Halophytes: Prospective Plants for Future

  • Ganesh Chandrakant Nikalje
  • Shelke Deepak Bhaskar
  • Kushi Yadav
  • Suprasanna Penna


Halophytes are the flowering plants native to saline habitats. These habitats contain high salt, heavy metals and other toxic anthropogenic agents. To complete their life cycle in such harsh conditions, halophytes have developed different strategies like development of succulence, compartmentalization of toxic ions, synthesis of osmolytes, increase in activity of antioxidants and synthesis of compatible solutes. Halophytes have significant applied interests towards various agricultural and non-agricultural purposes besides for maintenance of ecological balance. Important bioactive metabolites can be derived from halophytic plant species for commercial value. In addition, halophytes can be utilized as alternative plants as they could be cultivated for food, fodder/forage, fuel and medicinal crops on saline lands with the help of salty water irrigation. Apart from tolerance, halophytes can be utilized for environmental cleanup. Many halophytes are hyper accumulators of different heavy metals and salt. In this chapter, we discussed prospective use of halophytes for their economic importance as well their potential implications for environmental cleanup.


Halophytes Salinity Economic importance Environmental cleanup 


  1. Abideen Z, Ansari R, Khan MA (2011) Halophytes: potential source of ligno-cellulosic biomass for ethanol production. Biomass Bioenergy 35:1818–1822CrossRefGoogle Scholar
  2. Adolf VI, Jacobsen SE, Shabala S (2013) Salt tolerance mechanisms in quinoa (Chenopodium quinoa Willd.). Environ Exp Bot 92:43–54. CrossRefGoogle Scholar
  3. Aronson JA (1985) HALOPH: a data base of salt tolerant plants of the world. Arid Land Studies. University of Arizona, TucsonGoogle Scholar
  4. Barreira L, Resek E, Rodrigues MJ, Rocha MI, Pereira H, Bandarra N, da Silva MM, Varela J, Custodio L (2017) Halophytes: gourmet food with nutritional health benefits. J Food Compos Anal. CrossRefGoogle Scholar
  5. Barrett-Lennard EG, Setter TL (2010) Developing saline agriculture: moving from traits and genes to systems. Funct Plant Biol 37:iii–iivCrossRefGoogle Scholar
  6. Ben Amor N, Jimenez A, Megdiche W, Lundqvist M, Sevilla F, Abdelly C (2006) Response of antioxidant systems to NaCl stress in the halophyte Cakile maritima. Physiol Plant 126:446–457. CrossRefGoogle Scholar
  7. Ben Hamed K, Ben Youssef N, Ranieri A, Zarrouk M, Abdelly C (2005) Changes in content and fatty acid profiles of total lipids and sulfolipids in the halophyte Crithmum maritimum under salt stress. J Plant Physiol 162:599–602CrossRefGoogle Scholar
  8. Bertin RL, Gonzaga LV, Borges GSC, Azevedo MSA, Maltez HF, Heller M, Micke GA, Ballod LBB, Fett R (2016) Nutrient composition and, identification/quantification of major phenolic compounds in Sarcocornia ambigua (Amaranthaceae) using HPLC-ESI-MS/MS. Food Res Int 55:404–411. CrossRefGoogle Scholar
  9. Boer B (2006) Halophyte research and development: what needs to be done next. In: Khan MA, Weber DJ (eds) Ecophysiology of high salinity tolerant plants. Springer, Berlin/New York, pp 397–399CrossRefGoogle Scholar
  10. Boulaaba M, Mkadmini K, Soninkhishig T, Han J, Smaoui A, Kawada K, Ksouri R, Isoda H, Abdelly C (2013) In vitro antiproliferative effect of Arthrocnemum indicum extracts on Caco-2 Cancer cells through cell cycle control and related phenol LC-TOF-MS identification. Evid Based Complement Alternat Med. CrossRefGoogle Scholar
  11. Buhmann A, Papenbrock J (2013) Biofiltering of aquaculture effluents by halophytic plants: basic principles, current uses and future perspectives. Environ Exp Bot 92:122–133Google Scholar
  12. Cassaniti C, Romano D (2011) The use of halophytes for Mediterranean landscaping. Proceedings of the European COST Action FA901. Eur J Plant Sci Biotechnol 5:58–63Google Scholar
  13. Cassaniti C, Romano D, Hop MECM, Flowers TJ (2013) Growing floricultural crops with brackish water. Environ Exp Bot 92:165–175Google Scholar
  14. Chaudhuri AB, Choudhury A (1994) Mangroves of the Sundarbans, India. IUCN-Bangkok. Thailand. I, 1–247Google Scholar
  15. Chiu CY, Hsiu FS, Chen SS, Chou CH (1995) Reduced toxicity of Cu and Zn to mangrove seedlings (Kandelia candel (L.) Druce.) in saline environments. Bot Bull Acad Sin 36:19–24Google Scholar
  16. Custodio L, Ferreira AC, Pereira H (2012) Themarine halophytes Carpobrotus edulis and Arthrocnemum macrostachyum are potential sources of nutritionally important PUFAs and metabolites with antioxidant, metal chelating and anticholinesterase inhibitory activities. Bot Mar 3:281–288Google Scholar
  17. Declercq DR, Daun JK (1998) Quality of 1997 Ontario Canola. Final Report. Grain Research Laboratory, Winnipeg, Manitoba, Canada: Canadian Grain CommissionGoogle Scholar
  18. Debez A, Belghith I, Friesen J, Montzka C, Elleuche S (2017) Facing the challenge of sustainable bioenergy production: could halophytes be part of the solution. J Biol Eng 11:27Google Scholar
  19. El Shaer HM (2004) Potentiality of halophytes as animal fodder under arid conditions of Egypt. Rangeland and pasture rehabilitation in Mediterranean areas. Cah Options Méditérr 62:369–374Google Scholar
  20. Eshel A, Oren I, Alekparov C, Eilam T, Zilberstein A (2011) Biomass production by desert halophytes: alleviating the pressure on the scarce resources of arable soil and fresh water. Euro J Plant Sci Biotechnol 5:48–53Google Scholar
  21. Falleh H, Ksouri R, Medini F, Guyot S, Abdelly C, Magne C (2011) Antioxi-dant activity and phenolic composition of the medicinal and edible halophyte Mesembryanthemum edule L. Ind Crop Prod 34:1066–1071. CrossRefGoogle Scholar
  22. Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963CrossRefGoogle Scholar
  23. Gago C, Sousa AR, Juliao M, Miguel G, Antunes DC, Panagopoulos T (2011) Sustainable use of energy in the storage of halophytes used for food. Int J Energ Environ 4:5Google Scholar
  24. Glenn EP, Brown J, Blumwald E (1999) Salt tolerance and crop potential of halophytes. Crit Rev Plant Sci 18:227–255CrossRefGoogle Scholar
  25. Gomez-Caravaca AM, Iafelice G, Lavini A, Pulvento C, Caboni MF, Marconi E (2012) Phenolic compounds and saponins in quinoa samples (Chenopodium quinoa Willd.) grown under different saline and nonsaline irrigation regimens. J Agric Food Chem 60:4620–4627. CrossRefPubMedGoogle Scholar
  26. Graf BL, Poulev A, Kuhn P, Grace MH, Lila MA, Raskin I (2014) Quinoa seeds leach phytoecdysteroids and other compounds with anti-diabetic properties. Food Chem 163:178–185. CrossRefPubMedPubMedCentralGoogle Scholar
  27. Gupta B, Huang B (2014) Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int J Genom. CrossRefGoogle Scholar
  28. Hamidov A, Beltrao J, Neves A, Khaydarova V, Khamidov M (2007) Apocynum lancifolium and Chenopodium album potential species to remediate saline soils. WSEAS Trans Environ Dev 7:123–128Google Scholar
  29. Hasanuzzaman M, Nahar K, Alam MM, Bhowmik PC, Hossain MA, Rahman MM, Prasad MNV, Öztürk M, Fujita M (2014) Potential use of halophytes to remediate saline soils. Biomed Res Int. Google Scholar
  30. He Z, Ruana C, Qin P, Seliskar DM, Gallagher JL (2003) Kosteletzkya virginica, a halophytic species with potential for agroecotechnology in Jiangsu Province, China. Ecol Eng 21:271–276CrossRefGoogle Scholar
  31. Herppich WB, Huyskens-Keil S, Schreiner M (2008) Effects of saline irrigation on growth, physiology and quality of Mesembryanthemum crystallinum L., a rare vegetable crop. J App Bot Food Qual 1:47–54Google Scholar
  32. Jessop JP (1986) Family – Aizoaceae (Ficoidaceae, Mesembryanthemaceae, Molluginaceae, Tetragoniaceae). In: Jessop JP, Toelken HR (eds) Flora of South Australia part I, Lycopodiaceae – Rosaceae, vol 383. South Australian Government Publishing Division, Adelaide, p 415Google Scholar
  33. Kathiresan K (2000) A review of studies on Pichavaram mangrove, southeast India. Hydrobiologia 430(1–3):185–205CrossRefGoogle Scholar
  34. Kathiresan K (2012) Importance of mangrove ecosystem. Int J Marine Sci 2(10):70–89Google Scholar
  35. Khan MA, Ansari R, Ali H, Gul B, Nielsen BL (2009) Panicum turgidum: a sustainable feed alternative for cattle in saline areas. Agric Ecosyst Environ 129:542–546CrossRefGoogle Scholar
  36. Kokpol U, Chittawong V, Mills HD (1984) Chemical constituents of the roots of Acanthus illicifolius. J Nat Prod 49:355–356CrossRefGoogle Scholar
  37. Koyro HW, Khan MA, Lieth H (2011) Halophytic crops: a resource for the future to reduce the water crisis. Emir J Food Agric 23:001–016CrossRefGoogle Scholar
  38. Lokhande VH, Gor BK, Desai NS, Nikam TD, Suprasanna P (2013) Sesuvium portulacastrum, a plant for drought, salt stress, sand fixation, food and phytoremediation. A review. Agron Sustain Dev:4–22Google Scholar
  39. Muchate NS, Nikalje GC, Rajurkar NS, Suprasanna P, Nikam TD (2016) Physiological responses of the halophyte Sesuvium portulacastrum to salt stress and their relevance for saline soil bio-reclamation. Flora Morphol Distrib Funct Ecol Plants 224:96–105. CrossRefGoogle Scholar
  40. Nikalje GC, Suprasanna P (2018) Coping with metal toxicity–cues from halophytes. Front Plant Sci 9:777.
  41. Nikalje GC, Nikam TD, Suprasanna P (2017a) Looking at halophytic adaptation to high salinity through genomics landscape. Curr Genomics 18:6CrossRefGoogle Scholar
  42. Nikalje GC, Srivastava AK, Pandey GK, Suprasanna P (2017b) Halophytes in biosaline agriculture: mechanism, utilization and value addition. Land Degr Dev. CrossRefGoogle Scholar
  43. Panta S, Flowers T, Doyle R, Lane P, Haros G, Shabala S (2016) Growth responses of Atriplex lentiformis and Medicago arborea in three soil types treated with saline water irrigation. Environ Exp Bot 128:39–50. CrossRefGoogle Scholar
  44. Pedras MSC, Zheng QA, Shatte G, Adio AM (2009) Photochemical dimerization of wasalexins in UV-irradiated Thellungiella halophila and in vitro generates unique cruciferous phytoalexins. Phytochemistry 70:2010–2016. CrossRefPubMedGoogle Scholar
  45. Patel S (2016) Salicornia: evaluating the halophytic extremophile as a food and a pharmaceutical candidate. 3 Biotech 6:104Google Scholar
  46. Peters EC, Gassman NJ, Firman JC, Richmond RH, Power EA (1997) Ecotoxicology of tropical marine ecosystems. Environ Toxicol Chem 16:12–40CrossRefGoogle Scholar
  47. Qasim M, Gulzar S, Shinwari ZK, Khan MA (2010) Traditional ethno-botanical uses of halophytes from Hub, Balochistan. Pak J Bot 42:1543–1551Google Scholar
  48. Radwan HM, Shams KA, Tawfik WA, Soliman AM (2008) Investigation of the glucosinolates and lipids constituents of Cakile maritime (Scope) growing in Egypt and their biological activity. Res J Med Sci 3:182–187Google Scholar
  49. Ravindran KC, Venkatesan K, Balakrishnan V, Chellappan KP, Balasubramanian T (2007) Restoration of saline land by halophytes for Indian soils. Soil Biol Biochem 10:2661–2664CrossRefGoogle Scholar
  50. Redondo-Gómez S, Mateos-Naranjo E, Andrades-Moreno L (2010) Accumulation and tolerance characteristics of cadmium in a halophytic Cd-hyperaccumulator, Arthrocnemum macrostachyum. J Hazard Mater 184:299–307CrossRefGoogle Scholar
  51. Roy SJ, Negrão S, Tester M (2014) Salt resistant crop plants. Curr Opin Biotechnol 26:115–124CrossRefGoogle Scholar
  52. Sagi B, Erdei L (2002) Distinct physiological characteristics of two subspecies of Aster tripolium L. Acta Biol Szeged 46:257–258Google Scholar
  53. Santi G, D’Annibale A, Eshel A (2014) Bioethanol production from xerophilic and salt-resistant Tamarix jordanis biomass. Biomass Bioenergy 61:73–81CrossRefGoogle Scholar
  54. Shahani NM, Memon MI (1988) Survey and domestication of wild medicinal plants of Sindh, Pakistan. Research Report, Agricultural Research Council PakistanGoogle Scholar
  55. Sharma R, Wungrampha S, Singh V, Pareek A, Sharma MK (2016) Halophytes as bioenergy crops. Front Plant Sci 7:1372. CrossRefPubMedPubMedCentralGoogle Scholar
  56. Shillo R, Ding M, Pasternak D, Zaccai M (2002) Cultivation of cut flower and bulb species with saline water. Sci Hortic 92:41–54CrossRefGoogle Scholar
  57. Shiri M, Rabhi M, Abdelly C, Bouchereau A, El Amrani A (2016) Moderate salinity reduced phenanthrene-induced stress in the halophyte plant model Thellungiella salsuginea compared to its glycophyte relative Arabidopsis thaliana: cross talk and metabolite profiling. Chemosphere 155:453–462. CrossRefPubMedGoogle Scholar
  58. Tardío J, Pardo-de Santayana M, Morales R (2006) Ethnobotanical review of wild edible plants in Spain. Bot J Linn Soc 152(1):27–71CrossRefGoogle Scholar
  59. Vannucci M (ed) (2004) Mangrove management and conservation: present and future. United Nations University, TokyoGoogle Scholar
  60. Ventura Y, Wuddineh WA, Myrzabayeva M (2011) Effect of seawater concentration on the productivity and nutritional value of annual Salicornia and perennial Sarcocornia halophytes as leafy vegetable crops. Sci Hortic 128:189–196CrossRefGoogle Scholar
  61. Weber DJ, Gul B, Khan MA, Williams T, Wayman P, Warner S (2001) Composition of vegetable oil from seeds of native halophytic shrubs. In: McArthur ED, Fairbanks DJ, comps 2000. Proceedings: Shrubland ecosystem genetics and biodiversity. Proceedings RMRS-P-000. U.S. Department of Agriculture, Forest Service Rocky Mountain Research Station, OgdenGoogle Scholar
  62. Weber DJ, Ansari R, Gul B, Khan MA (2007) Potential of halophyte as source of edible oil. J Arid Environ 68:315–321CrossRefGoogle Scholar
  63. World Bank (2008) World Development Report: agriculture for development. World Bank, Washington DCGoogle Scholar
  64. Yajun B, Xiaojing L, Weiqiang L (2003) Primary analysis of four salt tolerant plants growing in Hai-He plain, China. In: Leith H, Mochtchenko M (eds) Cash crop halophytes: recent studies. Kluwar Academic, London, pp 135–138CrossRefGoogle Scholar
  65. Zaccai M (2002) Floriculture in the Mediterranean region. Acta Hortic 582:165–173CrossRefGoogle Scholar
  66. Zurayk RA, Baalbaki R (1996) Inula crithmoides: a candidate plant for saline agriculture. Arid Soil Res Rehabil 3:213–223CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Ganesh Chandrakant Nikalje
    • 1
  • Shelke Deepak Bhaskar
    • 2
  • Kushi Yadav
    • 3
  • Suprasanna Penna
    • 4
  1. 1.Department of Botany, R. K. Talreja College of Arts, Science and CommerceAffiliated to University of MumbaiThaneIndia
  2. 2.Department of Botany, Amruteshwar Art’sCommerce and Science CollegePuneIndia
  3. 3.Dr. B. Lal Institute of BiotechnologyRajasthan UniversityJaipurIndia
  4. 4.Nuclear Agriculture and Biotechnology DivisionBhabha Atomic Research CentreMumbaiIndia

Personalised recommendations