Advertisement

An Overview of the Germination Behavior of Halophytes and Their Role in Food Security

  • Gül Nilhan TuğEmail author
  • Ahmet Emre Yaprak
Chapter

Abstract

Halophytes, as differently oriented salt-tolerant plants, can provide a solution for our future food security. Lately, much attention is being paid toward the salt tolerance mechanism of halophytes, and attempts are made to provide fundamental knowledge for their genetical, agricultural, biotechnological aspects. As a dominating rule in the plant world, the most fragile and vulnerable developmental stage is germination. This holds true for the halophytes as well. Pre-germination adaptations and seed characteristics are important for the next generations. Adaptation mechanisms change with taxa, habitat type, and life span. Annual halophytes have dormancy mechanisms to avoid germination during unavailable period. Seed polymorphism is also one of the adaptations of halophytes against salinity and environmental fluctuations. For perennial halophytes, vegetative reproduction and long life span decrease the dependence on seed dormancy. Both annual and perennial halophytes guarantee their next generations by producing long-term or short-term seed banks. Evaluation of our knowledge related to these mechanisms can provide information for their propagation on saline habitats and reclamation of our degraded saline soils. They can provide a source for industrial products as well. Their evaluation can be used to put forward solutions for the food security of humans and animals.

Keywords

Halophytes Annuals Perennials Seed banks Germination Food security 

Notes

Acknowledgment

The authors would like to thank Dr. Münir Öztürk for the support during the preparation of the review and Dr. Isa Baskose for the help for design and preparation of seed photos.

References

  1. Abdelly C, Barhoumi Z, Ghnaya T, Debez A, Hamed KB, Ksouri R, Talbi O, Zribi F, Ouerghi Z, Smaoui A, Huchzermeyer B, Grignon C (2006) Potential utilisation of halophytes for the rehabilitation and valorisation of saltaffected areas in Tunisia. In: Öztürk M, Waisel Y, Khan MA, Görk G (eds) Biosaline agriculture and salinity tolerance in plants. Birkhauser Verlag, Switzerland, pp 163–172CrossRefGoogle Scholar
  2. Abdelly C, Öztürk M, Ashraf M, Grignon C (eds) (2008) Biosaline Agriculture and High Salinity Tolerance. Birkhauser Verlag-AG (Springer Science), Basel. 367 ppGoogle Scholar
  3. Adams VM, Marsh DM, Knox JS (2005) Importance of the seed bank for population viability and population monitoring in a threatened wetland herb. Biol Conserv 124:425–436CrossRefGoogle Scholar
  4. Ameixa O, Marques B, Fernandes VS, Soares A, Calado R, Lillebo AI (2016) Dimorphic seeds of Salicornia ramosissima display contrasting germination responses under different salinities. Ecol Eng 87:120–123CrossRefGoogle Scholar
  5. Ashraf M, Öztürk M, Athar HR (eds) (2009) Salinity and water stress: improving crop efficiency, Tasks for vegetation science, vol 44. Springer, New York. 244 ppGoogle Scholar
  6. Aziz S, Khan MA (1996) Seed bank dynamics of a semi-arid coastal shrub community in Pakistan. J Arid Environ 34:81–87CrossRefGoogle Scholar
  7. Badger KS, Ungar IA (1990) Seedling competition and the distribution of Hordeum jubatum L. along a soil salinity gradient. Funct Ecol 4:639–644CrossRefGoogle Scholar
  8. Badger KS, Ungar IA (1994) Seed bank dynamics in an inland salt marsh, with special emphasis on the halophyte Hordeum jubatum L. Int J Plant Sci 155:66–72CrossRefGoogle Scholar
  9. Bahrani MJ, Niknejad-Kazempour H (2007) Effect of dormancy breaking treatments and salinity on seed germination of two desert shrubs. Arid Land Res Manag 21:107–118CrossRefGoogle Scholar
  10. Bajji M, Kinet JM, Lutts S (2002) Water potential and effects on germination and seedling growth, and ion content of Atriplex halimus (Chenopodiaceae). Can J Bot 80:297–304CrossRefGoogle Scholar
  11. Baskin CC (2003) Breaking physical dormancy in seeds – focussing on the lens. New Phytol 158:229–232CrossRefGoogle Scholar
  12. Baskin CC, Baskin J (1998) Seeds ecology, biogeography, and, evolution of dormancy and germination. Academic, New YorkGoogle Scholar
  13. Baskin JM, Baskin CC (2004) A classification system for seed dormancy. Seed Sci Res 14:1–16Google Scholar
  14. Baskin JM, Baskin CC, Li X (2000) Taxonomy, anatomy and evolution of physical dormancy. Plant Species Biol 15:139–152CrossRefGoogle Scholar
  15. Bekker RM, Schaminee JH, Bakker JP, Thompson K (1998) Seed bank characteristics of Dutch plant communities. Acta Bot Neerl 47:15–26Google Scholar
  16. Berger A (1985) Seed dimorphism and germination behavior in Salicornia patula. Vegetation 61:137–143CrossRefGoogle Scholar
  17. Bewley J (1997) Seed germination and dormancy. Plant Cell 9:1055–1066PubMedPubMedCentralCrossRefGoogle Scholar
  18. Bhatt A, Santo A (2016) Germination and recovery of heteromorphic seeds of Atriplex canecens (Amaranthaceae) under increasing salinity. Plant Ecol 217:1069–1079CrossRefGoogle Scholar
  19. Bhatt A, Santo A, Gallacher D (2016) Seed mucilage effect on water uptake and germination in five species from the hyper-arid Arabian desert. J Arid Environ 128:73–79CrossRefGoogle Scholar
  20. Breen CM, Everson C, Rogers K (1977) Ecological studies on Sporpbolus virginicus (L.) Kunth with particular reference to salinity and inundation. Hydrobiologia 54:135–140CrossRefGoogle Scholar
  21. Bromham L (2015) Macroevolutionary patterns of salt tolerance in angiosperms. Ann Bot 115:333–341PubMedCrossRefGoogle Scholar
  22. Cao D, Baskin CC, Baskin JM, Yang F, Huang Z (2012) Comparison of germination and seed bank dynamics of dimorphic seeds of the cold desert halophyte Suaeda corniculata subsp. mongolica. Ann Bot 110:1545–1558PubMedPubMedCentralCrossRefGoogle Scholar
  23. Carter TC, Ungar IA (2003) Germination responses of dimorphic seeds of two halophyte species to environmentally controlled and natural habitats. Can J Bot 81:918–926CrossRefGoogle Scholar
  24. Chapman VJ (1974) Salt marshes and salt deserts of the world. In: Reimond RJ, Queen WH (eds) Ecology of halophytes. Academic Press, New York, pp 3–19CrossRefGoogle Scholar
  25. Chen J-H, Jiang H-W, Hsieh E-J, Chen H-Y, Chien C-T, Hsieh H-L, Lin T-P (2012a) Drought and salt stress tolerance of an Arabidopsis glutathione S-transferase U17 knockout mutant are attributed to the combined effect of glutathione and abscisic acid. Plant Physiol 158:340–351PubMedPubMedCentralCrossRefGoogle Scholar
  26. Chen M, Wang Z, Zhu Y, Li Z, Hussain N, Xuan L, Guo W, Zhang G, Jiang L (2012b) The effect of transparent testa on seed fatty acid biosynthesis and tolerance to environmental stresses during young seedling establishment in Arabidopsis. Plant Physiol 160:1023–1036PubMedPubMedCentralCrossRefGoogle Scholar
  27. Çınar IB, Ayyıldız G, Yaprak AE, Tuğ GN (2016) Effect of salinity and light on germination of Salsola grandis Freitag, Vural and N. Adıgüzel (Chenopodiaceae). Commun Fac Sci Univ Ank Series C 25:25–32Google Scholar
  28. Clarke LD, Hannon NJ (1971) The mangrove swamp and salt marsh communities of the Sydney District. IV. The significance of species interaction. J Ecol 59:535–553CrossRefGoogle Scholar
  29. Clarke AE, Andreson RL, Stone BA (1979) Form and function of arabinogalactans and arabinogalactan-proteins. Phytochemistry 18:521–540CrossRefGoogle Scholar
  30. Climate change (2001) Third assessment report of the Intergovernmental Panel on Climate Change IPCC (WG I&II). Cambridge University Press, UKGoogle Scholar
  31. Çolak ÖF, Atasagun B, Yıldıztugay E, Küçüködük M (2017) Breaking of seed dormancy in halophytic endemic Saponaria halophila Hedge & Hub.-Mor. Bangladesh J Bot 46:203–210Google Scholar
  32. Craufurd PQ, Wheeler TR (2009) Climate change and flowering time of annual crops. J Exp Bot 60:2529–2539PubMedCrossRefGoogle Scholar
  33. Davy AJ, Bishop GF, Costa CSB (2001) Salicornia L. (Salicornia pusilla J. Woods, S. Ramosissima J. Woods, S. Europaea L., S. Obscura P.W. Ball & Tutin, S. Nitens P.W. Ball & Tutin, S. Fragilis P.W. Ball & Tutin and S. Dolichostachya Moss). J Ecol 89:681–707CrossRefGoogle Scholar
  34. Egan TP, Ungar IA (1999a) The effects of temperature and seasonal change on the germination of salt marsh species along a salinity gradient. Int J Plant Sci 160:861–867PubMedCrossRefGoogle Scholar
  35. Egan TP, Ungar IA (1999b) Similarity between seed banks and aboveground vegetation along a salinity gradient. J Veg Sci 11:189–194CrossRefGoogle Scholar
  36. Egan TP, Ungar IA, Meekins JF (1997) The effect of different salts of sodium and potassium on the germination of Atriplex prostrata (Chenopodiaceae). J Plant Nutr 20:1723–1730CrossRefGoogle Scholar
  37. El-Keblawy AA, Al-Shamsi N (2008) Effects of salinity, temperature and light on seed germination of Haloxylon salicornicum, a common perennial shrub of the Arabian deserts. Seed Sci Technol 36:679–688CrossRefGoogle Scholar
  38. El-Keblawy AA, Bhatt A (2015) Aerial seed bank affects germination in two small-seeded halophytes in Arab Gulf desert. J Arid Environ 117:10–17CrossRefGoogle Scholar
  39. El-Keblawy AA, Bhatt A, Gairola S (2014) Perianth colour affects germination behaviour in wind-pollinated Salsola rubescens in Arabian deserts. Botany 92:69–75CrossRefGoogle Scholar
  40. Ericksen PJ (2008) Conceptualizing food systems for global environmental change research. Glob Environ Chang 18:234–245CrossRefGoogle Scholar
  41. FAO (2017) Global network on integrated soil management for sustainable use of salt affected soils. Natural Resources and Environment, FAO, Rome. Available at: www.fao.org/ag/AGL/agII/spush/intro.htm
  42. Fenner M, Thompson K (2005) The ecology of seeds. Cambridge University Press, Cambridge, UKCrossRefGoogle Scholar
  43. Finch-Savage WE, Leubner-Metzger G (2006) Seed dormancy and the control of germination. New Phytol 171:501–523PubMedCrossRefGoogle Scholar
  44. Fisher M, Mattheis D (1998) Experimental demography of the rare Gentianella germanica: seed bank formation and microsite effects on seedling establishment. Ecography 21:269–278CrossRefGoogle Scholar
  45. Foolad MR, Chen FQ, Lin GY (1998) RFLP mapping of QTLs conferring salt tolerance during germination in an interspecific cross of tomato. Theor Appl Genet 97:1133–1144CrossRefGoogle Scholar
  46. Foolad MR, Lin GY, Chen FQ (1999) Comparison of QTLs for seed germination under non-stress, cold stress and salt stress in tomato. Plant Breed 118:167–173CrossRefGoogle Scholar
  47. Gallagher JL (1985) Halophytic crops for cultivation at sea water salinity. Plant Soil 89:323–336CrossRefGoogle Scholar
  48. Ghanem ME, Han R, Classen B, Quetin-Leclerq J, Mahy G, Ruan C, Qin P, Perez-Alfocea F, Lutts S (2010) Mucilage and polysaccharides in the halophyte plant species Kosteletzkya virginica: localization and composition in relation to salt stress. J Plant Physiol 167:382–392CrossRefGoogle Scholar
  49. Goldstein G, Nobel PS (1991) Changes in osmotic pressure and mucilage during low-temperature acclimation of Opuntia ficus-indica. Plant Physiol 97:954–961PubMedPubMedCentralCrossRefGoogle Scholar
  50. von Grebmer K, Ringler C, Rosegrant MW, Olofinbiyi T, Wiesmann D, Fritschel H, Badiane O, Torero M, Yohannes Y, Thompson J, von Oppeln C, Rahall J (2012) Global hunger index. the challenge of hunger: ensuring sustainable food security under land, water, and energy stresses. IFPRI, Washington DCGoogle Scholar
  51. Greenway H, Munns R (1980) Mechanisms of salt tolerance in nonhalophytes. Annu Rev Plant Physiol 31:149–190CrossRefGoogle Scholar
  52. Grenot CJ (1974) Physical and vegetational aspects of the Sahara Desert. In: Brown GW (ed) Desert biology. Academic, New York, pp 103–164CrossRefGoogle Scholar
  53. Grime JP, Mason G, Curtis AV, Rodman J, Band SR (1981) A comparative study of germination characteristics in a Local Flora. J Ecol 69:1017–1059CrossRefGoogle Scholar
  54. Gul B, Weber DJ (2001) Seed bank dynamics in a Great Basin salt playa. J Arid Environ 49:785–879CrossRefGoogle Scholar
  55. Gul B, Ansari R, Flowers TJ, Khan MA (2013) Germination strategies of halophyte seeds under salinity. Environ Exp Bot 92:4–18CrossRefGoogle Scholar
  56. Gulzar S, Khan MA (1994) Seedbanks of coastal shrub communities. Ecoprint 1:1–6Google Scholar
  57. Gulzar S, Khan MA (2001) Seed germination of halophytic grass Aeluropus lagopoides. Ann Bot 87:319–324CrossRefGoogle Scholar
  58. Gulzar S, Khan MA, Ungar IA (2001) Effect of temperature and salinity on the germination of Urochondra setulosa. Seed Sci Technol 29:21–29Google Scholar
  59. Günster A (1992) Aerial seed banks in the central namib: distribution of serotinous plants in relation to climate and habitat. J Biogeogr 19:563–572CrossRefGoogle Scholar
  60. Hakeem KR, Parvaiz A, Öztürk M (eds) (2013) Crop improvement-new approaches and modern techniques. Springer, New York. 493 ppGoogle Scholar
  61. Hanslin H, Eggen T (2005) Salinity tolerance during germination of seashore halophytes and salt-tolerant grass cultivars. Seed Sci Res 15:43–50CrossRefGoogle Scholar
  62. Hasanuzzaman M, Nahar K, Fujita M, Ahmad P, Chandna R, MNV P, Öztürk M (2013) Enhancing plant productivity under salt stress- relevance of poly-omics. In: Ahmad P, Azooz MM, Prasad MNV (eds) Salt stress in plants: signalling, omics and adaptations. Springer Verlag, New York, pp 113–156CrossRefGoogle Scholar
  63. Hattori T, Vasil V, Rosenkrans L, Hannah LC, McCarty DR, Vasil IK (1992) The Viviparous-1 gene and abscisic acid activate the C1 regulatory gene for anthocyanin biosynthesis during seed maturation in maize. Genes Dev 6:609–618PubMedCrossRefGoogle Scholar
  64. Hilhorst HWM (1995) A critical update on seed dormancy. I. Primary dormancy. Seed Sci Res 5:61–73CrossRefGoogle Scholar
  65. Hu YZ, Zeng YL, Guan B, Zhang FC (2012) Overexpression of a vacuolar H+−pyrophosphatase and a B subunit of H+-ATPase cloned from the halophyte Halostachys caspica improves salt tolerance in Arabidopsis thaliana. Plant Cell Tissue Organ Cult 108:63–71CrossRefGoogle Scholar
  66. Imbert E (2002) Ecological consequences and ontogeny of seed heteromorphism. Perspect Plant Ecol Evol Syst 5:13–36CrossRefGoogle Scholar
  67. Islam MN, Wilson CA, Watkins TR (1982) Nutritional evaluation of seashore mallow seed, K. virginica. J Agric Food Chem 30:1195–1198PubMedCrossRefGoogle Scholar
  68. Jefferies RL, Davy AJ, Rudmick J (1981) Population biology of the salt marsh annual Salicornia europaea agg. J Ecol 69:17–31CrossRefGoogle Scholar
  69. Jefferies RL, Jensen A, Bazely D (1983) The biology of the annual Salicornia europaea agg., at the limit of its range in Hudson Bay. Can J Bot 61:762–773CrossRefGoogle Scholar
  70. Jha B, Lal S, Tiwari V, Yadav SK, Agarwal PK (2012) The SbASR-1 gene cloned from an extreme halophyte Salicornia brachiata enhances salt tolerance in transgenic tobacco. Mar Biotechnol 14:782–792PubMedCrossRefGoogle Scholar
  71. Joshi R, Ramanarao MV, Baisakh N (2013) Arabidopsis plants constitutively overexpressing a myo-inositol 1-phosphate synthase gene (SaINO1) from the halophyte smooth cordgrass exhibits enhanced level of tolerance to salt stress. Plant Physiol Biochem 65:61–66PubMedCrossRefGoogle Scholar
  72. Jutila HME (1998) Effect of different treatments on the seed bank of grazed and ungrazed Baltic seashore meadows. Can J Bot 76:1188–1197Google Scholar
  73. Kafi M, Öztürk M (2011) Paradox of halophyte utilization as biofuel resources and land sustainability. In: Öztürk M, Mermut AR, Celik A (eds) Urbanisation, land use, land degradation and environment. Daya Publishing House, Delhi, pp 299–314Google Scholar
  74. Kalisz S, McPeek MA (1993) Extinction dynamics, population growth and seed banks. Oecologia 95:314–320PubMedCrossRefGoogle Scholar
  75. Karan R, Subudhi PK (2014) Overexpression of an adenosine diphosphate-ribosylation factor gene from the halophytic grass Spartina alterniflora confers salinity and drought tolerance in transgenic Arabidopsis. Plant Cell Rep 33(2):373–384PubMedCrossRefGoogle Scholar
  76. Kasera PK, Mohammed S (2010) Ecology of inland saline plants. In: Ramawat KG (ed) Desert plants. Springer, Germany, pp 299–320CrossRefGoogle Scholar
  77. Katembe WJ, Ungar IA, Mitchell JP (1998) Effect of salinity on germination and seedling growth of two Atriplex species (Chenopodiaceae). Ann Bot 82:167–175CrossRefGoogle Scholar
  78. Keiffer CH, Ungar IA (1997) The effect of extended exposure to hypersaline conditions on the germination of five inland halophytes species. Am J Bot 84:104–111CrossRefGoogle Scholar
  79. Kelly KM, Van Staden J, Bell WE (1992) Seed coat and dormancy. Plant Growth Regul 11:201–209CrossRefGoogle Scholar
  80. Khan MA (1993) Relationship of seed bank to plant distribution in saline arid communities. Pak J Bot 25:73–82Google Scholar
  81. Khan MA, Gul B (1998) High salt tolerance in germinating dimorphic seeds of Arthrocnemum indicum. Int J Plant Sci 159:826–832CrossRefGoogle Scholar
  82. Khan MA, Gul B (2006) Halophyte seed germination. In: Khan M, Weber D (eds) Ecophysiology of high salinity tolerant plants. Tasks for vegetation science. Springer, DordrechtCrossRefGoogle Scholar
  83. Khan MA, Gulzar S (2003) Germination responses of Sporobolus ioclados: a potential forage grass. J Arid Environ 53:387–394CrossRefGoogle Scholar
  84. Khan MA, Ungar IA (1996) Influence of salinity and temperature on the germination of Haloxylon recurvum. Ann Bot 78:547–551CrossRefGoogle Scholar
  85. Khan MA, Ungar IA (1997) Alleviation of seed dormancy in the desert forb Zygophyllum simplex L. from Pakistan. Ann Bot 80:395–400CrossRefGoogle Scholar
  86. Khan MA, Ungar IA (2000) Alleviation of salinity enforced dormancy in Atriplex griffithii Moq. var. stocksii Boiss. Seed Sci Technol 25:83–91Google Scholar
  87. Khan MA, Ungar IA (2001) Alleviation salinity stress and the response to temperature in two seed morphs of Halopyrum mucronatum (Poaceae). Aust J Bot 49:777–783CrossRefGoogle Scholar
  88. Khan M, ÖztürkM GB, Ahmed MZ (2016) Halophytes for food security in dry lands. Academic Press, Elsevier, New York, p 360Google Scholar
  89. Koornneef M, Bentsink L, Hilhorst H (2002) Seed dormancy and germination. Curr Opin Plant Biol 5:33–36PubMedCrossRefGoogle Scholar
  90. Lamont BB, Le Maitre DC, Cowling RM, Enright NJ (1991) Canopy seed storage in woody plants. Bot Rev 57:277–317CrossRefGoogle Scholar
  91. Li BL, Foley ME (1997) Genetic and molecular control of seed dormancy. Trends Plant Sci 2:384–389CrossRefGoogle Scholar
  92. Li W, Liu X, Khan MA, Yamaguchi S (2005) The effect of plant growth regulators, nitric oxide, nitrate, nitrite and light on the germination of dimorphic seeds of Suaeda salsa under saline conditions. J Plant Res 118:207–214PubMedCrossRefGoogle Scholar
  93. Li W, Wang D, Jin T, Chang Q, Yin D, Xu S, Liu B, Liu L (2011) The vacuolar Na+/H+ antiporter gene SsNHX1 from the halophyte Salsola soda confers salt tolerance in transgenic alfalfa (Medicago sativa L.). Plant Mol Biol Rep 29:278–290CrossRefGoogle Scholar
  94. Lin P-C, Hwang S-G, Endo A, Okamoto M, Koshiba T, Cheng W-H (2007) Ectopic expression of abscisic acid 2/glucose insensitive 1 in Arabidopsis promotes seed dormancy and stress tolerance. Plant Physiol 143:745–758PubMedPubMedCentralCrossRefGoogle Scholar
  95. Macke A, Ungar IA (1971) The effect of salinity on germination and early growth of Puccinellia nuttalliana. Can J Bot 49:515–520CrossRefGoogle Scholar
  96. Mano Y, Takeda K (1997) Mapping quantitative trait loci for salt tolerance at germination and the seedling stage in barley (Hordeum vulgare L.). Euphytica 94:263–272CrossRefGoogle Scholar
  97. Moody-Weis J, Alexander HM (2007) The mechanisms and consequences of seed bank formation in wild sunflowers (Helianthus annuus). J Ecol 95:851–864CrossRefGoogle Scholar
  98. Morgan WC, Myers BA (1989) Germination characteristics of the salt tolerant grass Diplachne fusca. I. Dormancy and temperature responses. Aust J Bot 37:225–237CrossRefGoogle Scholar
  99. Morse SR (1990) Water balance in Hemizonia luzulifolia: the role of extracellular polysaccharides. Plant Cell Environ 13:39–48CrossRefGoogle Scholar
  100. Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250CrossRefPubMedGoogle Scholar
  101. Nichols PGH, Craig AD, Rogers ME, Albertsen TO, Miller SM, McClements DR, Hughes SJ, D’Antuono MF, Dear BS (2008) Production and persistence of annual pasture legumes at five saline sites in southern Australia. Aust J Exp Agric 48:518–535CrossRefGoogle Scholar
  102. Nichols PGH, Malik AI, Stockdale M, Colmer TD (2009) Salt tolerance and avoidance mechanisms at germination of annual pasture legumes: iImportance for adaptation to saline environments. Plant Soil 315:241–255CrossRefGoogle Scholar
  103. Nikolaeva M (2004) On criteria to use in studies of seed evolution. Seed Sci Res 14:315–320CrossRefGoogle Scholar
  104. Nobel PS, Cavelier J, Andrade JL (1992) Mucilage in cacti—its apoplastic capacitance associated solutes, and influence on tissue water relations. J Exp Bot 43:641–648CrossRefGoogle Scholar
  105. Nonogaki H (2014) Seed dormancy and germination—emerging mechanisms and new hypotheses. Front Plant Sci 5:233–251PubMedPubMedCentralCrossRefGoogle Scholar
  106. Öztürk M, Waisel Y, Khan MA, Gork G (eds) (2006) Biosaline agriculture and salinity tolerance in plants. Springer, Basel. 205 ppGoogle Scholar
  107. Öztürk MA, Ashraf M, Grignon C (2008a) Biosaline agriculture and high salinity tolerance. Birkhauser Verlag (Springer Science), Basel. 367 ppGoogle Scholar
  108. Öztürk M, Guvensen A, Gucel S (2008b) Ecology and economic potential of halophytes–a case study from Turkey. In: Kafi M, Khan MA (eds) Crop and forage production using saline waters. Daya Publishing House, Delhi, pp 255–264Google Scholar
  109. Öztürk M, Hakeem KR, Faridah-Hanum I, Efe R (eds) (2015) Climate change impacts on high-altitude ecosystems. Springer, New York, p 695Google Scholar
  110. Öztürk M, Altay V, Altundag E, Gucel S (2016) Halophytic plant diversity of unique habitats in Turkey: Salt Mine Caves of Çankırı and Iğdır. In: Khan MA, Oztruk M, Gul B, Ahmed MZ (eds) Halophytes for food security in dry lands. Academic, New York, pp 291–315CrossRefGoogle Scholar
  111. Öztürk M, Hakeem KR, Ashraf M, Ahmad MSA (2018) Global perspectives on underutilized crops. Springer, New YorkCrossRefGoogle Scholar
  112. Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60:324–349PubMedCrossRefGoogle Scholar
  113. Parsons RF (2012) Incidence and ecology of very fast germination. Seed Sci Res 22:161–167CrossRefGoogle Scholar
  114. Petruzzelli L, Melillo MT, Zacheo TB, Taranto G (1992) Physiological and ultrastructural changes in isolated wheat embryos during salt and osmotic shock. Ann Bot 69:25–31CrossRefGoogle Scholar
  115. Philipupillai J, Ungar IA (1984) The effect of seed dimorphism on the germination and survival of Salicornia europaea L. populations. Am J Bot 71:542–549CrossRefGoogle Scholar
  116. Pinstrup-Andersen P (2009) Food security: definition and measurement. Food Secur 1:5–7CrossRefGoogle Scholar
  117. Pirie A, Mullins MG (1976) Changes in anthocyanin and phenolics content of grapevine leaf and fruit tissues treated with sucrose, nitrate, and abscisic acid. Plant Physiol 58:468–472PubMedPubMedCentralCrossRefGoogle Scholar
  118. Poljakoff-Mayber A, Somers GF, Werker E, Gallagher JL (1994) Seeds of Kosteletzkya virginica (Malvaceae): their structure, germination and salt tolerance. II. Germination and salt tolerance. Am J Bot 81:54–59CrossRefGoogle Scholar
  119. Pujol AJ, Calvo JF, Ramiraz–Diaz L (2000) Recovery germination from different osmotic conditions by four halophytes from southeastern Spain. Ann Bot 85:279–286CrossRefGoogle Scholar
  120. Quesada V, Garcıa-Martınez S, Piqueras P, Ponce MR, Micol JL (2002) Genetic architecture of NaCl tolerance in Arabidopsis. Plant Physiol 130:951–963PubMedPubMedCentralCrossRefGoogle Scholar
  121. Rajagopal D, Agarwal P, Tyagi W, Singla-Pareek SL, Reddy MK, Sopory SK (2007) Pennisetum glaucum Na+/H+ antiporter confers high level of salinity tolerance in transgenic Brassica juncea. Mol Breed 19:137–151CrossRefGoogle Scholar
  122. Rauf M, Shahzad K, Ali R, Ahmad M, Habib I, Mansoor S, Berkowitz G, Saeed NA (2014) Cloning and characterization of Na+/H+ antiporter (LfNHX1) gene from a halophyte grass Leptochloa fusca for drought and salt tolerance. Mol Biol Rep 41:1669–1682PubMedCrossRefGoogle Scholar
  123. Redfield AC (1972) Development of a New England salt marsh. Ecol Monogr 42:201–237CrossRefGoogle Scholar
  124. Saad RB, Zouari N, Ramdhan WB, Azaza J, Meynard D, Guiderdoni E, Hassairi A (2010) Improved drought and salt stress tolerance in transgenic tobacco overexpressing a novel A20/AN1 zinc-finger “AlSAP” gene isolated from the halophyte grass Aeluropus littoralis. Plant Mol Biol 72:171–190PubMedCrossRefGoogle Scholar
  125. Sen DN, Rajpurohit KS (1982) Contributions to the ecology of halophytes. Springer, DordrechtCrossRefGoogle Scholar
  126. Sen DN, Kasera PK, Mohammed S (2002) Biology and physiology of saline plants. In: Pessarakli M (ed) Handbook of plant and crop physiology, 2nd edn. Dekker, New York, pp 563–581Google Scholar
  127. Sharma TP, Sen DN (1989) A new report on abnormally fast germinating seeds of Haloxylon spp. – an ecological adaptation to saline habitat. Curr Sci 58:382–385Google Scholar
  128. Song J, Feng G, Changyan T, Zhang F (2005) Strategies for adaptation of Suaeda physophora, Haloxylon ammodendron, and Haloxylon persicum to a saline environment during seed-germination stage. Ann Bot 96:399–405PubMedPubMedCentralCrossRefGoogle Scholar
  129. Song J, Shi W, Liu R, Xu Y, Sui Y, Zhou J, Feng G (2017) The role of seed coat in adaptation of dimorphic seeds of the euhalophyte Suaeda salsa to salinity. Plant Species Biol 32:107–114CrossRefGoogle Scholar
  130. Takeno K, Yamaguchi H (1991) Diversity in seed germination behavior in relation to heterocarpy in Salsola komarovii Iljin. H. Bot Mag Tokyo 104:207–215CrossRefGoogle Scholar
  131. Tanaka Y, Sasaki N, Ohmiya A (2008) Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. Plant J 54:733–749PubMedCrossRefGoogle Scholar
  132. Taylor AG, Min TG, Mallaber CA (1991) Seed coating system to upgrade Brassicaceae seed quality by exploiting sinapine leakage. Seed Sci Technol 19:423–434Google Scholar
  133. Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91:503–527PubMedPubMedCentralCrossRefGoogle Scholar
  134. Thornton PK, Ericksen PJ, Herrero M, Chanllinor AJ (2014) Climate variability and vulnerability to climate change: a review. Glob Chang Biol 20:3313–3328PubMedPubMedCentralCrossRefGoogle Scholar
  135. Tobe K, Zang L, Omasa K (1999) Effects of NaCl on seed germination and growth of five nonhalophytic species from a Chinese desert environment. Seed Sci Technol 27:851–863Google Scholar
  136. Tobe K, Li X, Omasa K (2000) Effects of sodium chloride on seed germination and growth of two Chinese desert shrubs, Haloxylon ammodendron and H. Persicum (Chenopodiaceae). Aust J Bot 48:455–460CrossRefGoogle Scholar
  137. Ungar IA (1974) Inland halophytes of the United States. In: Reimond RJ, Queen WH (eds) Ecology of halophytes. Academic Press, New York, pp 235–305CrossRefGoogle Scholar
  138. Ungar IA (1978) Halophyte seed germination. Bot Rev 44:233–264CrossRefGoogle Scholar
  139. Ungar IA (1979) The effect of seed reserves on species composition in zonal halophyte communities. Bot Gaz 141:447–452CrossRefGoogle Scholar
  140. Ungar IA (1982) Germination ecology of halophytes. In: Sen DN, Rajpurohit KS (eds) Contributions to the ecology of halophytes. Tasks for vegetation science. Springer, Dordrecht, pp 143–154CrossRefGoogle Scholar
  141. Ungar IA (1987a) Population characteristics, growth, and survival of the halophyte Salicornia europaea. Ecology 68:569–575CrossRefGoogle Scholar
  142. Ungar IA (1987b) Population ecology of halophyte seeds. Bot Rev 53:301–334CrossRefGoogle Scholar
  143. Ungar IA (1995) Seed germination and seed-bank ecology in halophytes. In: Kigel J, Galili G (eds) Seed development and seed germination. Marcel Dekker, New York, pp 599–628Google Scholar
  144. Ungar IA (1996) Effect of salinity on seed germination, growth, and ion accumulation of Atriplex patula (Chenopodiaceae). Am J Bot 83:604–607CrossRefGoogle Scholar
  145. Ungar IA (2001) Seed banks and seed population dynamics of halophytes. Wetl Ecol Manag 9:499–510CrossRefGoogle Scholar
  146. Ungar IA, Woodell SRJ (1993) The relationship between the seed bank and species composition of plant communities in two British salt marshes. J Veg Sci 4:531–536CrossRefGoogle Scholar
  147. Ungar IA, Woodell SRJ (1996) Similarity of seed banks to aboveground vegetation in grazed and ungrazed communities on the Gower peninsula, South Wales. Int J Plant Sci 157:746–749CrossRefGoogle Scholar
  148. Venable DL (1985) The evolutionary ecology of seed heteromorphism. Am Nat 126:577–595CrossRefGoogle Scholar
  149. Vleeshouwers LM, Bouwmeester HJ, Karssen CM (1995) Redefining seed dormancy: an attempt to integrate physiology and ecology. J Ecol 83:1031–1037CrossRefGoogle Scholar
  150. Waisel Y (1972) Biology of halophytes. Academic, New YorkGoogle Scholar
  151. Wallace A, Rhoads WA, Frolich EF (1968) Germination behaviour of Salsola as influenced by temperature, moisture, depth of planting and gamma irradiation. Agron J 60:76–78CrossRefGoogle Scholar
  152. Wang L, Huang Z, Baskin CC, Baskin JM, Dong M (2008) Germination of dimorphic seeds of the desert annual halophyte Suaeda aralocaspica (Chenopodiaceae), a C4 plant without Kranz anatomy. Ann Bot 102:757–769PubMedPubMedCentralCrossRefGoogle Scholar
  153. Wang L, Baskin JM, Baskin CC, Hans J, Cornelissen C, Dong M, Huang Z (2012) Seed dimorphism, nutrients and salinity differentially affect seed traits of the desert halophyte Suaeda aralocaspica via multiple maternal effects. BMC Plant Biol 12:170.  https://doi.org/10.1186/1471-2229-12-170 CrossRefPubMedPubMedCentralGoogle Scholar
  154. Wang H, Tian C, Wang L (2017) Germination of dimorphic seeds of Suaeda aralocaspica in response to light and salinity conditions during and after cold stratification. Peer J 5:e3671.  https://doi.org/10.7717/peerj.3671 CrossRefPubMedGoogle Scholar
  155. Wei Y, Dong M, Huang ZY (2007) Seed polymorphism, dormancy and germination of Salsola affinis (Chenopodiaceae), a dominant desert annual inhabiting the Junggar Basin of Xinjiang, China. Aust J Bot 55:464–470CrossRefGoogle Scholar
  156. Wei Y, Dong M, Huang ZY, Tan DY (2008) Factors influencing seed germination of Salsola affinis (Chenopodiaceae), a dominant annual halophyte inhabiting the deserts of Xinjiang, China. Flora 203:134–140CrossRefGoogle Scholar
  157. Wertis BA, Ungar IA (1986) Seed demography and seedling survival in a population of Atriplex triangularis Willd. Am Midl Nat 116:152–162CrossRefGoogle Scholar
  158. Wheeler T, von Braun J (2013) Climate change impacts on global food security. Science 341:508–513PubMedCrossRefGoogle Scholar
  159. World Food Summit (1996) Rome declaration on world food security. RomeGoogle Scholar
  160. Xing J, Cai M, Chen S, Chen L, Lan H (2013) Seed germination, plant growth and physiological responses of Salsola ikonnikovii to short-term NaCl stress. Plant Biosyst 147:285–297CrossRefGoogle Scholar
  161. Xu XJ, Zhou YJ, Ren DT, Bu HH, Feng JC, Wang GY (2014) Cloning and characterization of gene encoding a Mn-containing superoxide dismutase in Eutrema halophilum. Biol Plant 58:105–113CrossRefGoogle Scholar
  162. Yadav N, Shukla P, Jha A, Agarwal P, Jha B (2012) The SbSOS1 gene from the extreme halophyte Salicornia brachiata enhances Na+ loading in xylem and confers salt tolerance in transgenic tobacco. BMC Plant Biol 12:188.  https://doi.org/10.1186/1471-2229-12-188 CrossRefPubMedPubMedCentralGoogle Scholar
  163. Yıldıztugay E, Küçüködük M (2012) Dormancy breaking and germination requirements for seeds of Sphaerophysa kotschyana Boiss. J Glob Biosci 1:20–27Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Biology, Faculty of ScienceAnkara UniversityAnkaraTurkey

Personalised recommendations