Advertisement

How Could Halophytes Provide a Sustainable Alternative to Achieve Food Security in Marginal Lands?

  • Karim Ben Hamed
  • Luisa Custódio
Chapter

Abstract

Food insecurity is a major issue in marginal lands around the world where a large population is at risk of insufficient diet and even severe hunger. Since there is no food productivity in these lands, it becomes necessary to investigate the potential for plants that grow and survive in salty soils or waters (i.e., halophytes) to produce food for humans. They have a high taxonomical diversity, broad geographical distribution, and immense diversity in response to salinity. Their phytochemical profiling has indicated their food relevance in many countries. This diversity can be beneficial if the species are integrated rationally and sustainably in the farming systems of many regions in the world under extreme environments. In this review, by presenting case studies on cultivating some alternative crops like quinoa and new cropping systems in many regions in the world, we will show how halophytes could provide a sustainable alternative to achieve food security in marginal lands.

Keywords

Marginal lands Halophytes Food security 

References

  1. Abd El-Gawad AM, Shehata HS (2014) Ecology and development of Mesembryanthemum crystallinum L. in the deltaic Mediterranean coast of Egypt. Egypt J Basic Appl Sci 1:29–37CrossRefGoogle Scholar
  2. Alexander KA, Hughes AD (2017) A problem shared: technology transfer and development in European integrated multi-trophic aquaculture (IMTA). Aquaculture 473:13–19CrossRefGoogle Scholar
  3. Baldermann S, Blagojević L, Frede K, Klopsch R, Neugart S, Neumann A, Ngwene B, Norkeweit J, Schröter D, Schröter A, Schweigert FJ, Wiesner M, Schreiner M (2016) Are neglected plants the food for the future? Crit Rev Plant Sci.  https://doi.org/10.1080/07352689.2016.1201399 CrossRefGoogle Scholar
  4. Barreira L, Resek E, Rocha MI, Pereira H, Bandarra NM, Moreira da Silva M, Varela J, Custódio L (2017) Halophytes: gourmet food with nutritional properties? J Food Compos Anal 59:35–42CrossRefGoogle Scholar
  5. Barrington K, Chopin T, Robinson S (2009) Integrated multitrophic aquaculture (IMTA) in marine temperate waters. In: Soto D (ed) Integrated mariculture: a global review, FAO Fisheries and Aquaculture Technical Paper. No. 529. FAO, Rome, pp 7–46Google Scholar
  6. Ben Hamed K, Ellouzi H, Talbi OZ, Hessini K, Slama I, Ghnaya T, Munné Bosch S, Savouré A, Abdelly C (2013) Physiological response of halophytes to multiple stresses. Funct Plant Biol 40:883–896CrossRefGoogle Scholar
  7. Ben Hamed K, Magné C, Abdelly C (2014) From halophyte research to halophytes farming. In: Khan MA, Böer B, Öztürk M, Al Abdessalaam TZ, Clüsener-Godt M, Gul B (eds) Sabkha ecosystems: series: tasks for vegetation science, Volume IV: Cash Crop Halophyte and Biodiversity Conservation, vol 47. Springer, Dordrecht, pp 135–142. ISBN 978-94-007-7410-0Google Scholar
  8. Bernal J, Mendiola JA, Ibanez E, Cifuentes A (2011) Advanced analysis of nutraceuticals. J Pharma Biomed 55:758–774CrossRefGoogle Scholar
  9. Borah S, Baruah AM, Das AK, Borah J (2009) Determination of mineral content in commonly consumed leafy vegetables. Food Anal Methods 2:226–230CrossRefGoogle Scholar
  10. Bouftira I, Abdelly C, Souad S (2012) Antioxidant and antibacterial properties of Mesembryanthemum crystallinum and Carpobrotus edulis extracts. Adv Chem Eng Sci 2:359–365CrossRefGoogle Scholar
  11. Boxman SE, Nystrom M, Capodice JC, Ergas SJ, Main KL, Maya A, Trotz MA (2017) Effect of support medium, hydraulic loading rate and plant density on water quality and growth of halophytes in marine aquaponic systems. Aquac Res 48:2463–2477CrossRefGoogle Scholar
  12. Castroviejo S, Feliner GN, Jury SL, Herrero A (2003) Flora iberica: plantas vasculares de la Península Iberica e Islas Baleares, Vol X Araliaceae e Umbelliferae. Real Jardín Botanico, CSIC, Madrid, p 498Google Scholar
  13. Cheeseman JM (2015) The evolution of halophytes, glycophytes and crops and its implications for food security under saline conditions. New Phytol 206:557–570CrossRefGoogle Scholar
  14. Chopin T, Robinson SMC, Troell M, Neori A, Buschmann AH, Fang J (2008) Multitrophic integration for sustainable marine aquaculture. In: Jørgensen SE, Fath BD (eds) The encyclopedia of ecology, ecological engineering, vol 3. Elsevier, Oxford, pp 2463–2475CrossRefGoogle Scholar
  15. Custódio M, Villasante S, Cremades J, Ricardo Calado R, Lillebø AI (2017) Unravelling the potential of halophytes for marine integrated multi-trophic aquaculture (IMTA)- a perspective on performance, opportunities and challenges. Aquacult Environ Interact 9:445–460CrossRefGoogle Scholar
  16. Davy AJ, Bishop GF, Costa CSB (2001) Salicornia L. (Salicornia pusilla J. woods, S. ramosissima J. woods, S. europaea L., S. obscura P.W. ball & tutin, S. nitens P.W. ball & tutin, S. fragilis P.W. ball & tutin and S. dolichostachya moss). J Ecol 89:681–707CrossRefGoogle Scholar
  17. Deters AM, Meyer U, Stintzing FC (2012) Timedependent bioactivity of preparations for cactus pear (Opuntia ficus indica) and ice plant (Mesembryanthemum crystallinum) on human skin fibroblasts and keratinocytes. J Ethnopharmacol 142:438–444CrossRefGoogle Scholar
  18. Díaz FJ, Benes SE, Grattan SR (2013) Field performance of halophytic species under irrigation with saline drainage water in the San Joaquin Valley of California. Agric. Water Manag 118:59–69CrossRefGoogle Scholar
  19. FAO (2000) CGIAR research priorities for marginal lands. TAC-CGIAR of the FAO, Document No. SDR/TAC:IAR/99/12, 148 pGoogle Scholar
  20. Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963CrossRefGoogle Scholar
  21. Flowers TJ, Galal HK, Bromham L (2010) Evolution of halophytes: multiple origins of salt tolerance in land plants. Funct Plant Biol 37:604–612CrossRefGoogle Scholar
  22. Franke W (1982) Vitamin C in sea fennel (Crithmum maritimum), an edible wild plant. Econ Bot 36(2):163–165CrossRefGoogle Scholar
  23. Glenn EP, Brown JJ, O’Leary JW (1998) Irrigating crops with seawater. Sci Am 279:56–61CrossRefGoogle Scholar
  24. Granada L, Sousa N, Lopes S, Lemos MFL (2015) Is integrated multitrophic aquaculture the solution to the sectors’ major challenges? – a review. Rev Aquacult 6:1–18Google Scholar
  25. Herppich WB, Huyskens-Keil S, Schreiner M (2008) Effects of saline irrigation on growth, physiology and quality of Mesembryanthemum crystallinum L., a rare vegetable crop. J App Bot Food Qual 82:47–54Google Scholar
  26. Jacobsen SE (2003) The worldwide potential for quinoa (Chenopodium quinoa Willd.). Food Rev Int 19:167–177CrossRefGoogle Scholar
  27. Khan MA, Ansari R, Ali H, Gul B, Nielsen BL (2009) Panicum turgidum, a potentially sustainable cattle feed alternative to maize for saline areas. Agric Ecosyst Environ 192:542–546CrossRefGoogle Scholar
  28. Ksouri R, Ksouri WM, Jallali I, Debez A, Magné C, Hiroko I, Abdelly C (2012) Medicinal halophytes: potent source of health promoting biomolecules with medical, nutraceutical and food applications. Crit Rev Biotechnol 32:289–326CrossRefGoogle Scholar
  29. Lokhande VH, Gor BK, Desai NS, Nikam TD, Suprasanna P (2013) Sesuvium portulacastrum, a plant for drought, salt stress, sand fixation, food and phytoremediation. Agron Sustain Dev 33:329–348CrossRefGoogle Scholar
  30. Nanhapo PI, Yamane K, Iijima (2017) Mixed cropping with ice plant alleviates the damage and the growth of cowpea under consecutive NaCl treatment and after the recovery from high salinity. Plant Prod Sci 20:111–125CrossRefGoogle Scholar
  31. Padulosi S, Thompson J, Rudebjer P (2013) Fighting poverty hunger and malnutrition with neglected and underutilized species (nus): needs, challenges and the way forward. Bioversity International, RomeGoogle Scholar
  32. Panta S, Flowers T, Lane P, Doyle R, Haros G, Shabala S (2014) Halophyte agriculture: success stories. Environ Exp Bot 107:71–83CrossRefGoogle Scholar
  33. Pereira CG, Barreira L, Neng NR, Nogueira JMF, Marques C, Santos TF, Varela J, Custódio L (2017a) Searching for new sources of innovative products for the food industry within halophyte aromatic plants: in vitro antioxidant activity and phenolic and mineral contents of infusions and decoctions of Crithmum maritimum L. Food Chem Toxicol 107:581–589CrossRefGoogle Scholar
  34. Pereira CP, Barreira L, Neves V, Rodrigues MJ, Rivas R, Neng NR, Nogueira JMF, Varela J, Custódio L (2017b) In vitro bioactivities and phytochemical profile by UHPLC-PDA-amMS of infusions and decoctions of the medicinal halophyte Helichrysum italicum subsp. picardii. J Pharma Biomed Anal 145:593–603CrossRefGoogle Scholar
  35. Rabhi M, Ferchichi S, Jouini J, Hamrouni MH, Koyro HW, Ranieri A, Abdelly C, Smaoui A (2010) Phytodesalination of a salt-affected soil with the halophyte Sesuvium portulacastrum L. to arrange in advance the requirements for the successful growth of a glycophytic crop. Bioresour Technol 101:6822–6828CrossRefGoogle Scholar
  36. Renna M, Gonnella M (2012) The use of the sea fennel as a new spice-colorant in culinary preparations. Int J Gastr Food Sci 1:111–115CrossRefGoogle Scholar
  37. Souid A, Bellani L, Magné C, Zorrig W, Smaoui A, Abdelly C, Longo V, Ben Hamed K (2018) Physiological and antioxidant responses of the sabkha biotope halophyte Limonium delicatulum to seasonal changes in environmental conditions. Plant Physiol Biochem 123:180–191CrossRefGoogle Scholar
  38. Thompson J, Hodgkin T, Atta-Krah K, Jarvis D, Hoogendoorn C, Padulosi S (2007) Biodiversity in agroecosystems farming with nature: the science and practice of ecoagriculture. In: Scherr SJ, McNeely JA (eds) The science and practice of ecoagriculture. Island Press, Washington, DC, pp 46–60Google Scholar
  39. Timsina J, Guilpart N, van Bussel LGJ, Grassini P, vanWart J, Hossain A, Rashid H, Islam S, van Ittersum MK (2018) Can Bangladesh produce enough cereals to meet future demand? Agric Syst 163:36–44CrossRefGoogle Scholar
  40. Troell M, Joyce A, Chopin T, Neori A, Buschmann AH, Fang JG (2009) Ecological engineering in aquaculture—potential for integrated multi-trophic aquaculture (IMTA) in marine offshore systems. Aquaculture 297:1–9CrossRefGoogle Scholar
  41. UNEP (1997) Global state of the environment report, executive summary pp (report) http://www.grida.no/geo1/exsum/ex3.htm
  42. Ventura Y, Sagi M (2013) Halophyte crop cultivation: the case for Salicornia and Sarcocornia. Environ Exp Bot 92:144–153CrossRefGoogle Scholar
  43. Ventura Y, Wuddineh WA, Ephrath Y, Shpigel M, Sagi M (2010) Molybdenum as an essential element for improving total yield in seawater-grown Salicornia europaea L. Sci Hortic 126:395–401CrossRefGoogle Scholar
  44. Ventura Y, Eshel A, Pasternak D, Sagi M (2015) The development of halophytes-based agriculture: past and present. Ann Bot 115:529–540CrossRefGoogle Scholar
  45. Ventura Y, Wuddineh WA, Myrzabayeva M, Alikulov Z, Khozin-Goldberg I, Shpigel M, Samocha TM, Sagi M (2011a) Effect of seawater concentration on the productivity and nutritional value of annual Salicornia and perennial Sarcocornia halophytes as leafy vegetable crops. Sci Hortic 128:189–196CrossRefGoogle Scholar
  46. Ventura Y, Wuddineh WA, Shpigel M, Samocha TM, Klim BC, Cohen S, Shemer Z, Santos R, Sagi M (2011b) Effects of day length on flowering and yield production of Salicornia and Sarcocornia species. Sci Hortic 130:510–516CrossRefGoogle Scholar
  47. Ventura Y, Myrzabayeva M, Alikulov Z, Cohen S, Shemer Z, Sagi M (2013) The importance of iron supply during repetitive harvesting of Aster tripolium. Funct Plant Biol 40:968–976CrossRefGoogle Scholar
  48. Vilcacundo R, Miralles B, Carrillo W, Hernández-Ledesma B (2018) In vitro chemopreventive properties of peptides released from quinoa (Chenopodium quinoa Willd.) protein under simulated gastrointestinal digestion. Food Res Int 105:403–411CrossRefGoogle Scholar
  49. Waller U, Buhmann AK, Ernst A, Hanke V, Kulakowski A, Wecker B, Orellana J, Papenbrock J (2015) Integrated multi-trophic aquaculture in a zero-exchange recirculation aquaculture system for marine fish and hydroponic halophyte production. Aquacult Int 23:1473–1489CrossRefGoogle Scholar
  50. Webb JM, Quintã R, Papadimitriou S, Norman L, Rigby M, Thomas DN, Le Vay L (2012) Halophyte filter beds for treatment of saline wastewater from aquaculture. Water Res 46:5102–5114CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Karim Ben Hamed
    • 1
  • Luisa Custódio
    • 2
  1. 1.Laboratory of Extremophile PlantsCentre of Biotechnology of Borj CedriaHammam-LifTunisia
  2. 2.Faculty of Sciences and Technology, Centre of Marine SciencesUniversity of AlgarveFaroPortugal

Personalised recommendations