Advertisement

Halophytes: The Plants of Therapeutic Medicine

  • Sunder Singh Arya
  • Sarita Devi
  • Kirpa Ram
  • Sunil Kumar
  • Naveen Kumar
  • Anita Mann
  • Ashwani Kumar
  • Gurdev Chand
Chapter

Abstract

Halophytic plants that grow in an extensive range of saline soils have significant economic importance, with potential for use in environmental restoration and therapeutic medicine. Halophytes live in coastal regions, from salt-marshy mudflats to inland deserts. They are traditionally used for medicines and the release of bioactive compounds, such as terpenes, phenols, antioxidants, and anticarcinogenics. These compounds can also be potentially used as medicines. The literature reveals that different types of medicines obtained from coastal and near-coastal species have been used by local inhabitants. The present review focuses on the potential use of halophytes as medicines and their utilization at local and industrial levels.

Keywords

Halophytes Bioactive compounds Therapeutic medicine Antioxidants Terpenes Anticarcinogenics 

References

  1. Abdelly C, Barhoumi Z, Ghnaya T, Debbez A, Ben Hamed K et al (2006) Potential utilisation of halophytes for the rehabilitation and valorisation of salt-affected areas. In: Tunisia, Öztürk M, Waisel Y, Khan MA, Görk G (eds) Biosaline agriculture and salinity tolerance in plants. Springer/Birkhäuser, Basel, pp 161–170Google Scholar
  2. Abdelly C, Debez A, Smaoui A, Grignon C (2011) Halophyte-fodder species association may improve nutrient availability and biomass production of the Sabkha ecosystem. In: Ztürk MO et al. (Eds) Sabkha ecosystems, tasks for vegetation science, vol. 46. Springer, pp 95–104Google Scholar
  3. Acamovic T, Brooker JD (2005) Biochemistry of plant secondary metabolites and their effects in animals. Symposium on plants as animal foods. Proc Nutr Soc 64:403–412PubMedCrossRefGoogle Scholar
  4. Adams M, Berset C, Kessler M, Hamburger M (2009) Medicinal herbs for the treatment of rheumatic disorders-a survey of European herbals from the 16th and 17th century. J Ethnopharmacol 121:343–359PubMedCrossRefGoogle Scholar
  5. Al-Dissi NM, Salhab AS, Al-Hajj HA (2001) Effects of Inula viscosa leaf extracts on abortion and implantation in rats. J Ethnopharmacol 77:117–121PubMedCrossRefGoogle Scholar
  6. Ali-Shtayeh MS, Abu Ghdeib SI (1999) Antifungal activity of plant extracts against dermatophytes. Mycoses 42:665–672PubMedCrossRefGoogle Scholar
  7. Aniya Y, Miyagi C, Nakandakari A, Kamiya S, Imaizumi N, Ichiba T (2002) Free radical scavenging action of the medicinal herb Limonium wrightii from the Okinawa islands. Phytomedicine 9:239–244PubMedCrossRefGoogle Scholar
  8. Avato P, Fanizzib FP, Rosito I (2001) The genus Thapsia as a source of petroselinic acid. Lipids 36:8CrossRefGoogle Scholar
  9. Bányai P, Kuzovkina IN, Kursinszki L, Szőke É (2006) HPLC analysis of alizarin and purpurin produced by Rubia tinctorum L. hairy root cultures. Chromatographia 63:111–114CrossRefGoogle Scholar
  10. Benhammou N, Bekkara FA, Panovska TK (2009) Antioxidant activity of methanolic extracts and some bioactive compounds of Atriplex halimus. C R Chimie 12:1259–1266CrossRefGoogle Scholar
  11. Benwahhoud M, Jouad H, Eddouks M, Lyoussi B (2001) Hypoglycemic effect of Suaeda fruticosa in streptozotocin-induced diabetic rats. J Ethnopharmacol 76:35–38PubMedCrossRefGoogle Scholar
  12. Bernal J, Mendiola JA, Ibáñez E, Cifuentes A (2011) Advanced analysis of nutraceuticals. J Pharm Biom Anal 55(4):758–774CrossRefGoogle Scholar
  13. Blini W, Lira CM (2005) Salvando vidas com a medicina natural, 1st edn. Unier, São Paulo. 479pGoogle Scholar
  14. Calvo MI (2006) Anti-inflammatory and analgesic activity of the topical preparation of Verbena officinalis L. J Ethnopharmacol 107:380–382PubMedCrossRefGoogle Scholar
  15. Cha JD, Jeong MR, Jeong SI, Moon SE, Kim JY, Kil BS, Song YH (2005) Chemical composition and antimicrobial activity of the essential oils of Artemisia scoparia and A. capillaris. Planta Med 71:186–190PubMedCrossRefGoogle Scholar
  16. Chaieb M, Boukhris M (1998) Flore succincte et illustrée des zones arides et sahariennes de Tunisie. Associations pour la protection de la nature et de l’environnement, SfaxGoogle Scholar
  17. Chen PS, Li JH, Liu TY, Lin TC (2000) Folk medicine Terminalia catappa and its major tannin component, punicalagin, are effective against bleomycin-induced genotoxicity in Chinese hamster ovary cells. Cancer Lett (Ireland) 152:115–122CrossRefGoogle Scholar
  18. Chiang LC, Chiang W, Chang MY, Ng LT, Lin CC (2002) Antiviral activity of Plantago major extracts and related compounds in vitro. Antivir Res 55:53–62PubMedCrossRefGoogle Scholar
  19. Chiang Y, Chang J, Kuo C, Chang C, Kuo Y (2005) Cytotoxic triterpenes from the aerial roots of Ficus microcarpa. Phyto Chem 66:495–501Google Scholar
  20. Cieslik E, Leszczynska T, Filipiak-Florkiewicz A, Sikora E, Pisulewski PM (2007) Effects of some technological processes on glucosinolate contents in cruciferous vegetables. Food Chem 105:976–981CrossRefGoogle Scholar
  21. Clausing G, Vickers K, Kadereit JW (2000) Historical biogeography in linear system: genetic variation of sea rocket (Cakile maritima) and sea holly (Eryngium maritimum) along European coasts. Mol Ecol 9:1823–1833PubMedCrossRefGoogle Scholar
  22. Dai Y, Ye WC, Wang ZT, Matsuda H, Kubo M, But PPH (2002) Antipruritic and antinociceptive effects of Chenopodium album L. in mice. J Ethnopharmacol 81:245–250PubMedCrossRefGoogle Scholar
  23. Davy AJ, Scott R, Cordazzo CV (2006) Biological flora of the British Isles: Cakile maritima Scop. J Ecol 94:695–711CrossRefGoogle Scholar
  24. Dembitsky VM (2006) Anticancer activity of natural and synthetic acetylenic lipids. Lipids 41:883–924PubMedCrossRefGoogle Scholar
  25. Duke JA (1992) Handbook of phytochemical constituents of GRAS herbs and other economic plants. CRC Press, Boca Raton, p 654Google Scholar
  26. Edreva A, Velikova V, Tsonev L, Dagnon S, Gürel A, Aktaş L, Gesheva E (2008) Stress-protective role of secondary metabolites: diversity of functions and mechanisms. Gen Appl Plant Physiol 34(1–2):67–78Google Scholar
  27. Erkucuk A, Akgun IH, Yesil-Celiktas O (2009) Supercritical CO2 extraction of glycosides from Stevia rebaudiana leaves: identification and optimization. J Supercrit Fluids 51:29–35CrossRefGoogle Scholar
  28. Estrada A, Katselis GS, Laarveld B, Barl B (2000) Isolation and evaluation of immunological adjuvant activities of saponins from Polygala senega L. Comp Immunol Microb Infect Dis 23:27–43CrossRefGoogle Scholar
  29. Falleh H, Ksouri R, Medini F, Guyot S, Abdelly C, Magné C (2011a) Antioxidant activity and phenolic composition of the medicinal and edible halophyte Mesembryanthemum edule L. Ind Crop Prod 34:1066–1071CrossRefGoogle Scholar
  30. Falleh H, Oueslati S, Guyot S, Ben Dali A, Magné C, Abdelly C, Ksouri R (2011b) LC/ESI-MS/MS characterisation of procyanidins and propelargonidins responsible for the strong antioxidant activity of the edible halophyte Mesembryanthemum edule L. Food Chem 127:1732–1738CrossRefGoogle Scholar
  31. Fontana G, Savona G, Rodriguez B, De La Torre MC (1999) Unusual 6′-fatty acid esters of (24S)-24-ethylcholesta-5,25-dien-3 beta-yl beta-D-glucopyranoside from Teucrium fruticans. Phytochemistry 50:283CrossRefGoogle Scholar
  32. Fournier P (1999) Plantes medicinales. CME, Tome I, Luxembourg, p 369Google Scholar
  33. Fratianni F, Tucci M, De Palma M, Pepe R, Nazzaro F (2007) Polyphenolic composition in different parts of some cultivars of globe artichoke (Cynara cardunculus L. var. scolymus (L.) Fiori). Food Chem 104:1282–1286CrossRefGoogle Scholar
  34. Fukushi E, Onodera S, Yamamori A, Shiomi N, Kawabata J (2000) NMR analysis of tri- and tetra-saccharides from Asparagus. Magn Res Chem 38:1005–1011CrossRefGoogle Scholar
  35. Gao X, Ohlander M, Jeppsson N, Björk L, Trajkovski V (2000) Changes in antioxidant effects and their relationship to phytonutrients in fruits of sea buckthorn (Hippophae rhamnoides L.) during maturation. J Agric Food Chem 48:1485–1490PubMedCrossRefGoogle Scholar
  36. Gaspar H, Brito Palma FMS, De la Torre MC, Rodriguez B (1996) Sterol from Teucrium abutiloides and T. betonicum. Phytochemistry 43:613–615CrossRefGoogle Scholar
  37. Gebbart R (1998) Inhibition of cholesterol biosynthesis in primary cultured rat hepatocytes by artichoke (Cynara scolymus L.) extracts. J Pharm Exp Ther 286(3):1122–1128Google Scholar
  38. Gominho J, Fernández J, Pereira H (2000) Cynara cardunculus L. a new fiber crop for pulp and paper production. Ind Crops Prod 13:1–10CrossRefGoogle Scholar
  39. Govindarajan R, Vijayakumar M, Pushpangadan P (2005) Anti-oxidant approach to disease management and the role of ‘Rasayana’ herbs of Ayurveda. J Ethnopharmacol 99:165–178PubMedCrossRefGoogle Scholar
  40. Goyal RK, Singh J, Harbans L (2003) Asparagus racemosus-an update. Indian J Med Sci 57:408–414PubMedGoogle Scholar
  41. Guil-Guerrero JL, Torija Isana ME, Gimenez Martinez JJ (1996) Composicion nutricional del hinojo marino (Crithmum maritimum L.). Alimentaria 34:65–72Google Scholar
  42. Gusakova SD, Sagdullaev Sh, Khushbaktova ZA (1998) Lipophilic extracts in phytotherapy and phytocosmetics: production and biological properties. Chem Nat Compd 34:411–419CrossRefGoogle Scholar
  43. Hachicha SF, Barrek S, Skanji T, Zarrouk H, Ghrabi ZG (2009) Fatty acid, tocopherol, and sterol content of three Teucrium species from Tunisia. Chem Nat Compd 45(3):453–461CrossRefGoogle Scholar
  44. Hamburger M, Hostettmann K (1991) Bioactivity in plants: the link between phytochemistry and medicine. Phytochemistry 30(12):3864–3874CrossRefGoogle Scholar
  45. Han SK, Kim SM (2003) Antioxidative effect of Salicornia herbacea L. grown in closed sea beach. J Kor Soc Food Sci Nutr 32:207–210CrossRefGoogle Scholar
  46. Hänsel R, Keller K, Rimpler H, Schneide G (1994) Hagers Handbuch der Pharmazeutischen Praxis. Part 6. Springer Verlag, Berlin, p 1040CrossRefGoogle Scholar
  47. Hayes PY, Jahidin AH, Lehmann R, Penman K, Kitching W, Voss D (2006) Asparinins, asparosides, curillins, curillosides, and shatavarins: structural clarification with the isolation of shatavarin V, a new steroidal saponin from the root of Asparagus racemosus. Tetrahedron Lett 47:8683–8687CrossRefGoogle Scholar
  48. Herbaut C (2006) Omega-3 and health. Rev Med Brux 27:355–360Google Scholar
  49. Ilavarasan R, Vasudevan M, Anbazhagan S, Venkataraman S (2003a) Antioxidant activity of Thespesia populnea bark extracts against carbon tetrachloride-induced liver injury in rats. J Ethnopharmacol 87:227–230PubMedCrossRefGoogle Scholar
  50. Ilavarasan R, Vasudevan M, Anbazhagan S, Venkataraman S, Sridher SK (2003b) Hepatoprotective activity of Thespesia populnea bark extracts against carbon tetrachloride-induced liver injury in rats. Nat Prod Sci 9:83–86Google Scholar
  51. Im SA, Kim GW, Lee CK (2003) Immunomodulatory activity of Salicornia herbacea L. components. Nat Prod Sci 9:273–277Google Scholar
  52. Jahangir M, Kim HK, Choi YH, Verpoorte R (2008) Metabolomic response of Brassica rapa submitted to pre-harvest bacterial contamination. Food Chem 107:362–368CrossRefGoogle Scholar
  53. Jarić S, Popvić Z, Mačukanović Jocić M, Djurdjevic L, Mijatović M, Karadžić B, Mitrović M, Pavlović P (2007) An ethnobotanical study of the usage of wild medicinal herbs from Kopaonik Mountain (Central Serbia). J Ethnopharmacol 111:160–175PubMedCrossRefGoogle Scholar
  54. Jayaweera DMA (1982) Medicinal plants (indigenous and exotic) used in Ceylon, part IV. A Publication of the National Science Council of Sri Lanka, ColomboGoogle Scholar
  55. Jdey A, Falleh H, Ben Jannet S, Mkadmini Hammi K, Dauvergne X, Ksouri R, Magné C (2017) Phytochemical investigation and antioxidant, antibacterial and anti-tyrosinase performances of six medicinal halophytes. South Afr J Bot 112:508–514CrossRefGoogle Scholar
  56. Jennings DH (1976) The effects of sodium chloride on higher plants. Biol Rev 51:453–486CrossRefGoogle Scholar
  57. Kallio H, Yang B, Peippo P (2002) Influence of different origins and harvesting dates on vitamin C, tocopherols and tocotrienols in sea buckthorn berries. J Agric Food Chem 50:6136–6142PubMedCrossRefGoogle Scholar
  58. Kalra EK (2003) Nutraceutical-definition and introduction. Am Assoc Pharm Sci Pharm Sci 5:1–2Google Scholar
  59. Khan MA, Qaiser M (2006) Halophytes of Pakistan: characteristic, distribution and potential economic usages. Chapter II. In: Ajmal Khan M et al (eds) Sabkha ecosystems. Volume II: West and Central Asia. Springer, Berlin, pp 129–153CrossRefGoogle Scholar
  60. Kimura H, Ogawa S, Jisaka M, Kimura Y, Katsube T, Yokota K (2006) Identification of novel saponins from edible seeds of Japanese horse chestnut (Aesculus turbinata Blume) after treatment with wooden ashes and their nutraceutical activity. J Pharm Biomed 41:1657–1665CrossRefGoogle Scholar
  61. Krishnaiah D, Sarbatly R, Nithyanandam R (2011) A review of the antioxidant potential of medicinal plant species. Food Bioprod Process 89(3):217–233CrossRefGoogle Scholar
  62. Krizková L, Mučaji P, Nagy M, Krajčovič J (2004) Triterpenoid cynara saponins from Cynara cardunculus L. reduce chemically induced mutagenesis in vitro. Phytomedicine 11:673–678PubMedCrossRefGoogle Scholar
  63. Ksouri R, Falleh F, Megdiche W, Trabelsi N, Mhamdi B, Chaieb K, Bakrouf A, Magné C, Abdelly C (2009) Antioxidant and antimicrobial activities of the edible medicinal halophyte Tamarixgallica L. and related polyphenolic constituents. Food Chem Toxicol 47:2083–2091PubMedCrossRefGoogle Scholar
  64. Ksouri R, Ksouri WM, Jallali I, Debez A, Magne C, Isoda H, Abdelly C (2011) Medicinal halophytes: potent source of health promoting biomolecules with medical, nutraceutical and food applications. Crit Rev Biotechnol 32(4):289–326PubMedCrossRefGoogle Scholar
  65. Kumar R (1991) Anti-nutritional factors the potential risks of toxicity and methods to alleviate them. Anim Feed Sci Tech 30:145–160Google Scholar
  66. Lagos JB, Vargas FL, de-oloveira TG, da-Aparecida GL, Sobral PJA (2015) Recent patents on the application of bioactive compounds in food: a short review. Curr Opin Food Sci 5:1–7CrossRefGoogle Scholar
  67. Lauro L, Rolih C (1990) Observations and research on an extract of Inula viscose Ait. Boll Soc Ital Biol Sper (Napoli) 66:829–834Google Scholar
  68. Lee S, Kong DH, Yun SH, Lee KP, Franzblau SG, Lee EY, Chang CL (2006) Evaluation of a modified antimycobacterial susceptibility test using Middlebrook 7H10 agar containing 2,3-diphenyl-5-thienyl-(2)-tetrazolium chloride. J Microbiol Methods 66:548–551PubMedCrossRefGoogle Scholar
  69. Li H, Zhou G y, Lu L, Liu J (2009) Isolation and identification of endophytic bacteria antagonistic to Camellia oleifera anthracnose. Afr J Microbiol Res 3: 315–318Google Scholar
  70. Maher EA, Bate NJ, Ni W, Elkin Y, Dixon RA, Lamb CJ (1994) Increased disease susceptibility of transgenic tobacco plants with suppressed level of preformed phenyl propanoid products. Proc Natl Acad Sci 91:7802–7806PubMedCrossRefGoogle Scholar
  71. Males Z, Zuntar I, Nigović B, Plazibat M, Vunda VB (2003) Quantitative analysis of the polyphenols of the aerial parts of rock samphire − Crithmum maritimum L. Acta Pharma 53:139–144Google Scholar
  72. Masuda T, Takasugi M, Anetai M (1998) Psoralen and other linear furanocoumarins as phytoalexins in Glehnia littoralis. Phytochemistry 47:13–16CrossRefGoogle Scholar
  73. McNamara RK, Able J, Liu Y, Jandacek R, Rider T, Tso P, Lipton JW (2009) Omega-3 fatty acid deficiency during perinatal development increases serotonin turnover in the prefrontal cortex and decreases midbrain tryptophan hydroxylase-2 expression in adult female rats: dissociation from estrogenic effects. J Psychiatr Res 43:656–663PubMedCrossRefGoogle Scholar
  74. Meot-Duros L, Magné C (2009) Antioxidant activity and phenol content of Crithmum maritimum L. leaves. Plant Physiol Biochem 47:37–41PubMedCrossRefGoogle Scholar
  75. Meot-Duros L, Le Floch G, Magné C (2008) Radical scavenging, antioxidant and antimicrobial activities of halophytic species. J Ethnopharmacol 116:258–262PubMedCrossRefGoogle Scholar
  76. Miniati E (2007) Assessment of phenolic compounds in biological samples. Ann Ist Super Sanita 43(4):362–368PubMedGoogle Scholar
  77. Murphy DJ (1994) Designer oil crops: breeding, processing and biotechnology. VCH, WeinheimGoogle Scholar
  78. Murray AP, Rodriguez S, Frontera MA, Tomas MA, Mulet MC (2004) Antioxidant metabolites from Limonium brasiliense (Boiss.) Kuntze. Z Naturforsch 59:477–480CrossRefGoogle Scholar
  79. Okuda T (2005) Systematics and health effects of chemically distinct tannins in medicinal plants. Phytochemistry 66:2012–2031PubMedCrossRefGoogle Scholar
  80. Ortiz CML, Moya MSP, Navarro VBJ (2006) A rapid chromatographic method for simultaneous determination of beta-sitosterol and tocopherol homologues in vegetable oils. Food Comp Anal 19:141–148CrossRefGoogle Scholar
  81. Park SH, Kim KS (2004) Isolation and identification of antioxidant flavonoids from Salicornia herbacea L. J Korean Soc Appl Biol Chem 47(1):120–123Google Scholar
  82. Patel MD, Thompson PD (2006) Phytosterols and vascular disease. Atherosclerosis 186(1):12–19PubMedCrossRefGoogle Scholar
  83. Phillips OA, Mathew KT, Oriowo MA (2006) Antihypertensive and vasodilator effects of methanolic and aqueous extracts of Tribulus terrestris in rats. J Ethnopharmacol 104:351–355PubMedCrossRefGoogle Scholar
  84. Podsedek A (2007) Natural antioxidants and antioxidant capacity of Brassica vegetables: a review. LWT-Food Sci Technol 40:1–11CrossRefGoogle Scholar
  85. Qasim M, Abideen Z, Adnan MY, Ansari R, Gul B, Ajmal M (2014) Traditional ethno-botanical uses of medicinal plants from coastal areas of Pakistan. Journal of Coastal Life Medicine 2:22–30Google Scholar
  86. Qasim M, Abideen Z, Adnan MY, Gulzar S, Gul B, Rasheed M, Khan MA (2017) Antioxidant properties, phenolic composition, bioactive compounds and nutritive value of medicinal halophytes commonly used as herbal teas. South Afr J Bot 110:240–250CrossRefGoogle Scholar
  87. Radwan HM, Shams KA, Tawfik WA, Soliman AM (2008) Investigation of the Glucosinolates and lipids constituents of Cakile maritima (scope) growing in Egypt and their biological activity. Res J Med Medical Sci 3(2):182–187Google Scholar
  88. Ralay Ranaivo H, Diebolt M, Schott C, Andriantsitohaina R (2004) Polyphenolic compounds from cognac induce vasorelaxation in vitro and decrease post-ischaemic cardiac infarction after an oral administration. Fundam Clin Pharmacol 18:331–338PubMedCrossRefGoogle Scholar
  89. Ramchoun M, Harnafi H, Alem C, Benlys M, Elrhaffari L, Amrani S (2009) Study on antioxidant and hypolipidemic effects of polyphenol rich extract from Thymus vulgaris and Lavandula multifida. Pharm Res 1:106–112Google Scholar
  90. Ramezani M, Fazli-Bazzaz BS, Saghafi-Khadem F, Dabaghian A (2004) Antimicrobial activity of four Artemisia species of Iran. Fitoterapia 75:201–203PubMedCrossRefGoogle Scholar
  91. Reiffel JA, Mc Donald A (2006) Antiarrhythmic effects of omega-3 fatty acids. Am J Cardiol 98(4):50–59CrossRefGoogle Scholar
  92. Rhee MH, Park H-J, Cho JY (2009) Salicornia herbacea: botanical, chemical and pharmacological review of halophyte marsh plant. J Med Plant Res 3(8):548–555Google Scholar
  93. Robert WK, Seletrennikoff CP (1986) Isolation and partial characterization of two antifungal proteins from barley. Biochem Biophys Acta 880:161–170CrossRefGoogle Scholar
  94. Rosch D, Bergmann M, Knorr D, Kroh LW (2004) Structure-antioxidant efficiency relationships of phenolic compounds and their contribution to the antioxidant activity of sea buckthorn juice. J Agric Food Chem 51(15):4233–4239CrossRefGoogle Scholar
  95. Rozema J, Bijwaard P, Prast G, Broekman R (1985) Ecophysiological adaptations of coastal halophytes from foredunes and salt marshes. Vegetatio 62:499–521CrossRefGoogle Scholar
  96. Saïdana D, Mahjoub MA, Boussaada O, Chriaa J, Chéraif I, Daamid M, Mighrib Z, Helal AN (2008) Chemical composition and antimicrobial activity of volatile compounds of Tamarix boveana (Tamaricaceae). Microbiol Res 163:445–455PubMedCrossRefGoogle Scholar
  97. Samuelsen AB (2000) The traditional uses, chemical constituents and biological activities of Plantago major L. A review. J Ethnopharmacol 71:1–21PubMedCrossRefGoogle Scholar
  98. Sathyanarayana T, Sarita T, Balaji M, Ramesh A, Boini MK (2004) Antihyperglycemic and hypoglycemic effect of Thespesia populnea fruits in normal and alloxan-induced diabetes in rabbits. Saudi Pharm J 12:107–111Google Scholar
  99. Schwarzländer M, Fricker MD, Marty CM, Brach L, Novak T, Sweetlove J, Meyer AJ (2008) Confocal imaging of glutathione redox potential in living plant cells. J Microbiol 231:299–316Google Scholar
  100. Senevirathne M, Kim S, Siriwardhana N, Ha J, Lee K, Jeon Y (2006) Antioxidant potential of Ecklonia cava on reactive oxygen species scavenging metal chelating, reducing power and lipid peroxidation inhibition. Food Sci Technol Int 12:27–38CrossRefGoogle Scholar
  101. Seo HC, Suzuki M, Ohnishi-Kameyama M, Oh MJ, Kim HR, Kim JH, Nagata T (2003) Extraction and identification of antioxidant components from Artemisia capillaris herba. Plant Foods Hum Nutr 58(3):1–12CrossRefGoogle Scholar
  102. Sharifi AM, Darabi R, Akbarloo N (2003) Study of antihypertensive mechanism of Tribulus terrestris in 2K1C hypertensive rats: role of tissue ACE activity. Life Sci 73:2963–2971PubMedCrossRefGoogle Scholar
  103. Smitha Patel PA, Alagundagi SC, Salakinkop SR (2013) The anti-nutritional factors in forages – a review. Curr Biotica 6(4):516–526Google Scholar
  104. Sokolowska-Krzaczek A, Skalicka-Woźniak K, Czubkowska K (2009) Variation of phenolic acids from herb and roots of Salsola kali L. Acta Soc Bot Pol 78(3):197–201Google Scholar
  105. Stankovi M, Petrovi M, Godjevac D, Stevanovi ZD (2015) Screening inland halophytes from the central Balkan for their antioxidant activity in relation to total phenolic compounds and flavonoids: are there any prospective medicinal plants. J Arid Environ 120:26–32CrossRefGoogle Scholar
  106. Stuchlik M, Zak S (2002) Vegetable lipids as components of functional foods. Biomed Pap 146:3–10CrossRefGoogle Scholar
  107. Tania da S, Agostini-Costa RF, Vieira HR, Bizzo D, Silveira D, Gimenes MA (2012) Secondary metabolites. In: Dhanarasu S (ed) Chromatography and its applications.  https://doi.org/10.5772/3570 CrossRefGoogle Scholar
  108. Thatoi HN, Patra JK, Das SK (2014) Free radical scavenging and antioxidant potential of mangrove plants: a review. Acta Physiol Plant 36:561–579CrossRefGoogle Scholar
  109. Terras FRG, Schoofs HME, De Bolle MFC et al (1992) Analysis of two novel classes of antifungal proteins from radish (Raphanus sativus L.) seeds. J Biol Chem 267:15301–15309PubMedGoogle Scholar
  110. Thyagarajan SP, Jayaram S, Gopalakrishnan R, Hari P, Jeyakumar P, Sripathi MS (2002) Herbal medicines for liver diseases in India. J Gastroenterol Hepatol 17(3):370–376CrossRefGoogle Scholar
  111. Trabelsi N, Megdiche W, Ksouri R, Falleh H, Oueslati S, Bourgou S, Hajlaoui H, Abdelly C (2010) Solvent effects on phenolic contents and biological activities of the halophyte Limonia strummonopetalum leaves. LWT 43:632–639CrossRefGoogle Scholar
  112. Um YR, Kong CS, Lee JI, Kim YA, Nam TJ, Seo Y (2010) Evaluation of chemical constituents from Glehnia littoralis for antiproliferative activity against HT-29 human colon cancer cells. Process Biochem 45:114–119CrossRefGoogle Scholar
  113. Valentão P, Fernandes E, Carvalho F, Andrade PB, Seabra RM, Bastos ML (2002) Antioxidant activity of Hypericum androsaemum infusion: scavenging activity against superoxide radical, hydroxyl radical and hypochlorous acid. Biol Pharm Bull 25(10):1320–1323PubMedCrossRefGoogle Scholar
  114. Van Der Watt E, Pretorius JC (2001) Purification and identification of active antibacterial components in Carpobrotus edulis L. J Ethnopharmacol 76:87–91PubMedCrossRefGoogle Scholar
  115. Van Etten HD, Matthews DE, Matthews PS (1989) Phytoalexin detoxification importance for pathogenicity and practical implications. Annu Rev Phytopathol 27:143–164CrossRefGoogle Scholar
  116. Xing SR (1991) Ningxia medicinal flora, vol 2. Ningxia People’s Publishing House, NigrmiaGoogle Scholar
  117. Xu GJ (1995) Pharmacognosy. People’s Medical Publishing House, Beijing, pp 220–224Google Scholar
  118. Yajun B, Xiaojing L, Weiqiang L (2003) Primary analysis of four salt tolerant plants growing in Hai-He Plain, China. In: Lieth H (ed) Cash crop halophytes: recent studies. Kluwer, Dordrecht, pp 135–138CrossRefGoogle Scholar
  119. Yaniv Z, Dafni A, Friedman J, Palevitch D (1987) Plants used for treatments of diabetes in Israel. Journal of Ethnopharm 19:145–151CrossRefGoogle Scholar
  120. Yao X, Chen G (2007) Simultaneous determination of p-hydroxyacetophenone, chlorogenic acid, and caffeic acid in Herba Artemisiae Scopariae by capillary electrophoresis with electrochemical detection. Anal Bioanal Chem 388:475–481PubMedCrossRefGoogle Scholar
  121. Younos C, Soulimani R, Seddiqi N, Baburi O, Dicko A (2005) Étude ethnobotanique et historique des tamaris (Tamarix sp., tamaricacée) et leurs usages actuels en Afghanistan. Phytothérapie 6:248–251CrossRefGoogle Scholar
  122. Zarrouk M, El Almi H, Ben Youssef N, Sleimi N, Smaoui A, Ben Miled D, Abdelly C (2003) Lipid composition of local halophytes seeds: Cakile maritima, Zygophyllum album and Crithmum maritimum. In: Lieth H (ed) Cash crop halophytes: recent studies. 10 years after the Al Ain. Kluwer Academic, New York, pp 121–126CrossRefGoogle Scholar
  123. Zhang QW, Zhang YX, Zhang Y, Xiao YQ, Wang ZM (2002) Studies on chemical constituents in buds of Artemisia scoparia. China J Chin Mater Med 27:202–204Google Scholar
  124. Zidorn C, Joehrer K, Ganzera M, Schubert B, Sigmund EM, Mader J, Greil R, Ellmerer EP, Stuppner H (2005) Polyacetylenes from the apiaceae vegetables carrot, celery, fennel, parsley, and parsnip and their cytotoxic activities. J Agric Food Chem 53:2518–2523PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Sunder Singh Arya
    • 1
  • Sarita Devi
    • 2
  • Kirpa Ram
    • 2
  • Sunil Kumar
    • 3
  • Naveen Kumar
    • 1
  • Anita Mann
    • 4
  • Ashwani Kumar
    • 4
  • Gurdev Chand
    • 5
  1. 1.Department of BotanyMaharishi Dayanand UniversityRohtakIndia
  2. 2.Chaudhary Charan Singh Haryana Agricultural UniversityHisarIndia
  3. 3.Department of Environmental SciencesMaharishi Dayanand UniversityRohtakIndia
  4. 4.ICAR – Central Soil Salinity Research InstituteKarnalIndia
  5. 5.Sher-e Kashmir University, Main Campus SKUAST-JammuChathaIndia

Personalised recommendations