Advertisement

Recent Advances in Cellulose Chemistry and Potential Applications

  • Poonam Trivedi
  • Pedro FardimEmail author
Chapter
Part of the Biofuels and Biorefineries book series (BIOBIO, volume 9)

Abstract

Cellulose, which is the most abundant organic compound of natural origin, has wide application in technical and biomedical fields. Cellulose can be chemically derivatized in to cellulose intermediates, such as cellulose tosylate or carbonates. The synthesised intermediates can be further transformed into cellulose derivatives of biological interest, for instance, amino cellulose. The reaction parameters such as homogeneous/heterogeneous mode, molar ratio of reagent, temperature, and solvent affects the efficiency of derivatization, substitution pattern and the physicochemical properties of the final product obtained. Derivatized cellulose has been applied to advanced materials for diagnostics and biomedical areas in the form of fibres, nanoparticles microbeads. This chapter provides an integrated overview on cellulose derivatization approaches and advanced material design that can be obtained from cellulose derivatives and which have potential application in biomedical areas.

Keywords

Cellulose derivatives Tosyl cellulose Functionalization Amino cellulose 

References

  1. 1.
    Heinze T, Liebert T (2001) Unconventional methods in cellulose functionalization. Prog Polym Sci 26:1689–1762CrossRefGoogle Scholar
  2. 2.
    Request (2014) Cellulose fibers market analysis, market size, application analysis, regional outlook, competitive strategies and forecasts, 2012 to 2020Google Scholar
  3. 3.
    Heinze T, Liebert T, Koschella A, Liebert T, Koschella A, Heinze T (2006) Esterification of polysaccharides with 105 tables, and CD-ROM. Springer-Verlag Berlin and Heidelberg GmbH & Co. K, BerlinGoogle Scholar
  4. 4.
    Hesse G, Hagel R (1976) Die chromatographische Racemattrennung. Justus Liebigs Ann Chem 1976(6):996–1008CrossRefGoogle Scholar
  5. 5.
    Ichida A, Shibata T, Okamoto I, Yuki Y, Namikoshi H, Toga Y (1984) Resolution of enantiomers by HPLC on cellulose derivatives. Chromatographia 19(1):280–284CrossRefGoogle Scholar
  6. 6.
    Shen J, Okamoto Y (2016) Efficient separation of enantiomers using stereoregular chiral polymers. Chem Rev 116:1094–1138CrossRefGoogle Scholar
  7. 7.
    Fraczyk J (2013) Cellulose functionalysed with grafted oligopeptides. In: Cellulose – medical, pharmaceutical and electronic applications. InTech, Rijeka, pp 241–278Google Scholar
  8. 8.
    O’Sullivan AC (1997) Cellulose: the structure slowly unravels. Cellulose 4:173–203CrossRefGoogle Scholar
  9. 9.
    O’Dell WB, Baker DC, McLain SE (2012) Structural evidence for inter-residue hydrogen bonding observed for Cellobiose in aqueous solution. PLoS One 7:e45311CrossRefGoogle Scholar
  10. 10.
    Kennedy JF, Pons RJS (1995) Cellulose: structure, accessibility and reactivity. Carbohydr Polym 26:313–314Google Scholar
  11. 11.
    Comprehensive cellulose chemistry (1998) Volume 1. Fundamentals and analytical methods by D. Klemm, B. Philipp, T. Heinze, U. Heinze, and W. Wagenknecht. Wiley, Weinheim. 260 pp. $236.25. ISBN 3-527-29413-9. J Am Chem Soc. 121(1999):8677–8677Google Scholar
  12. 12.
    Wertz J-L, Mercier JP, Bédué O, Bedue O (2010) Cellulose science and technology. Taylor & Francis, USAGoogle Scholar
  13. 13.
    Sixta H (2008). Handbook of pulp. Wiley-VCH Verlag GmbH. pp 2–19Google Scholar
  14. 14.
    Heinze T, Rahn K, Jaspers M, Berghmans H (1996) Thermal studies on homogeneously synthesized cellulosep-toluenesulfonates. J Appl Polym Sci 60:1891–1900CrossRefGoogle Scholar
  15. 15.
    Gericke M, Schaller J, Liebert T, Fardim P, Meister F, Heinze T (2012) Studies on the tosylation of cellulose in mixtures of ionic liquids and a co-solvent. Carbohydr Polym 89:526–536CrossRefGoogle Scholar
  16. 16.
    Heinze T (2005) Polysaccharides: structure, characterisation and use: V. 1. Springer-Verlag Berlin and Heidelberg GmbH & Co. K, Berlin. pp 107–109Google Scholar
  17. 17.
    Lindh J, Carlsson DO, Strømme M, Mihranyan A (2014) Convenient one-pot formation of 2, 3-Dialdehyde cellulose beads via Periodate oxidation of cellulose in water. Biomacromolecules 15:1928–1932CrossRefGoogle Scholar
  18. 18.
    Lindh J, Ruan C, Strømme M, Mihranyan A (2016) Preparation of porous cellulose beads via introduction of diamine spacers. Langmuir 32:5600–5607CrossRefGoogle Scholar
  19. 19.
    Gericke M, Trygg J, Fardim P (2013) Functional cellulose beads: preparation, characterization, and applications. Chem Rev 113:4812–4836CrossRefGoogle Scholar
  20. 20.
    Zhou X, Lin X, White KL, Lin S, Wu H, Cao S et al (2016) Effect of the degree of substitution on the hydrophobicity of acetylated cellulose for production of liquid marbles. Cellulose 23:811–821CrossRefGoogle Scholar
  21. 21.
    Heinze T, Rahn K, Jaspers M, Berghmans H (1996) Thermal studies on homogeneously synthesized cellulose p-toluenesulfonates. J Appl Polym Sci 60:1891–1900CrossRefGoogle Scholar
  22. 22.
    Schmidt S, Liebert T, Heinze T (2014) Synthesis of soluble cellulose tosylates in an eco-friendly medium. Green Chem 16:1941–1946CrossRefGoogle Scholar
  23. 23.
    Gericke M, Fardim P, Heinze T (2012) Ionic liquids – promising but challenging solvents for homogeneous derivatization of cellulose. Molecules 17:7458–7502CrossRefGoogle Scholar
  24. 24.
    Doane WM, Shasha BS, Stout EI, Russell CR, Rist CE (1968) Reaction of starch with carbohydrate trans-carbonates. Carbohydr Res 8:266–274CrossRefGoogle Scholar
  25. 25.
    Barker SA, Cho Tun H, Doss SH, Gray CJ, Kennedy JF (1971) Carbohydr Res 17:471CrossRefGoogle Scholar
  26. 26.
    Barker SA, Cho Tun H, Doss SH, Gray CJ, Kennedy JF (1971) Preparation of cellulose carbonate. Carbohydr Res 17:471–474CrossRefGoogle Scholar
  27. 27.
    Kennedy JF, Tun HC (1973) Active insolubilized antibiotics based on cellulose and cellulose carbonate. Antimicrob Agents Chemother 3:575–579CrossRefGoogle Scholar
  28. 28.
    Kennedy JF, Cho Tun H (1973) Use of cellulose carbonate for the preparation of immunosorbents: the radioimmunoassay of follicle-stimulating hormone. Carbohydr Res 30:11–19CrossRefGoogle Scholar
  29. 29.
    Kennedy JF, Keep PA, Catty D (1982) The use of cellulose carbonate-based immunoadsorbents in the isolation of minor allotypic components of rabbit immunoglobulin populations. J Immunol Methods 50:57–75CrossRefGoogle Scholar
  30. 30.
    Elschner T, Heinze T (2015) Cellulose carbonates: a platform for promising biopolymer derivatives with multifunctional capabilities. Macromol Biosci 15:735–746CrossRefGoogle Scholar
  31. 31.
    Elschner T, Kötteritzsch M, Heinze T (2013) Synthesis of cellulose tricarbonates in 1-Butyl-3-methylimidazolium chloride/pyridine. Macromol Biosci 14:161–165CrossRefGoogle Scholar
  32. 32.
    Elschner T, Ganske K, Heinze T (2012) Synthesis and aminolysis of polysaccharide carbonates. Cellulose 20:339–353CrossRefGoogle Scholar
  33. 33.
    Elschner T, Heinze T (2014) A promising cellulose-based polyzwitterion with pH-sensitive charges. Beilstein J Org Chem 10:1549–1556CrossRefGoogle Scholar
  34. 34.
    Petzold-Welcke K, Michaelis N, Heinze T (2009) Unconventional cellulose products through nucleophilic displacement reactions. Macromol Symp 280:72–85CrossRefGoogle Scholar
  35. 35.
    Jung A, Berlin P (2005) New water-soluble and film-forming amino cellulose tosylates as enzyme support matrices with Cu 21 -chelating properties. Cellulose 12:67–84CrossRefGoogle Scholar
  36. 36.
    Nikolajski M, Adams GG, Gillis RB, Besong DT, Rowe AJ, Heinze T et al (2014) Protein–like fully reversible tetramerisation and super-association of an amino cellulose. Sci Rep 4:3861CrossRefGoogle Scholar
  37. 37.
    Heinze T, Nikolajski M, Daus S, Besong TMD, Michaelis N, Berlin P et al (2011) Protein-like oligomerization of carbohydrates. Angew Chem Int Ed 50:8602–8604CrossRefGoogle Scholar
  38. 38.
    Elschner T, Scholz F, Miethe P, Heinze T (2014) Rapid flow through immunoassay for CRP determination based on polyethylene filters modified with ω -amino cellulose carbamate. Macromol Biosci 14:1539–1546CrossRefGoogle Scholar
  39. 39.
    Ganske K, Wiegand C, Hipler U-C, Heinze T (2015) Synthesis of novel cellulose carbamates possessing terminal amino groups and their bioactivity. Macromol Biosci 16:451–461CrossRefGoogle Scholar
  40. 40.
    Heinze T, Koschella A, Brackhagen M, Engelhardt J, Nachtkamp K (2006) Studies on non-natural deoxyammonium cellulose. Macromol Symp 244:74–82CrossRefGoogle Scholar
  41. 41.
    Bretschneider L, Koschella A, Heinze T (2014) Cationically modified 6-deoxy-6-azido cellulose as a water-soluble and reactive biopolymer derivative. Polym Bull 72:473–485CrossRefGoogle Scholar
  42. 42.
    Zarth CSP, Koschella A, Pfeifer A, Dorn S, Heinze T (2011) Synthesis and characterization of novel amino cellulose esters. Cellulose 18:1315–1325CrossRefGoogle Scholar
  43. 43.
    Obst M, Heinze T (2015) Simple synthesis of reactive and nanostructure forming hydrophobic amino cellulose derivatives. Macromol Mater Eng 301:65–70CrossRefGoogle Scholar
  44. 44.
    Heinze T, Pfeifer A, Koschella A, Schaller J, Meister F (2016) Solvent-free synthesis of 6-deoxy-6-(ω-aminoalkyl)amino cellulose. J Appl Polym Sci 133:43987CrossRefGoogle Scholar
  45. 45.
    Wondraczek H, Petzold-Welcke K, Fardim P, Heinze T (2013) Nanoparticles from conventional cellulose esters: evaluation of preparation methods. Cellulose 20:751–760CrossRefGoogle Scholar
  46. 46.
    Schulze P, Gericke M, Scholz F, Wondraczek H, Miethe P, Heinze T (2016) Incorporation of hydrophobic dyes within cellulose acetate and acetate phthalate based nanoparticles. Macromol Chem Phys 217:1823–1833CrossRefGoogle Scholar
  47. 47.
    Wiegand C, Nikolajski M, Hipler U-C, Heinze T (2015) Nanoparticle formulation of AEA and BAEA cellulose carbamates increases biocompatibility and antimicrobial activity. Macromol Biosci 15:1242–1251CrossRefGoogle Scholar
  48. 48.
    Elschner T, Doliška A, Bračič M, Stana-Kleinschek K, Heinze T (2015) Film formation of ω-aminoalkylcellulose carbamates – a quartz crystal microbalance (QCM) study. Carbohydr Polym 116:111–116CrossRefGoogle Scholar
  49. 49.
    Zieger M, Wurlitzer M, Wiegand C, Reddersen K, Finger S, Elsner P et al (2015) 6-Deoxy-6-aminoethyleneamino cellulose: synthesis and study of hemocompatibility. J Biomater Sci Polym Ed 26:931–946CrossRefGoogle Scholar
  50. 50.
    Francesko A, Fernandes MM, Ivanova K, Amorim S, Reis RL, Pashkuleva I et al (2016) Bacteria-responsive multilayer coatings comprising polycationic nanospheres for bacteria biofilm prevention on urinary catheters. Acta Biomater 33:203–212CrossRefGoogle Scholar
  51. 51.
  52. 52.
    Heinze T, Siebert M, Berlin P, Koschella A (2015) Biofunctional materials based on amino cellulose derivatives – a nanobiotechnological concept. Macromol Biosci 16:10–42CrossRefGoogle Scholar
  53. 53.
    Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3:71–85CrossRefGoogle Scholar
  54. 54.
    Hirota M, Tamura N, Saito T, Isogai A (2009) Oxidation of regenerated cellulose with NaClO2 catalyzed by TEMPO and NaClO under acid-neutral conditions. Carbohydr Polym 78:330–335CrossRefGoogle Scholar
  55. 55.
    de Carvalho RA, Veronese G, Carvalho AJF, Barbu E, Amaral AC, Trovatti E (2016) The potential of tEMPO-oxidized nanofibrillar cellulose beads for cell delivery applications. Cellulose 23:3399–3405CrossRefGoogle Scholar
  56. 56.
    Weishaupt R, Siqueira G, Schubert M, Tingaut P, Maniura-Weber K, Zimmermann T et al (2015) TEMPO-oxidized nanofibrillated cellulose as a high density carrier for bioactive molecules. Biomacromolecules 16:3640–3650CrossRefGoogle Scholar
  57. 57.
    Han S, Lee M, Kim BK (2010) Crosslinking reactions of oxidized cellulose fiber. I. Reactions between dialdehyde cellulose and multifunctional amines on lyocell fabric. J Appl Polym Sci 117:682–690CrossRefGoogle Scholar
  58. 58.
    Heinze T, Genco T, Petzold-Welcke K, Wondraczek H (2012) Synthesis and characterization of amino cellulose sulfates as novel ampholytic polymers. Cellulose 19:1305–1313CrossRefGoogle Scholar
  59. 59.
    Elschner T, Lüdecke C, Kalden D, Roth M, Löffler B, Jandt KD et al (2015) Zwitterionic cellulose carbamate with regioselective substitution pattern: a coating material possessing antimicrobial activity. Macromol Biosci 16:522–534CrossRefGoogle Scholar
  60. 60.
    Trivedi P, Trygg J, Saloranta T, Fardim P (2016) Synthesis of novel zwitterionic cellulose beads by oxidation and coupling chemistry in water. Cellulose 23:1751–1761CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Laboratory of Fibre and Cellulose TechnologyÅbo Akademi UniversityTurkuFinland
  2. 2.Department of Chemical EngineeringKU LeuvenLeuvenBelgium

Personalised recommendations