Nanocellulose Applications in Papermaking

  • Carlos SalasEmail author
  • Martin Hubbe
  • Orlando J. Rojas
Part of the Biofuels and Biorefineries book series (BIOBIO, volume 9)


Research on the utilization of biomass feedstocks has evolved rapidly in the past decades. Key developments include the production of materials with a more sustainable footprint than those derived from petrochemicals. Among associated materials, nanocelluloses have been produced from different sources and routes, such as high shear fibrillation and hydrolysis (chemical or enzymatic) or their combinations. The unique properties of nanocelluloses have sparked a myriad of uses including those related to the fields of oil and gas, adhesion, film formation, coating, packaging, food and composite processing. High end uses include the development of advanced lightweight materials, biosensors and energy harvesting systems; however, central to this review are uses closer to the source itself, namely fiber processing and, in particular, papermaking. In this chapter, the literature in these latter applications is discussed with emphasis on the use of nanocellulose to achieve favorable strength and barrier properties as well as in coating and paper sheet-forming.


Papermaking Nanocellulose Paper properties Paper coatings Mineral fillers 


  1. 1.
    Clark JA (1985) Pulp technology and treatment for paper. Miller Freeman Publications, San FranciscoGoogle Scholar
  2. 2.
    Neuman RD, Berg JM, Claesson PM (1993) Direct measurement of surface forces in papermaking and paper coating systems. Nord Pulp Paper Res J 08(1):096–104. CrossRefGoogle Scholar
  3. 3.
    Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40(7):3941–3994. CrossRefPubMedGoogle Scholar
  4. 4.
    Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110(6):3479–3500. CrossRefPubMedGoogle Scholar
  5. 5.
    Eichhorn SJ (2011) Cellulose nanowhiskers: promising materials for advanced applications. Soft Matter 7(2):303–315. CrossRefGoogle Scholar
  6. 6.
    Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3(1):71–85. CrossRefPubMedGoogle Scholar
  7. 7.
    Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50(24):5438–5466. CrossRefGoogle Scholar
  8. 8.
    Salas C, Nypelö T, Rodriguez-Abreu C, Carrillo C, Rojas OJ (2014) Nanocellulose properties and applications in colloids and interfaces. Curr Opin Colloid Interface Sci 19(5):383–396. CrossRefGoogle Scholar
  9. 9.
    Brodin FW, Gregersen ØW, Syverud K (2014) Cellulose nanofibrils: challenges and possibilities as a paper additive or coating material – a review. Nord Pulp Paper Res J 29(1):156–166. CrossRefGoogle Scholar
  10. 10.
    Lindström T, Naderi A, Wiberg A (2015) Large scale applications of nanocellulosic materials. A comprehensive review. J Korea TAPPI 47(6):16Google Scholar
  11. 11.
    Boufi S, González I, Delgado-Aguilar M, Tarrès Q, Pèlach MÀ, Mutjé P (2016) Nanofibrillated cellulose as an additive in papermaking process: a review. Carbohydr Polym 154:151–166. CrossRefPubMedGoogle Scholar
  12. 12.
    Habibi Y (2014) Key advances in the chemical modification of nanocelluloses. Chem Soc Rev 43(5):1519–1542. CrossRefPubMedGoogle Scholar
  13. 13.
    Sandquist D (2012) New horizons for microfibrillated cellulose in packaging. In: Appita annual conference, pp 54–61Google Scholar
  14. 14.
    Abdul Khalil HPS, Davoudpour Y, Saurabh CK, Hossain MS, Adnan AS, Dungani R, Paridah MT, Islam Sarker MZ, Fazita MRN, Syakir MI, Haafiz MKM (2016) A review on nanocellulosic fibres as new material for sustainable packaging: process and applications. Renew Sust Energ Rev 64:823–836. CrossRefGoogle Scholar
  15. 15.
    Hubbe MA (2014) Prospects for maintaining strength of paper and paperboard products while using less forest resources: a review. Bioresources 9(1):1634–1763Google Scholar
  16. 16.
    Delgado-Aguilar M, González I, Pèlach MA, De La Fuente E, Negro C, Mutjé P (2015) Improvement of deinked old newspaper/old magazine pulp suspensions by means of nanofibrillated cellulose addition. Cellulose 22(1):789–802. CrossRefGoogle Scholar
  17. 17.
    González I, Boufi S, Pèlach MA, Alcalà M, Vilaseca F, Mutjé P (2012) Nanofibrillated cellulose as paper additive in eucalyptus pulps. Bioresources 7(4):5167–5180CrossRefGoogle Scholar
  18. 18.
    Sehaqui H, Zhou Q, Berglund LA (2013) Nanofibrillated cellulose for enhancement of strength in high-density paper structures. Nord Pulp Paper Res J 28(2):182–189. CrossRefGoogle Scholar
  19. 19.
    Rice M, Pal L, Gonzales R, Hubbe M (2018) Wet end addition of nanofibrillated cellulose pretreated with cationic starch to achieve paper strength with less refining and higher bulk. TAPPI J (Accepted)Google Scholar
  20. 20.
    Taipale T, Österberg M, Nykänen A, Ruokolainen J, Laine J (2010) Effect of microfibrillated cellulose and fines on the drainage of kraft pulp suspension and paper strength. Cellulose 17(5):1005–1020. CrossRefGoogle Scholar
  21. 21.
    González I, Alcalà M, Chinga-Carrasco G, Vilaseca F, Boufi S, Mutjé P (2014) From paper to nanopaper: evolution of mechanical and physical properties. Cellulose 21(4):2599–2609. CrossRefGoogle Scholar
  22. 22.
    Ahn E-B, Sung Y-J, Kim K-J, Eom T-J (2015) Micro-fibrillated cellulose preparation with enzyme beating pretreatment and effect on paper strength improvement. Palpu Chongi Gisul/J Korea Tech Assoc Pulp Paper Ind 47(6):57–65. CrossRefGoogle Scholar
  23. 23.
    Ottesen V, Syveryd K, Weigy Gregersen Ø (2016) Mixing of cellulose nanofibrils and individual furnish components: effects on paper properties and structure. Nord Pulp Paper Res J 31(3):441–447. CrossRefGoogle Scholar
  24. 24.
    Merayo N, Balea A, de la Fuente E, Blanco Á, Negro C (2017) Synergies between cellulose nanofibers and retention additives to improve recycled paper properties and the drainage process. Cellulose 24(7):2987–3000. CrossRefGoogle Scholar
  25. 25.
    Zhang W, Johnson RK, Lin Z, Chandoha-Lee C, Zink-Sharp A, Renneckar S (2013) In situ generated cellulose nanoparticles to enhance the hydrophobicity of paper. Cellulose 20(6):2935–2945. CrossRefGoogle Scholar
  26. 26.
    Aulin C, Gällstedt M, Lindström T (2010) Oxygen and oil barrier properties of microfibrillated cellulose films and coatings. Cellulose 17(3):559–574. CrossRefGoogle Scholar
  27. 27.
    Hubbe MA, Ferrer A, Tyagi P, Yin Y, Salas C, Pal L, Rojas OJ (2017) Nanocellulose in thin films, coatings, and plies for packaging applications: a review. Bioresources 12(1):2143–2233CrossRefGoogle Scholar
  28. 28.
    Hoyland RW, Howarth P, Whitaker CJ, Pycraft CJH (1977) Mechanism of the size-press treatment of paper. Paper Technol Ind 18(8):246–250Google Scholar
  29. 29.
    Klemm D, Heublein B, Fink H-P, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44(22):3358–3393. CrossRefGoogle Scholar
  30. 30.
    Lavoine N, Desloges I, Dufresne A, Bras J (2012) Microfibrillated cellulose – its barrier properties and applications in cellulosic materials: a review. Carbohydr Polym 90(2):735–764. CrossRefPubMedGoogle Scholar
  31. 31.
    González I, Vilaseca F, Alcalá M, Pèlach MA, Boufi S, Mutjé P (2013) Effect of the combination of biobeating and NFC on the physico-mechanical properties of paper. Cellulose 20(3):1425–1435. CrossRefGoogle Scholar
  32. 32.
    Petroudy SRD, Syverud K, Chinga-Carrasco G, Ghasemain A, Resalati H (2014) Effects of bagasse microfibrillated cellulose and cationic polyacrylamide on key properties of bagasse paper. Carbohydr Polym 99:311–318. CrossRefGoogle Scholar
  33. 33.
    Kumar A, Singh SP, Singh AK (2016) Comparative study of cellulose nanofiber blending effect on properties of paper made from bleached bagasse, hardwood and softwood pulps. Cellulose 23(4):2663–2675. CrossRefGoogle Scholar
  34. 34.
    He M, Yang G, Cho B-U, Lee YK, Won JM (2017) Effects of addition method and fibrillation degree of cellulose nanofibrils on furnish drainability and paper properties. Cellulose 24(12):5657–5669. CrossRefGoogle Scholar
  35. 35.
    Lee JY, Park TU, Kim EH, Jo HM, Kim CH, Kim TY, Heo YD, Lee JH, Kim JK (2017) Effect of production conditions on the characteristics and the drainage of cellulose nano-fibrils. Palpu Chongi Gisul/J Korea Tech Assoc Pulp Paper Ind 49(3):126–135Google Scholar
  36. 36.
    Hubbe MA, Heitmann JA (2007) Review of factors affecting the release of water from cellulosic fibers during paper manufacture. Bioresources 2(3):500–533Google Scholar
  37. 37.
    Manninen M, Kajanto I, Happonen J, Paltakari J (2011) The effect of microfibrillated cellulose addition on drying shrinkage and dimensional stability of wood-free paper. Nord Pulp Paper Res J 26(3):297–305. CrossRefGoogle Scholar
  38. 38.
    TAPPI Thickness (caliper) of paper, paperboard, and combined board. vol T411 OM-15Google Scholar
  39. 39.
    Page DH (1969) A theory for the tensile strength of paper. TAPPI 52(4):674–681Google Scholar
  40. 40.
    Hollertz R, Durán VL, Larsson PA, Wågberg L (2017) Chemically modified cellulose micro- and nanofibrils as paper-strength additives. Cellulose 24(9):3883–3899. CrossRefGoogle Scholar
  41. 41.
    Lee J, Sim K, Sim K, Youn HJ (2016) Strengthening effect of surface treatment of cellulose nanofibrils on aged paper. Palpu Chongi Gisul/J Korea Tech Assoc Pulp Paper Ind 48(6):123–130Google Scholar
  42. 42.
    Osong SH, Norgren S, Engstrand P (2014) Paper strength improvement by inclusion of nano-ligno-cellulose to chemi-thermomechanical pulp. Nord Pulp Paper Res J 29(2):309–316. CrossRefGoogle Scholar
  43. 43.
    Afra E, Yousefi H, Lakani SA (2014) Properties of chemi-mechanical pulp filled with nanofibrillated and microcrystalline cellulose. J Biobaased Mater Bioenergy 8(5):489–494. CrossRefGoogle Scholar
  44. 44.
    Ahola S, Österberg M, Laine J (2008) Cellulose nanofibrils—adsorption with poly(amideamine) epichlorohydrin studied by QCM-D and application as a paper strength additive. Cellulose 15(2):303–314. CrossRefGoogle Scholar
  45. 45.
    Campano C, Merayo N, Balea A, Tarrés Q, Delgado-Aguilar M, Mutjé P, Negro C, Blanco Á (2018) Mechanical and chemical dispersion of nanocelluloses to improve their reinforcing effect on recycled paper. Cellulose 25(1):269–280. CrossRefGoogle Scholar
  46. 46.
    Eriksen Ø, Syverud K, Gregersen Ø (2008) The use of microfibrillated cellulose produced from kraft pulp as strength enhancer in TMP paper. Nord Pulp Paper Res J 23(3):299–304. CrossRefGoogle Scholar
  47. 47.
    Gao W-H, Chen K-F, Yang R-D, Yang F, Han W-J (2010) Properties of bacterial cellulose and its influence on the physical properties of paper. Bioresources 6(1):144–153Google Scholar
  48. 48.
    He M, Cho B-U, Won JM (2016) Effect of precipitated calcium carbonate—cellulose nanofibrils composite filler on paper properties. Carbohydr Polym 136:820–825. CrossRefPubMedGoogle Scholar
  49. 49.
    Huang J, Zhou Y, Dong L, Zhou Z, Zeng X (2017) Enhancing insulating performances of presspaper by introduction of nanofibrillated cellulose. Energies 10(5):681CrossRefGoogle Scholar
  50. 50.
    Johnson DA, Paradis MA, Bilodeau M, Crossley B, Foulger M, Gélinas P (2016) Effects of cellulosic nanofibrils on papermaking properties of fine papers. TAPPI J 15(66):395–402Google Scholar
  51. 51.
    Vallejos ME, Felissia FE, Area MC, Ehman NV, Tarrés Q, Mutjé P (2016) Nanofibrillated cellulose (CNF) from eucalyptus sawdust as a dry strength agent of unrefined eucalyptus handsheets. Carbohydr Polym 139:99–105. CrossRefPubMedGoogle Scholar
  52. 52.
    Balea A, Blanco A, Merayo N, Negro C (2016) Effect of nanofibrilated cellulose to reduce linting on high filler-loaded recycled papers. Appita J 69(2):148–156Google Scholar
  53. 53.
    Dimic-Misic K, Maloney T, Liu G, Gane P (2017) Micro nanofibrillated cellulose (MNFC) gel dewatering induced at ultralow-shear in presence of added colloidally-unstable particles. Cellulose 24(3):1463–1481. CrossRefGoogle Scholar
  54. 54.
    Arola S, Malho J-M, Laaksonen P, Lille M, Linder MB (2013) The role of hemicellulose in nanofibrillated cellulose networks. Soft Matter 9(4):1319–1326. CrossRefGoogle Scholar
  55. 55.
    Lenze CJ, Peksa CA, Sun W, Hoeger IC, Salas C, Hubbe MA (2016) Intact and broken cellulose nanocrystals as model nanoparticles to promote dewatering and fine-particle retention during papermaking. Cellulose 23(6):3951–3962. CrossRefGoogle Scholar
  56. 56.
    Brockman AC, Hubbe MA (2017) Charge reversal system with cationized cellulose nanocrystals to promote dewatering of a cellulosic fiber suspension. Cellulose 24(11):4821–4830. CrossRefGoogle Scholar
  57. 57.
    Xu Q, Li W, Cheng Z, Yang G, Qin M (2013) TEMPO/NaBr/NaClO-mediated surface oxidation of nanocrystalline cellulose and its microparticulate retention system with cationic polyacrylamide. Bioresources 9(1):994–1006Google Scholar
  58. 58.
    Hubbe M (2005) Microparticle programs for drainage and retention. In: Rodriguez JM (ed) Micro and nanoparticles in papermaking. TAPPI Press, AtlantaGoogle Scholar
  59. 59.
    Arnold E (1985) New possibilities of paper coloring with cationic direct colors. Wochenbl Pap 113(8):267–270Google Scholar
  60. 60.
    Daniels CR, Reznik C, Landes CF (2010) Dye diffusion at surfaces: charge matters. Langmuir 26(7):4807–4812. CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Hubbe MA, Nanko H, McNeal MR (2009) Retention aid polymer interactions with cellulosic surfaces and suspensions: a review. Bioresources 4(2):850–906Google Scholar
  62. 62.
    Salmi J, Nypelö T, Österberg M, Laine J (2009) Layer structures formed by silica nanoparticles and cellulose nanofibrils with cationic polyacrylamide (C-Pam) on cellulose surface and their influence on interactions. Bioresources 4(2):602–625Google Scholar
  63. 63.
    Meng Q, Li H, Fu S, Lucia LA (2014) The non-trivial role of native xylans on the preparation of TEMPO-oxidized cellulose nanofibrils. React Funct Polym 85:142–150. CrossRefGoogle Scholar
  64. 64.
    Campbell WB (1959) The mechanism of bonding. TAPPI J 42:3Google Scholar
  65. 65.
    Page DH (1993) Quantitative theory of the strength of wet webs. J Pulp Paper Sci 19(4):J175–J176Google Scholar
  66. 66.
    Herbert H (2006) Handbook of paper and board. Wiley-VCH Verlag GmbH &Co. KGaAGoogle Scholar
  67. 67.
    Hubbe MA, Gill RA (2016) Fillers for papermaking: a review of their properties, usage practices, and their mechanistic role. BioRes 11(1):2886–2963CrossRefGoogle Scholar
  68. 68.
    Lagerwall JPF, Schütz C, Salajkova M, Noh J, Hyun Park J, Scalia G, Bergström L (2014) Cellulose nanocrystal-based materials: from liquid crystal self-assembly and glass formation to multifunctional thin films. Npg Asia Mater 6:e80. CrossRefGoogle Scholar
  69. 69.
    Revol JF, Bradford H, Giasson J, Marchessault RH, Gray DG (1992) Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. Int J Biol Macromol 14(3):170–172. CrossRefPubMedGoogle Scholar
  70. 70.
    Korhonen MHJ, Laine J (2014) Flocculation and retention of fillers with nanocelluloses. Nord Pulp Paper Res J 29(1):119–128. CrossRefGoogle Scholar
  71. 71.
    Ämmälä A, Liimatainen H, Burmeister C, Niinimäki J (2013) Effect of tempo and periodate-chlorite oxidized nanofibrils on ground calcium carbonate flocculation and retention in sheet forming and on the physical properties of sheets. Cellulose 20(5):2451–2460. CrossRefGoogle Scholar
  72. 72.
    Lourenço AF, Gamelas JAF, Nunes T, Amaral J, Mutjé P, Ferreira PJ (2017) Influence of TEMPO-oxidised cellulose nanofibrils on the properties of filler-containing papers. Cellulose 24(1):349–362. CrossRefGoogle Scholar
  73. 73.
    Chen D, van de Ven TGM (2016) Flocculation kinetics of precipitated calcium carbonate induced by electrosterically stabilized nanocrystalline cellulose. Colloids Surf A Physicochem Eng Asp 504:11–17. CrossRefGoogle Scholar
  74. 74.
    He M, Cho B-U, Lee YK, Won JM (2016) Utilizing cellulose nanofibril as an eco-friendly flocculant for filler flocculation in papermaking. BioResources 11(4):10296–10313Google Scholar
  75. 75.
    Rantanen J, Dimic-Misic K, Kuusisto J, Maloney TC (2015) The effect of micro and nanofibrillated cellulose water uptake on high filler content composite paper properties and furnish dewatering. Cellulose 22(6):4003–4015. CrossRefGoogle Scholar
  76. 76.
    Ioelovich M, Figovsky O (2010) Structure and properties of nanoparticles used in paper compositions. Mech Compos Mater 46(4):435–442CrossRefGoogle Scholar
  77. 77.
    Brander J, Thorn I (eds) (1997) Surface applications of paper chemicals. Springer, Dordrecht. CrossRefGoogle Scholar
  78. 78.
    Hubbe MA, Tayeb P, Joyce M, Tyagi P, Kehoe M, Dimic-Misic K, Pal L (2017) Rheology of nanocellulose-rich aqueous suspensions: a review. Bioresources 12(4):9556–9661Google Scholar
  79. 79.
    Iotti M, Gregersen ØW, Moe S, Lenes M (2011) Rheological studies of microfibrillar cellulose water dispersions. J Polym Environ 19(1):137–145. CrossRefGoogle Scholar
  80. 80.
    Kumar V, Elfving A, Koivula H, Bousfield D, Toivakka M (2016) Roll-to-roll processed cellulose nanofiber coatings. Ind Eng Chem Res 55(12):3603–3613. CrossRefGoogle Scholar
  81. 81.
    Kumar V, Bousfield D, Toivakka M (2018) Slot die coating of nanocellulose on paperboard. TAPPI J 17:11–19CrossRefGoogle Scholar
  82. 82.
    Nygårds S (2011) Nanocellulose in pigment coatings: aspects of barrier properties and printability in offset. Dissertation, Linköping UniversityGoogle Scholar
  83. 83.
    Herrera MA, Mathew AP, Oksman K (2017) Barrier and mechanical properties of plasticized and cross-linked nanocellulose coatings for paper packaging applications. Cellulose 24(9):3969–3980. CrossRefGoogle Scholar
  84. 84.
    Matikainen L (2017) Nanocellulose as barrier coating deposited using a laboratory rod coater. Master’s ThesisGoogle Scholar
  85. 85.
    Lavoine N, Desloges I, Khelifi B, Bras J (2014) Impact of different coating processes of microfibrillated cellulose on the mechanical and barrier properties of paper. J Mater Sci 49(7):2879–2893. CrossRefGoogle Scholar
  86. 86.
    Afra E, Mohammadnejad S, Saraeyan A (2016) Cellulose nanofibrils as coating material and its effects on paper properties. Prog Org Coat 101:455–460. CrossRefGoogle Scholar
  87. 87.
    Ridgway CJ, Gane PAC (2012) Constructing NFC-pigment composite surface treatment for enhanced paper stiffness and surface properties. Cellulose 19(2):547–560. CrossRefGoogle Scholar
  88. 88.
    Aulin C, Ström G (2013) Multilayered alkyd resin/nanocellulose coatings for use in renewable packaging solutions with a high level of moisture resistance. Ind Eng Chem Res 52(7):2582–2589. CrossRefGoogle Scholar
  89. 89.
    Rautkoski H, Pajari H, Koskela H, Sneck A, Moilanen P (2015) Use of cellulose nanofibrils (CNF) in coating colors. Nord Pulp Paper Res J 30(3):511–518. CrossRefGoogle Scholar
  90. 90.
    Iotti M (2010) Semi industrial application of MFC barrier coating. A complete rhological and tehcnological study. Paper presented at the 2010 TAPPI International Conference on Nanotechnology for the Forest Product Industry, Otaniemi, Espoo, FinlandGoogle Scholar
  91. 91.
    Mazhari Mousavi SM, Afra E, Tajvidi M, Bousfield DW, Dehghani-Firouzabadi M (2018) Application of cellulose nanofibril (CNF) as coating on paperboard at moderate solids content and high coating speed using blade coater. Prog Org Coat 122:207–218. CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Forest BiomaterialsNorth Carolina State UniversityRaleighUSA
  2. 2.Department of Bioproducts and Biosystems, School of Chemical EngineeringAalto UniversityEspooFinland

Personalised recommendations