Reactive Oxygen Species Production and Scavenging During Seed Germination of Halophytes

  • Aysha Rasheed
  • Sarwat Ghulam Rasool
  • Bilquees Gul
  • M. Ajmal Khan
  • Abdul HameedEmail author


Reactive oxygen species (ROS) are excited or partially reduced forms of atmospheric oxygen, which are continuously produced during aerobic metabolism like many physiochemical processes operating throughout seeds’ life. ROS were previously known merely as cytotoxic molecules, but now it has been established that when tightly regulated to low levels they perform numerous beneficial functions in plants including many critical roles in seed physiology. This ROS homeostasis is achieved owing to the presence of a well-coordinated antioxidant system, which is composed of many enzymatic and nonenzymatic components. ROS reportedly facilitate seed germination via cell wall loosening, endosperm weakening, signaling, and/or decreasing abscisic acid levels. Most of the existing knowledge about ROS homeostasis and functions is based on the seeds of crops and model plants. This information about the seeds of non-crops such as halophytes is limited to just a few studies. Furthermore, mechanisms underlying ROS functions such as downstream targets, cross talk with other molecules, and alternative routes are still obscure. The objective of this article is to present an overview about (i) general mechanisms of ROS homeostasis in plants, (ii) ROS homeostasis in dry seeds, (iii) ROS metabolism in germinating seeds under optimal conditions, and (iv) ROS flux in germinating seeds under stress conditions with special emphasis on halophytes.


Antioxidant defense system Halophyte Oxidative damage Salinity Seed germination Reactive oxygen species 



Hydroxyl radical


Abscisic acid


Active oxygen intermediates


Active oxygen species


Ascorbate peroxidase






Dehydroascorbate reductase


Guaiacol peroxidase


Glutathione peroxidase


Glutathione reductase


Reduced glutathione


Oxidized glutathione


Glutathione S-transferases


Hydrogen peroxide


Monodehydroascorbate reductase


Sodium chloride


Nicotinamide adenine dinucleotide phosphate


Superoxide radical




Singlet oxygen




Thiol peroxidase type II peroxiredoxin


Reactive oxygen intermediates


Reactive oxygen species


Superoxide dismutase


  1. Alscher RG, Erturk N, Heath LS (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot 53(372):1331–1341PubMedCrossRefGoogle Scholar
  2. Amooaghaie R, Ahmadi F (2017) Triangular interplay between ROS, ABA and GA in dormancy alleviation of Bunium persicum seeds by cold stratification. Russ J Plant Physiol 64(4):588–599CrossRefGoogle Scholar
  3. Anbar AD, Duan Y, LyonsTW AGL, Kendall B et al (2007) A whiff of oxygen before the great oxidation event? Science 317(5846):1903–1906PubMedCrossRefGoogle Scholar
  4. Anjum NA, Sharma P, Gill SS, Hasanuzzaman M, Khan EA et al (2016) Catalase and ascorbate peroxidase representative H2O2-detoxifying heme enzymes in plants. Environ Sci Pollut Res 23(19):19002–19029CrossRefGoogle Scholar
  5. Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399PubMedCrossRefGoogle Scholar
  6. Arabaci G (2011) Partial purification and some properties of catalase from dill (Anethum graveolens L.). J Biol Life Sci 2(1):11–15Google Scholar
  7. Bahin E, Bailly C, Sotta B, Kranner I, Corbineau F, Leymarie J (2011) Crosstalk between reactive oxygen species and hormonal signaling pathways regulates grain dormancy in barley. Plant Cell Environ 34(6):980–993PubMedCrossRefGoogle Scholar
  8. Bailly C (2004) Active oxygen species and antioxidants in seed biology. Seed Sci Res 14(2):93–107CrossRefGoogle Scholar
  9. Bailly C, Benamar A, Corbineau F, Côme D (2000) Antioxidant systems in sunflower (Helianthus annuus L.) seeds as affected by priming. Seed Sci Res 10(1):35–42CrossRefGoogle Scholar
  10. Bailly C, El-Maarouf-Bouteau H, Corbineau F (2008) From intracellular signaling networks to cell death: the dual role of reactive oxygen species in seed physiology. C R Biol 331(10):806–814PubMedCrossRefGoogle Scholar
  11. Baxter A, Mittler R, Suzuki N (2013) ROS as key players in plant stress signaling. J Exp Bot 65(5):1229–1240PubMedCrossRefGoogle Scholar
  12. Beckman KB, Ames BN (1998) The free radical theory of aging matures. Physiol Rev 78(2):547–581CrossRefPubMedGoogle Scholar
  13. Bewley JD, Black M (1994) Dormancy and the control of germination. In: Seeds. Springer, Boston. pp 199–271CrossRefGoogle Scholar
  14. Bogdanović J, Radotić K, Mitrović A (2008) Changes in activities of antioxidant enzymes during Chenopodium murale seed germination. Biol Plant 52(2):396CrossRefGoogle Scholar
  15. Bose J, Rodrigo-Moreno A, Shabala S (2014) ROS homeostasis in halophytes in the context of salinity stress tolerance. J Exp Bot 65(5):1241–1257PubMedCrossRefGoogle Scholar
  16. Bykova NV, Hu J, Ma Z, Igamberdiev AU (2015) The role of reactive oxygen and nitrogen species in bioenergetics, metabolism, and signaling during seed germination. In: Reactive oxygen and nitrogen species signaling and communication in plants. Springer, Cham. pp 177–195Google Scholar
  17. Canvin DT (1990) Photorespiration and CO2-concentrating mechanism. In: Plant physiol biochem mol biol. pp 253–273Google Scholar
  18. Cembrowska-Lech D, Koprowski M, Kępczyński J (2015) Germination induction of dormant Avenafatua caryopses by KAR1 and GA3 involving the control of reactive oxygen species (H2O2 and O2 ) and enzymatic antioxidants (superoxide dismutase and catalase) both in the embryo and the aleurone layers. J Plant Physiol 176:169–179PubMedCrossRefGoogle Scholar
  19. Chai YY, Jiang CD, Shi L, Shi TS, Gu WB (2010) Effects of exogenous spermine on sweet sorghum during germination under salinity. Biol Plant 54(1):145–148CrossRefGoogle Scholar
  20. Cheeseman JM, Herendeen LB, Cheeseman AT, Clough BF (1997) Photosynthesis and photoprotection in mangroves under field conditions. Plant Cell Environ 20(5):579–588CrossRefGoogle Scholar
  21. Chen K, Arora R (2011) Dynamics of the antioxidant system during seed osmopriming, post-priming germination, and seedling establishment in Spinach (Spinacia oleracea). Plant Sci 180(2):212–220PubMedCrossRefGoogle Scholar
  22. Choudhury FK, Rivero RM, Blumwald E, Mittler R (2017) Reactive oxygen species, abiotic stress and stress combination. Plant J 90(5):856–867PubMedCrossRefGoogle Scholar
  23. Colville L, Kranner I (2010) Desiccation tolerant plants as model systems to study redox regulation of protein thiols. Plant Growth Regul 62(3):241–255CrossRefGoogle Scholar
  24. Corpas FJ, Barroso JB, Rio LA (2001) Peroxisomes as a source of reactive oxygen species and nitric oxide signal molecules in plant cells. Trends Plant Sci 6:145–150PubMedCrossRefGoogle Scholar
  25. Crowe JH, Crowe LM (1992) Membrane integrity in anhydrobiotic organisms: toward a mechanism for stabilizing dry seeds. In: Water and life. Springer, Berlin. pp 97–103CrossRefGoogle Scholar
  26. Czarnocka W, Karpiński S (2018) Friend or foe? Reactive oxygen species production scavenging and signaling in plant response to environmental stresses. Free Radic Biol Med. PubMedCrossRefGoogle Scholar
  27. Dangl JL, Jones JD (2001) Plant pathogens and integrated defense responses to infection. Nature 411(6839):826PubMedCrossRefGoogle Scholar
  28. Das K, Roychoudhury A (2014) Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environ Sci 2(53):1–13Google Scholar
  29. De Tullio MC, Arrigoni O (2003) The ascorbic acid system in seeds: to protect and to serve. Seed Sci Res 13(4):249–260CrossRefGoogle Scholar
  30. De Tullio MC, Paciolla C, Dalla Vecchia F, Rascio N, D’Emerico S et al (1999) Changes in onion root development induced by the inhibition of peptidyl-prolyl hydroxylase and influence of the ascorbate system on cell division and elongation. Planta 209(4):424–434PubMedCrossRefGoogle Scholar
  31. Deisseroth A, Dounce AL (1970) Catalase: physical and chemical properties, mechanism of catalysis, and physiological role. Physiol Rev 50(3):319–375PubMedCrossRefGoogle Scholar
  32. del Río LA (2015) ROS and RNS in plant physiology: an overview. J Exp Bot 66(10):2827–2837PubMedCrossRefGoogle Scholar
  33. Del Río LA, Ortega MG, López AL, Gorgé JL (1977) A more sensitive modification of the catalase assay with the Clark oxygen electrode. Application to the kinetic study of the pea leaf enzyme. Anal Biochem 80(2):409–415PubMedCrossRefGoogle Scholar
  34. Demidchik V (2015) Mechanisms of oxidative stress in plants: from classical chemistry to cell biology. Environ Exp Bot 109:212–228CrossRefGoogle Scholar
  35. Diaz-Vivancos P, Barba-Espín G, Hernández JA (2013) Elucidating hormonal/ROS networks during seed germination: insights and perspectives. Plant Cell Rep 32(10):1491–1502PubMedCrossRefGoogle Scholar
  36. Donà M, Balestrazzi A, Mondoni A, Rossi G, Ventura L et al (2013) DNA profiling, telomere analysis and antioxidant properties as tools for monitoring ex situ seed longevity. Ann Bot 111(5):987–998PubMedPubMedCentralCrossRefGoogle Scholar
  37. Dučić T, Lirić-Rajlić I, Mitrović A, Radotić K (2003) Activities of antioxidant systems during germination of Chenopodium rubrum seeds. Biol Plant 47(4):527–533CrossRefGoogle Scholar
  38. Eising R, Süselbeck B (1991) Turnover of catalase heme and apoprotein moieties in cotyledons of sunflower seedlings. Plant Physiol 97(4):1422–1429PubMedPubMedCentralCrossRefGoogle Scholar
  39. Ellouzi H, Ben Hamed K, Cela J, Munné-Bosch S, Abdelly C (2011) Early effects of salt stress on the physiological and oxidative status of Cakile maritima (halophyte) and Arabidopsis thaliana (glycophyte). Physiol Plant 142(2):128–143PubMedPubMedCentralCrossRefGoogle Scholar
  40. El-Maarouf-Bouteau H, Bailly C (2008) Oxidative signaling in seed germination and dormancy. Plant Signal Behav 3(3):175–182PubMedPubMedCentralCrossRefGoogle Scholar
  41. Falk J, Munné-Bosch S (2010) Tocochromanol functions in plants: antioxidation and beyond. J Exp Bot 61(6):1549–1566PubMedCrossRefGoogle Scholar
  42. Farmer EE, Mueller MJ (2013) ROS-mediated lipid peroxidation and RES-activated signaling. Annu Rev Plant Biol 64:429–450PubMedCrossRefGoogle Scholar
  43. Foyer CH, Halliwell B (1976) The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta 133(1):21–25PubMedCrossRefGoogle Scholar
  44. Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17(7):1866–1875PubMedPubMedCentralCrossRefGoogle Scholar
  45. Foyer CH, Noctor G (2009) Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxid Redox Signal 11(4):861–905PubMedCrossRefGoogle Scholar
  46. Gapper C, Dolan L (2006) Control of plant development by reactive oxygen species. Plant Physiol 141(2):341–345PubMedPubMedCentralCrossRefGoogle Scholar
  47. Gara L, Pinto MD, Arrigoni O (1997) Ascorbate synthesis and ascorbate peroxidase activity during the early stage of wheat germination. Physiol Plant 100(4):894–900CrossRefGoogle Scholar
  48. Gechev TS, Van Breusegem F, Stone JM, Denev I, Laloi C (2006) Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. BioEssays 28(11):1091–1101PubMedCrossRefGoogle Scholar
  49. Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48(12):909–930CrossRefPubMedGoogle Scholar
  50. Grant JJ, Loake GJ (2000) Role of reactive oxygen intermediates and cognate redox signaling in disease. Plant Physiol 124(1):21–29PubMedPubMedCentralCrossRefGoogle Scholar
  51. Gul B, Ansari R, Flowers TJ, Khan MA (2013) Germination strategies of halophyte seeds under salinity. Environ Exp Bot 92:4–18CrossRefGoogle Scholar
  52. Gutteridge J, Halliwell B (2000) Free radicals and antioxidants in the year 2000: a historical look to the future. Ann N Y Acad Sci 899(1):136–147PubMedCrossRefGoogle Scholar
  53. Halliwell B (2006) Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol 141(2):312–322PubMedPubMedCentralCrossRefGoogle Scholar
  54. Hameed A, Rasheed A, Gul B, Khan MA (2014) Salinity inhibits seed germination of perennial halophytes Limonium stocksii and Suaeda fruticosa by reducing water uptake and ascorbate dependent antioxidant system. Environ Exp Bot 107:32–38CrossRefGoogle Scholar
  55. Hameed A, Gulzar S, Aziz I, Hussain T, Gul B, Khan MA (2015) Effects of salinity and ascorbic acid on growth, water status and antioxidant system in a perennial halophyte. AoB Plants.
  56. Hilhorst HW (1995) A critical update on seed dormancy. I. Primary dormancy. Seed Sci Res 5(2):61–73CrossRefGoogle Scholar
  57. Inupakutika MA, Sengupta S, Devireddy AR, Azad RK, Mittler R (2016) The evolution of reactive oxygen species metabolism. J Exp Bot 67(21):5933–5943PubMedCrossRefGoogle Scholar
  58. Inzé D, Van Montagu M (1995) Oxidative stress in plants. Curr Opin Biotechnol 6(2):153–158CrossRefGoogle Scholar
  59. Jabs T (1999) Reactive oxygen intermediates as mediators of programmed cell death in plants and animals. Biochem Pharmacol 57(3):231–245PubMedCrossRefGoogle Scholar
  60. Jiménez A, Hernández JA, Pastori G, Del Rıo LA, Sevilla F (1998) Role of the ascorbate-glutathione cycle of mitochondria and peroxisomes in the senescence of pea leaves. Plant Physiol 118(4):1327–1335PubMedPubMedCentralCrossRefGoogle Scholar
  61. Jithesh MN, Prashanth SR, Sivaprakash KR, Parida AK (2006) Antioxidative response mechanisms in halophytes: their role in stress defence. J Genet 85(3):237PubMedCrossRefGoogle Scholar
  62. Khan MA, Gul B (2006) Halophyte seed germination. In: Ecophysiology of high salinity tolerant plants. Springer, Dordrecht. pp 11–30Google Scholar
  63. Koornneef M, Bentsink L, Hilhorst H (2002) Seed dormancy and germination. Curr Opin Plant Biol 5(1):33–36PubMedCrossRefGoogle Scholar
  64. Koppenol WH (2001) The Haber-Weiss cycle – 70 years later. Redox Rep 6(4):229–234PubMedCrossRefGoogle Scholar
  65. Kranner I, Seal CE (2013) Salt stress, signalling and redox control in seeds. Funct Plant Biol 40(9):848–859CrossRefGoogle Scholar
  66. Kranner I, Minibayeva FV, Beckett RP, Seal CE (2010a) What is stress? Concepts, definitions and applications in seed science. New Phytol 188(3):655–673PubMedCrossRefGoogle Scholar
  67. Kranner I, Roach T, Beckett RP, Whitaker C, Minibayeva FV (2010b) Extracellular production of reactive oxygen species during seed germination and early seedling growth in Pisum sativum. J Plant Physiol 167(10):805–811PubMedCrossRefGoogle Scholar
  68. Kumar J, Prasad RSPS, Banerjee R, Thammineni C (2015) Seed birth to death: dual functions of reactive oxygen species in seed physiology. Ann Bot 116(4):663–668CrossRefGoogle Scholar
  69. Lee S, Kim SG, Park CM (2010) Salicylic acid promotes seed germination under high salinity by modulating antioxidant activity in Arabidopsis. New Phytol 188(2):626–637PubMedCrossRefGoogle Scholar
  70. Levine A, Tenhaken R, Dixon R, Lamb C (1994) H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79(4):583–593PubMedCrossRefGoogle Scholar
  71. Matilla A, Gallardo M, Puga-Hermida MI (2005) Structural, physiological and molecular aspects of heterogeneity in seeds: a review. Seed Sci Res 15(2):63–76CrossRefGoogle Scholar
  72. McDonald MB (1999) Seed deterioration: physiology, repair and assessment. Seed Sci Technol 27:177–237Google Scholar
  73. McDonald AE, Vanlerberghe GC (2004) Branched mitochondrial electron transport in the Animalia: presence of alternative oxidase in several animal phyla. IUBMB Life 56(6):333–341PubMedCrossRefGoogle Scholar
  74. Miller GAD, Suzuki N, Ciftci-Yilmaz S, Mittler RON (2010) Reactive oxygen species homeostasis and signaling during drought and salinity stresses. Plant Cell Environ 33(4):453–467CrossRefPubMedGoogle Scholar
  75. Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7(9):405–410PubMedCrossRefGoogle Scholar
  76. Mittler R (2017) ROS are good. Trends Plant Sci 22(1):11–19PubMedCrossRefGoogle Scholar
  77. Mittler R, Vanderauwera S, Suzuki N, Miller G, Tognetti VB et al (2011) ROS signaling: the new wave? Trends Plant Sci 16(6):300–309PubMedCrossRefGoogle Scholar
  78. Møller IM, Sweetlove LJ (2010) ROS signaling–specificity is required. Trends Plant Sci 15(7):370–374PubMedCrossRefGoogle Scholar
  79. Møller IM, Jensen PE, Hansson A (2007) Oxidative modifications to cellular components in plants. Annu Rev Plant Biol 58:459–481PubMedCrossRefGoogle Scholar
  80. Müller K, Linkies A, Vreeburg RA, Fry SC, Krieger-Liszkay A et al (2009) In vivo cell wall loosening by hydroxyl radicals during cress seed germination and elongation growth. Plant Physiol 150(4):1855–1865PubMedPubMedCentralCrossRefGoogle Scholar
  81. Müntz K (1982) Seed development. In: nucleic acids and proteins in plants. Springer, Berlin, pp 505–558CrossRefGoogle Scholar
  82. Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Biol 49(1):249–279CrossRefGoogle Scholar
  83. Nonogaki H, Bassel GW, Bewley JD (2010) Germination-still a mystery. Plant Sci 179(6):574–581CrossRefGoogle Scholar
  84. Oracz K, Bouteau HEM, Farrant JM, Cooper K, Belghazi M et al (2007) ROS production and protein oxidation as a novel mechanism for seed dormancy alleviation. Plant J 50(3):452–465PubMedCrossRefGoogle Scholar
  85. Ozgur R, Uzilday B, Sekmen AH, Turkan I (2013) Reactive oxygen species regulation and antioxidant defense in halophytes. Funct Plant Biol 40(9):832–847CrossRefGoogle Scholar
  86. Panta S, Flowers T, Lane P, Doyle R, Haros G et al (2014) Halophyte agriculture: success stories. Environ Exp Bot 107:71–83CrossRefGoogle Scholar
  87. Panuccio MR, Jacobsen SE, Akhtar SS, Muscolo A (2014) Effect of saline water on seed germination and early seedling growth of the halophyte quinoa. AoB Plants 6:plu047PubMedPubMedCentralCrossRefGoogle Scholar
  88. Parida AK, Jha B (2010) Antioxidative defense potential to salinity in the euhalophyte Salicornia brachiata. J Plant Growth Regul 29(2):137–148CrossRefGoogle Scholar
  89. Parida AK, Das AB, Mohanty P (2004) Defense potentials to NaCl in a mangrove, Bruguiera parviflora: differential changes of isoforms of some antioxidative enzymes. J Plant Physiol 161(5):531–542PubMedCrossRefGoogle Scholar
  90. Pehlivan FE (2017) Free radicals and antioxidant system in seed biology. In: Advances in seed biology. InTechGoogle Scholar
  91. Pergo ÉM, Ishii-Iwamoto EL (2011) Changes in energy metabolism and antioxidant defense systems during seed germination of the weed species Ipomoea triloba L. and the responses to allele-chemicals. J Chem Ecol 37(5):500–513PubMedCrossRefGoogle Scholar
  92. Pinheiro DT, Silva ALD, Silva LJD, Sekita MC, Dias D (2016) Germination and antioxidant action in melon seeds exposed to salt stress. Pesqui Agropecu Trop 46(3):336–342CrossRefGoogle Scholar
  93. Prashanth SR, Sadhasivam V, Parida A (2008) Over expression of cytosolic copper/zinc superoxide dismutase from a mangrove plant Avicennia marina in indica rice var Pusa Basmati-1 confers abiotic stress tolerance. Transgenic Res 17(2):281–291PubMedCrossRefGoogle Scholar
  94. Quan LJ, Zhang B, Shi WW, Li HY (2008) Hydrogen peroxide in plants: a versatile molecule of the reactive oxygen species network. J Integr Plant Biol 50(1):2–18PubMedCrossRefGoogle Scholar
  95. Rajjou L, Debeaujon I (2008) Seed longevity: survival and maintenance of high germination ability of dry seeds. C R Biol 331(10):796–805PubMedCrossRefGoogle Scholar
  96. Rajjou L, Duval M, Gallardo K, Catusse J, Bally J, Job C, Job D (2012) Seed germination and vigor. Annu Rev Plant Biol 63:507–533PubMedCrossRefGoogle Scholar
  97. Rasheed A, Hameed A, Khan MA, Gul B (2016) Variation in temperature and light but not salinity invokes antioxidant enzyme activities in germinating seeds of Salsola drummondii. Plant Biosyst 150(5):1072–1082CrossRefGoogle Scholar
  98. Ray PD, Huang BW, Tsuji Y (2012) Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal 24(5):981–990PubMedPubMedCentralCrossRefGoogle Scholar
  99. Roberts EH (1973) Oxidative processes and the control of seed germination. In: Seed ecology. Butterworths, London. pp 189–218Google Scholar
  100. Scandalios JG (1990) Response of plant antioxidant defense genes to environmental stress. In: Advances in genetics. Academic Press. pp 1–41Google Scholar
  101. Schopfer P, Plachy C, Frahry G (2001) Release of reactive oxygen intermediates (superoxide radicals, hydrogen peroxide, and hydroxyl radicals) and peroxidase in germinating radish seeds controlled by light, gibberellin, and abscisic acid. Plant Physiol 125(4):1591–1602PubMedPubMedCentralCrossRefGoogle Scholar
  102. Seal CE, Zammit R, Scott P, Flowers TJ, Kranner I (2010) Glutathione half-cell reduction potential and α-tocopherol as viability markers during the prolonged storage of Suaeda maritima seeds. Seed Sci Res 20(1):47–53CrossRefGoogle Scholar
  103. Seckin B, Turkan I, Sekmen AH, Ozfidan C (2010) The role of antioxidant defense systems at differential salt tolerance of Hordeum marinum Huds. (Sea Barley grass) and Hordeum vulgare L. (cultivated Barley). Environ Exp Bot 69(1):76–85CrossRefGoogle Scholar
  104. Shabala S (2017) Signalling by potassium: another second messenger to add to the list? J Exp Bot 68(15):4003–4007PubMedPubMedCentralCrossRefGoogle Scholar
  105. Sharma V, Anderson D, Dhawan A (2012) Zinc oxide nanoparticles induce oxidative DNA damage and ROS-triggered mitochondria mediated apoptosis in human liver cells (HepG2). Apoptosis 17(8):852–870PubMedCrossRefGoogle Scholar
  106. Shugaev AG, Lashtabega DA, Shugaeva NA, Vyskrebentseva EI (2011) Activities of antioxidant enzymes in mitochondria of growing and dormant sugar beet roots. Russ J Plant Physiol 58(3):387–393CrossRefGoogle Scholar
  107. Ślesak I, Ślesak H, Kruk J (2012) Oxygen and hydrogen peroxide in the early evolution of life on earth: in silico comparative analysis of biochemical pathways. Astrobiology 12(8):775–784PubMedPubMedCentralCrossRefGoogle Scholar
  108. Soundararajan P, Manivannan A, Jeong BR (2016) Signaling patterns of reactive oxygen species and phytohormones during transition period of quiescent seeds into metabolically active organisms. In: Araújo S (ed) New challenges in seed biology-basic and translational research driving seed technology. InTech, Rijeka, pp 75–95Google Scholar
  109. Spragg SP, Lievesley PM, Wilson KM (1962) The relationship between glutathione and protein sulphydryl groups in germinating pea seeds. Biochem J 83(2):314PubMedPubMedCentralCrossRefGoogle Scholar
  110. Su Y, Guo J, Ling H, Chen S, Wang S et al (2014) Isolation of a novel peroxisomal catalase gene from sugarcane, which is responsive to biotic and abiotic stresses. PLoS One 9(1):e84426. CrossRefPubMedPubMedCentralGoogle Scholar
  111. Suzuki N, Koussevitzky S, Mittler R, Miller G (2012) ROS and redox signaling in the response of plants to abiotic stress. Plant Cell Environ 35:259–270PubMedCrossRefGoogle Scholar
  112. Tommasi F, Paciolla C, de Pinto MC, Gara LD (2001) A comparative study of glutathione and ascorbate metabolism during germination of Pinuspinea L. seeds. J Exp Bot 52(361):1647–1654PubMedCrossRefGoogle Scholar
  113. Turkan I (2017) Emerging roles for ROS and RNS–versatile molecules in plants. J Exp Bot 68(16):4413–4416PubMedPubMedCentralCrossRefGoogle Scholar
  114. Van Breusegem F, Dat JF (2006) Reactive oxygen species in plant cell death. Plant Physiol 141(2):384–390PubMedPubMedCentralCrossRefGoogle Scholar
  115. Varghese B, Naithani SC (2008) Oxidative metabolism-related changes in cryogenically stored neem (Azadirachta indica A. Juss) seeds. J Plant Physiol 165(7):755–765PubMedCrossRefGoogle Scholar
  116. Wang M, Heimovaara-Dijkstra S, Van Duijn B (1995) Modulation of germination of embryos isolated from dormant and non-dormant barley grains by manipulation of endogenous abscisic acid. Planta 195(4):586–592CrossRefGoogle Scholar
  117. Wang M, Van der Meulen RM, Visser K, Van Schaik HP, Van Duijn B et al (1998) Effects of dormancy-breaking chemicals on ABA levels in barley grain embryos. Seed Sci Res 8(2):129–137CrossRefGoogle Scholar
  118. Wang X, Zhao G, Gu H (2009) Physiological and antioxidant responses of three leguminous species to saline environment during seed germination stage. Afr J Biotechnol 8(21):5773–5779Google Scholar
  119. Waszczak C, Carmody M, Kangasjärvi J (2018) Reactive oxygen species in plant signaling. Annu Rev Plant Biol 69:209–236PubMedCrossRefGoogle Scholar
  120. Weitbrecht K, Müller K, Leubner-Metzger G (2011) First off the mark: early seed germination. J Exp Bot 62(10):3289–3309PubMedCrossRefGoogle Scholar
  121. Willekens H, Inzé D, Van Montagu M, Van Camp W (1995) Catalases in plants. Mol Breed 1(3):207–228CrossRefGoogle Scholar
  122. Willekens H, Chamnongpol S, Davey M, Schraudner M, Langebartels C et al (1997) Catalase is a sink for H2O2 and is indispensable for stress defense in C3 plants. EMBO J 16(16):4806–4816PubMedPubMedCentralCrossRefGoogle Scholar
  123. Xu S, Zhu S, Jiang Y, Wang N, Wang R et al (2013) Hydrogen-rich water alleviates salt stress in rice during seed germination. Plant Soil 370(1–2):47–57CrossRefGoogle Scholar
  124. Yildiztugay E, Ozfidan-Konakci C, Kucukoduk M (2013) Sphaerophysa kotschyana, an endemic species from Central Anatolia: antioxidant system responses under salt stress. J Plant Res 126(5):729–742PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Aysha Rasheed
    • 1
  • Sarwat Ghulam Rasool
    • 1
  • Bilquees Gul
    • 1
  • M. Ajmal Khan
    • 1
  • Abdul Hameed
    • 1
    Email author
  1. 1.Institute of Sustainable Halophyte Utilization (ISHU)University of KarachiKarachiPakistan

Personalised recommendations