal and easy magnetic separation. Bioresour Technol 259:381–387PubMedCrossRefGoogle Scholar
  131. 131.
    Liu W, Jiang H, Yu H (2015) Development of biochar-based functional materials: toward a sustainable platform carbon material. Chem Rev 115:12251–12285PubMedCrossRefGoogle Scholar
  132. 132.
    Zhao C, Liu G, Sun N, Zhang X, Wang G, Zhang Y, Zhang H, Zhao H (2018) Biomass-derived N-doped porous carbon as electrode materials for Zn-air battery powered capacitive deionization. Chem Eng J 334:1270–1280CrossRefGoogle Scholar
  133. 133.
    Dutta S, Huang S, Chen C, Chen JE, Alothman ZA, Yamauchi Y, Hou C, Wu KC (2016) Cellulose framework directed construction of hierarchically porous carbons offering high-performance capacitive deionization of brackish water. ACS Sustain Chem Eng 4:1885–1893CrossRefGoogle Scholar
  134. 134.
    Zhang L, Liu Y, Lu T, Pan L (2017) Cocoon derived nitrogen enriched activated carbon fiber networks for capacitive deionization. J Electroanal Chem 804:179–184CrossRefGoogle Scholar
  135. 135.
    Zhang X, Wang B, Yu J, Wu X, Zang Y, Gao H, Su P, Hao S (2018) Three-dimensional honeycomb-like porous carbon derived from corncob for the removal of heavy metals from water by capacitive deionization. RSC Adv 8:1159–1167CrossRefGoogle Scholar
  136. 136.
    Li J, Wang X, Wang H, Wang S, Hayat T, Alsaedi A, Wang X (2017) Functionalization of biomass carbonaceous aerogels and their application as electrode materials for electro-enhanced recovery of metal ions. Environ Sci Nano 4:1114–1123CrossRefGoogle Scholar
  137. 137.
    Han Z, Sani B, Mrozik W, Obst M, Beckingham B, Karapanagioti HK, Werner D (2015) Magnetite impregnation effects on the sorbent properties of activated carbons and biochars. Water Res 70:394–403. CrossRefPubMedPubMedCentralGoogle Scholar
  138. 138.
    Xiao S, Ma H, Shen M, Wang S, Huang Q, Shi X (2011) Excellent copper(II) removal using zero-valent iron nanoparticle-immobilized hybrid electrospun polymer nanofibrous mats. Colloids Surf A Physicochem Eng Asp 381:48–54. CrossRefGoogle Scholar
  139. 139.
    Maarof HI, Ajeel MA, Daud WMAW, Aroua MK (2017) Electrochemical properties and electrode reversibility studies of palm shell activated carbon for heavy metal removal. Electrochim Acta 249:96–103. CrossRefGoogle Scholar
  140. 140.
    Liu Y, Yu T, Chen Y, Hou C (2017) Incorporating manganese dioxide in carbon nanotube-chitosan as a pseudocapacitive composite electrode for high-performance desalination. ACS Sustain Chem Eng 6:3196–3205CrossRefGoogle Scholar
  141. 141.
    Goodenough JB, Abruna H, Buchanan M (2007) Basic research needs for electrical energy storage. Report of the basic energy sciences workshop on electrical energy storage. US DOE – Office of Basic Energy SciencesGoogle Scholar
  142. 142.
    Kötz R, Carlen M (2000) Principles and applications of electrochemical capacitors. Electrochim Acta 45:2483–2498CrossRefGoogle Scholar
  143. 143.
    Qian K, Kumar A, Zhang H, Bellmer D, Huhnke R (2015) Recent advances in utilization of biochar. Renew Sust Energ Rev 42:1055–1064CrossRefGoogle Scholar
  144. 144.
    Chen M, Kang X, Wumaier T, Dou J, Gao B, Han Y, Xu G, Liu Z, Zhang L (2013) Preparation of activated carbon from cotton stalk and its application in supercapacitor. J Solid State Electrochem 17:1005–1012CrossRefGoogle Scholar
  145. 145.
    Farma R, Deraman M, Awitdrus A, Talib IA, Taer E, Basri N, Manjunatha J, Ishak M, Dollah B, Hashmi S (2013) Preparation of highly porous binderless activated carbon electrodes from fibres of oil palm empty fruit bunches for application in supercapacitors. Bioresour Technol 132:254–261PubMedCrossRefGoogle Scholar
  146. 146.
    Li X, Xing W, Zhuo S, Zhou J, Li F, Qiao S, Lu G (2011) Preparation of capacitor’s electrode from sunflower seed shell. Bioresour Technol 102:1118–1123PubMedCrossRefGoogle Scholar
  147. 147.
    Genovese M, Jiang J, Lian K, Holm N (2015) High capacitive performance of exfoliated biochar nanosheets from biomass waste corn cob. J Mater Chem A 3:2903–2913CrossRefGoogle Scholar
  148. 148.
    Wan C, Jiao Y, Li J (2016) Core-shell composite of wood-derived biochar supported MnO2 nanosheets for supercapacitor applications. RSC Adv 6:64811–64817CrossRefGoogle Scholar
  149. 149.
    Wang Y, Zhang Y, Pei L, Ying D, Xu X, Zhao L, Jia J, Cao X (2017) Converting Ni-loaded biochars into supercapacitors: implication on the reuse of exhausted carbonaceous sorbents. Sci Rep 7:41523PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Zhang L, Jiang J, Holm N, Chen F (2014) Mini-chunk biochar supercapacitors. J Appl Electrochem 44:1145–1151CrossRefGoogle Scholar
  151. 151.
    Jiang J, Zhang L, Wang X, Holm N, Rajagopalan K, Chen F, Ma S (2013) Highly ordered macroporous woody biochar with ultra-high carbon content as supercapacitor electrodes. Electrochim Acta 113:481–489CrossRefGoogle Scholar
  152. 152.
    Liu M, Kong L, Zhang P, Luo Y, Kang L (2012) Porous wood carbon monolith for high-performance supercapacitors. Electrochim Acta 60:443–448CrossRefGoogle Scholar
  153. 153.
    Marom R, Amalraj SF, Leifer N, Jacob D, Aurbach D (2011) A review of advanced and practical lithium battery materials. J Mater Chem 21:9938–9954CrossRefGoogle Scholar
  154. 154.
    Kim S, Seo D, Ma X, Ceder G, Kang K (2012) Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries. Adv Energy Mater 2:710–721CrossRefGoogle Scholar
  155. 155.
    Imtiaz S, Zhang J, Zafar ZA, Ji S, Huang T, Anderson JA, Zhang Z, Huang Y (2016) Biomass-derived nanostructured porous carbons for lithium-sulfur batteries. Sci China Mater 59:389–407CrossRefGoogle Scholar
  156. 156.
    Zhang H, Yu F, Kang W, Shen Q (2015) Encapsulating selenium into macro−/micro-porous biochar-based framework for high-performance lithium-selenium batteries. Carbon 95:354–363CrossRefGoogle Scholar
  157. 157.
    Chen J, Liu W, Liu S, Wang H, Zhang Y, Chen S (2017) Marine microalgaes-derived porous ZnMn2O4/C microspheres and performance evaluation as Li-ion battery Anode by using different binders. Chem Eng J 308:1200–1208. CrossRefGoogle Scholar
  158. 158.
    Wang Q, Li Y, Wang K, Zhou J, Zhu L, Gu L, Hu J, Cao X (2017) Mass production of porous biocarbon self-doped by phosphorus and nitrogen for cost-effective zinc–air batteries. Electrochim Acta 257:250–258. CrossRefGoogle Scholar
  159. 159.
    Ahn SY, Eom SY, Rhie YH, Sung YM, Moon CE, Choi GM, Kim DJ (2013) Utilization of wood biomass char in a direct carbon fuel cell (DCFC) system. Appl Energy 105:207–216CrossRefGoogle Scholar
  160. 160.
    Gupta S, Kua HW (2017) Factors determining the potential of biochar as a carbon capturing and sequestering construction material: critical review. J Mater Civ Eng 29(04017086):1–14Google Scholar
  161. 161.
    Chebil S, Chaala A, Roy C (2000) Use of softwood bark charcoal as a modifier for road bitumen. Fuel 79:671–683CrossRefGoogle Scholar
  162. 162.
    Zhao S, Huang B, Shu X, Ye P (2014) Laboratory investigation of biochar-modified asphalt mixture. Transp Res Rec 2445:56–63CrossRefGoogle Scholar
  163. 163.
    Khushnood RA, Ahmad S, Restuccia L, Spoto C, Jagdale P, Tulliani J, Ferro GA (2016) Carbonized nano/microparticles for enhanced mechanical properties and electromagnetic interference shielding of cementitious materials. Front Struct Civ Eng 10:209–213CrossRefGoogle Scholar
  164. 164.
    Agustini D, Mangrich AS, Bergamini MF, Marcolino-Junior LH (2015) Sensitive voltammetric determination of lead released from ceramic dishes by using of bismuth nanostructures anchored on biochar. Talanta 142:221–227. CrossRefPubMedPubMedCentralGoogle Scholar
  165. 165.
    Liu G, Li L, Zhang K, Wang X, Chang J, Sheng Y, Bai L, Wen Y (2016) Facile preparation of water-processable biochar based on pitch pine and its electrochemical application for cadmium ion sensing. Int J Electrochem Sci 11:1041–1054Google Scholar
  166. 166.
    Li L, Zhang K, Chen L, Huang Z, Liu G, Li M, Wen Y (2017) Mass preparation of micro/nano-powders of biochar with water-dispersibility and their potential application. New J Chem 41:9649–9657CrossRefGoogle Scholar
  167. 167.
    Oliveira PR, Lamy-Mendes AC, Rezende EIP, Mangrich AS, Marcolino Junior LH, Bergamini MF (2015) Electrochemical determination of copper ions in spirit drinks using carbon paste electrode modified with biochar. Food Chem 171:426–431. CrossRefPubMedPubMedCentralGoogle Scholar
  168. 168.
    de Oliveira PR, Kalinke C, Gogola JL, Mangrich AS, Junior LHM, Bergamini MF (2017) The use of activated biochar for development of a sensitive electrochemical sensor for determination of methyl parathion. J Electroanal Chem 799:602–608. CrossRefGoogle Scholar
  169. 169.
    Gevaerd A, de Oliveira PR, Mangrich AS, Bergamini MF, Marcolino-Junior LH (2016) Evaluation of antimony microparticles supported on biochar for application in the voltammetric determination of paraquat. Mater Sci Eng C Biol Appl 62:123–129. CrossRefGoogle Scholar
  170. 170.
    Xiang Y, Liu H, Yang J, Shi Z, Tan Y, Jin J, Wang R, Zhang S, Wang J (2018) Biochar decorated with gold nanoparticles for electrochemical sensing application. Electrochim Acta 261:464–473. CrossRefGoogle Scholar
  171. 171.
    Nan N, DeVallance DB (2017) Development of poly(vinyl alcohol)/wood-derived biochar composites for use in pressure sensor applications. J Mater Sci 52:8247–8257CrossRefGoogle Scholar
  172. 172.
    Ziegler D, Palmero P, Giorcelli M, Tagliaferro A, Tulliani J (2017) Biochars as innovative humidity sensing materials. Chemosensors 5(4):35. 1–16CrossRefGoogle Scholar
  173. 173.
    Lee J, Kim K, Kwon EE (2017) Biochar as a catalyst. Renew Sust Energ Rev 77:70–79CrossRefGoogle Scholar
  174. 174.
    Xiong X, Iris K, Cao L, Tsang DC, Zhang S, Ok YS (2017) A review of biochar-based catalysts for chemical synthesis, biofuel production, and pollution control. Bioresour Technol 246:254–270PubMedCrossRefGoogle Scholar
  175. 175.
    Chen W, Iyer S, Iyer S, Sasaki K, Wang C, Zhu Y, Muckerman JT, Fujita E (2013) Biomass-derived electrocatalytic composites for hydrogen evolution. Energy Environ Sci 6:1818–1826CrossRefGoogle Scholar
  176. 176.
    Zha D, Li L, Pan Y, He J (2016) Coconut shell carbon nanosheets facilitating electron transfer for highly efficient visible-light-driven photocatalytic hydrogen production from water. Int J Hydrog Energy 41:17370–17379CrossRefGoogle Scholar
  177. 177.
    Dehkhoda AM, Ellis N (2013) Biochar-based catalyst for simultaneous reactions of esterification and transesterification. Catal Today 207:86–92. CrossRefGoogle Scholar
  178. 178.
    Hou J, Cao C, Idrees F, Ma X (2015) Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors. ACS Nano 9:2556–2564PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Chemical Engineering and Applied ChemistryUniversity of TorontoTorontoCanada
  2. 2.Department of Chemical EngineeringWuhan University of Science and TechnologyWuhanChina

Personalised recommendations