Advertisement

Polyhydroxyalkanoates Applications in Drug Carriers

  • Christos Papaneophytou
  • George Katsipis
  • Eleftherios Halevas
  • Anastasia A. PantazakiEmail author
Chapter

Abstract

Drug delivery carriers (DDCs) have been successfully used in the previous years for the controlled release of therapeutic compounds for the treatment and cure as well as the diagnosis of many diseases including cardiovascular disorders, HIV infection, Alzheimer’s disease, rheumatoid arthritis, and cancer. Several biodegradable/biocompatible polymers including poly- (lactic acid-co-glycolic acid), poly-L-lactic acid, and poly-L-lysine have been used as drug carriers for the transportation and controlled release of therapeutic compounds to the tissue or cells of action. Amongst the various biodegradable polymers tested as DDCs, polyhydroxyalkanoates (PHAs) were extensively investigated due to their unique biochemical properties. The practical applications of PHAs in biomedical/pharmaceutical areas have been approved by FDA in 2007. PHAs are suitable for in vivo therapeutic applications including tissue coating, tissue regeneration devices, stents, tubing, bone or tissue cement wound dressings, and drug delivery. PHAs are biodegradable, biocompatible, and hydrophobic while they are used to produce microspheres, microcapsules, and nanoparticles as well as films and porous matrices. Most importantly, PHAs have significant advantages over other biodegradable polymers, since their degradation products, including oligomers and monomers, are not toxic to the surrounding tissues. The variety of PHAs, along with their biocompatibility and their excellent biochemical and physical properties, make them excellent biopolymers for use in drug delivery. The activity of some anti-cancer agents was enhanced when they combined with PHAs or HA monomers. PHA-based microspheres, nanoparticles, non-woven membranes, and hydrogels have been successfully used as carriers of therapeutic agents for several diseases including cancer and inflammatory diseases.

Keywords

Drug delivery carriers Microspheres Nanoparticles Hydrogels Micelles Polyhydroxyalkanoates 

References

  1. Abdul Karim A, Loh XJ (2015) Design of a micellized α-cyclodextrin based supramolecular hydrogel system. Soft Matter 11:5425–5434.  https://doi.org/10.1039/C5SM00665A CrossRefPubMedGoogle Scholar
  2. Ale EC, Maggio B, Fanani ML (2012) Ordered-disordered domain coexistence in ternary lipid monolayers activates sphingomyelinase by clearing ceramide from the active phase. BBA-Biomembranes 1818:2767–2776.  https://doi.org/10.1016/j.bbamem.2012.06.017 CrossRefPubMedGoogle Scholar
  3. Althuri A, Mathew J, Sindhu R, Banerjee R, Pandey A, Binod P (2013) Microbial synthesis of poly-3-hydroxybutyrate and its application as targeted drug delivery vehicle. Bioresour Technol 145:290–296.  https://doi.org/10.1016/j.biortech.2013.01.106 CrossRefPubMedGoogle Scholar
  4. Amass W, Amass A, Tighe B (1998) A review of biodegradable polymers: uses, current developments in the synthesis and characterization of biodegradable polyesters, blends of biodegradable polymers and recent advances in biodegradation studies. Polym Int 47:89–144.  https://doi.org/10.1002/(SICI)1097-0126(1998100)47:2<89::AID-PI86>3.0.CO;2-F CrossRefGoogle Scholar
  5. Amin S, Rajabnezhad S, Kohli K (2009) Hydrogels as potential drug delivery systems. Sci Res Essays 3:1175–1183Google Scholar
  6. Anderson AJ, Dawes EA (1990) Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Rev 54:450–472PubMedPubMedCentralGoogle Scholar
  7. Ansary RH, Rahman MM, Awang MB, Katas H, Hadi H, Doolaanea AA (2016) Preparation, characterization, and in vitro release studies of insulin-loaded double-walled poly(lactide-co-glycolide) microspheres. Drug Deliv Transl Res 6:308–318.  https://doi.org/10.1007/s13346-016-0278-y CrossRefPubMedGoogle Scholar
  8. Artsis MI, Bonartsev AP, Iordanskii AL, Bonartseva GA, Zaikov GE (2010) Biodegradation and medical application of microbial poly(3-hydroxybutyrate). Mol Cryst Liq Cryst 523:232–262.  https://doi.org/10.1080/15421401003726519 CrossRefGoogle Scholar
  9. Atkins TW (1997) Fabrication of microspheres using blends of poly(ethylene adipate) and poly(ethylene adipate)/poly(hydroxybutyrate-hydroxyvalerate) with poly(caprolactone): incorporation and release of bovine serum albumin. J Biomater Sci Polym Ed 8:833–845.  https://doi.org/10.1163/156856297X00038 CrossRefPubMedGoogle Scholar
  10. Avgoustakis K, Beletsi A, Panagi Z, Klepetsanis P, Karydas AG, Ithakissios DS (2002) PLGA-mPEG nanoparticles of cisplatin: in vitro nanoparticle degradation, in vitro drug release and in vivo drug residence in blood properties. J Control Release 79:123–135.  https://doi.org/10.1016/S0168-3659(01)00530-2 CrossRefPubMedGoogle Scholar
  11. Bahrami B, Mohammadnia-Afrouzi M, Bakhshaei P, Yazdani Y, Ghalamfarsa G, Yousefi M, Sadreddini S, Jadidi-Niaragh F, Hojjat-Farsangi M (2015) Folate-conjugated nanoparticles as a potent therapeutic approach in targeted cancer therapy. Tumour Biol 36:5727–5742.  https://doi.org/10.1007/s13277-015-3706-6 CrossRefPubMedGoogle Scholar
  12. Baird JA, Olayo-Valles R, Rinaldi C, Taylor LS (2010) Effect of molecular weight, temperature, and additives on the moisture sorption properties of polyethylene glycol. J Pharm Sci 99:154–168.  https://doi.org/10.1002/jps.21808 CrossRefPubMedGoogle Scholar
  13. Bazzo GC, Macedo ATD, Crenca JP, Silva VE, Pereira EM, Zétola M, Pezzini BR (2012) Microspheres prepared with biodegradable PHBV and PLA polymers as prolonged-release system for ibuprofen: in vitro drug release and in vivo evaluation. Braz J Pharm Sci 48:773–780.  https://doi.org/10.1590/S1984-82502012000400021 CrossRefGoogle Scholar
  14. Bengtsson S, Karlsson A, Alexandersson T, Quadri L, Hjort M, Johansson P, Morgan-Sagastume F, Anterrieu S, Arcos-Hernandez M, Karabegovic L, Magnusson P, Werker A (2017) A process for polyhydroxyalkanoate (PHA) production from municipal wastewater treatment with biological carbon and nitrogen removal demonstrated at pilot-scale. New Biotechnol 35:42–53.  https://doi.org/10.1016/j.nbt.2016.11.005 CrossRefGoogle Scholar
  15. Bizarria MTM, d’Ávila M, Innocentini-Mei L (2014) Non-woven nanofiber chitosan/PEO membranes obtained by electrospinning. Braz J Chem Eng 31:57–68.  https://doi.org/10.1590/S0104-66322014000100007 CrossRefGoogle Scholar
  16. Bonartsev A, Bonartseva G, Makhina T, Myshkina V, Luchinina E, Livshits V, Boskhomdzhiev A, Markin V, Iordanskii A (2006) New poly (3-hydroxybutyrate)-based systems for controlled release of dipyridamole and indomethacin. Appl Microbiol Biotechnol 42:625–630.  https://doi.org/10.1134/S0003683806060159 CrossRefGoogle Scholar
  17. Bonartsev A, Livshits V, Makhina T, Myshkina V, Bonartseva G, Iordanskii A (2007) Controlled release profiles of dipyridamole from biodegradable microspheres on the base of poly (3-hydroxybutyrate). Express Polym Lett 1:797–803CrossRefGoogle Scholar
  18. Bootz A, Vogel V, Schubert D, Kreuter J (2004) Comparison of scanning electron microscopy, dynamic light scattering and analytical ultracentrifugation for the sizing of poly(butyl cyanoacrylate) nanoparticles. Eur J Pharm Biopharm 57:369–375.  https://doi.org/10.1016/S0939-6411(03)00193-0 CrossRefPubMedGoogle Scholar
  19. Brown SB, Brown EA, Walker I (2004) The present and future role of photodynamic therapy in cancer treatment. Lancet Oncol 5:497–508.  https://doi.org/10.1016/S1470-2045(04)01529-3 CrossRefPubMedGoogle Scholar
  20. Bunjes H, Unruh T (2007) Characterization of lipid nanoparticles by differential scanning calorimetry, X-ray and neutron scattering. Adv Drug Deliv Rev 59:379–402.  https://doi.org/10.1016/j.addr.2007.04.013 CrossRefPubMedGoogle Scholar
  21. Caló E, Khutoryanskiy VV (2015) Biomedical applications of hydrogels: a review of patents and commercial products. Eur Polym J 65:252–267.  https://doi.org/10.1016/j.eurpolymj.2014.11.024 CrossRefGoogle Scholar
  22. Cammas S, Bear MM, Moine L, Escalup R, Ponchel G, Kataoka K, Guerin P (1999) Polymers of malic acid and 3-alkylmalic acid as synthetic PHAs in the design of biocompatible hydrolyzable devices. Int J Biol Macromol 25:273–282.  https://doi.org/10.1016/S0141-8130(99)00042-2 CrossRefPubMedGoogle Scholar
  23. Carino GP, Jacob JS, Mathiowitz E (2000) Nanosphere based oral insulin delivery. J Control Release 65:261–269.  https://doi.org/10.1016/S0168-3659(99)00247-3 CrossRefPubMedGoogle Scholar
  24. Chan Z, Zhang Z, Zhao L (2016) Folate-decorated poly(3-hydroxybutyrate-co-3-hydroxyoctanoate) nanoparticles for targeting delivery: optimization and in vivo antitumor activity. Drug Deliv 23:1830–1837.  https://doi.org/10.3109/10717544.2015.1122675 CrossRefGoogle Scholar
  25. Chang HM, Wang ZH, Luo HN, Xu M, Ren XY, Zheng GX, Wu BJ, Zhang XH, Lu XY, Chen F, Jing XH, Wang L (2014) Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)-based scaffolds for tissue engineering. Braz J Med Biol Res 47:533–539.  https://doi.org/10.1590/1414-431X20143930 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Chaturvedi K, Kulkarni AR, Aminabhavi TM (2011) Blend microspheres of poly(3-hydroxybutyrate) and cellulose acetate phthalate for colon delivery of 5-fluorouracil. Ind Eng Chem Res 50:10414–10423.  https://doi.org/10.1021/ie2011005 CrossRefGoogle Scholar
  27. Chee PL, Lakshmanan L, Jiang S, Ye H, Kai D, Loh XJ (2016) An injectable double-network hydrogel for cell encapsulation. Aust J Chem 69:388–393.  https://doi.org/10.1071/CH15659 CrossRefGoogle Scholar
  28. Chen J, Davis SS (2002) The release of diazepam from poly(hydroxybutyrate-hydroxyvalerate) microspheres. J Microencapsul 19:191–201.  https://doi.org/10.1080/02652040110065431 CrossRefPubMedGoogle Scholar
  29. Chen LJ, Wang M (2002) Production and evaluation of biodegradable composites based on PHB–PHV copolymer. Biomaterials 23:2631–2639.  https://doi.org/10.1016/S0142-9612(01)00394-5 CrossRefPubMedGoogle Scholar
  30. Chen G-Q, Wu Q (2005) The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials 26:6565–6578.  https://doi.org/10.1016/j.biomaterials.2005.04.036 CrossRefPubMedGoogle Scholar
  31. Chen D, Tang C, Chan K, Tsui C, Yu P, Leung M, Uskokovic P (2007) Dynamic mechanical properties and in vitro bioactivity of PHBHV/HA nanocomposite. Compos Sci Technol 67:1617–1626.  https://doi.org/10.1016/j.compscitech.2006.07.034 CrossRefGoogle Scholar
  32. Chen C, Cheng YC, Yu CH, Chan SW, Cheung MK, Yu PH (2008) In vitro cytotoxicity, hemolysis assay, and biodegradation behavior of biodegradable poly(3-hydroxybutyrate)-poly(ethylene glycol)-poly(3-hydroxybutyrate) nanoparticles as potential drug carriers. J Biomed Mater Res A 87:290–298.  https://doi.org/10.1002/jbm.a.31719 CrossRefPubMedGoogle Scholar
  33. Chen Z, Cheng S, Li Z, Xu K, Chen GQ (2009) Synthesis, characterization and cell compatibility of novel poly(ester urethane)s based on poly(3-hydroxybutyrate-co-4-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) prepared by melting polymerization. J Biomater Sci Polym Ed 20:1451–1471.  https://doi.org/10.1163/092050609x12457419007621 CrossRefPubMedGoogle Scholar
  34. Cheng G, Cai Z, Wang L (2003) Biocompatibility and biodegradation of poly(hydroxybutyrate)/poly(ethylene glycol) blend films. J Mater Sci Mater Med 14:1073–1078.  https://doi.org/10.1023/B:JMSM.0000004004.37103.f4 CrossRefPubMedGoogle Scholar
  35. Cheng S, Wu Q, Yang F, Xu M, Leski M, Chen G-Q (2005) Influence of dl-β-hydroxybutyric acid on cell proliferation and calcium influx. Biomacromolecules 6:593–597.  https://doi.org/10.1021/bm049465y CrossRefPubMedGoogle Scholar
  36. Cheng S, Chen G-Q, Leski M, Zou B, Wang Y, Wu Q (2006) The effect of d,l-β-hydroxybutyric acid on cell death and proliferation in L929 cells. Biomaterials 27:3758–3765.  https://doi.org/10.1016/j.biomaterials.2006.02.046 CrossRefPubMedGoogle Scholar
  37. Cheng M, Qin Z, Hu S, Dong S, Ren Z, Yu H (2017) Achieving long-term sustained drug delivery for electrospun biopolyester nanofibrous membranes by introducing cellulose nanocrystals. ACS Biomater Sci Eng 3:1666–1676.  https://doi.org/10.1021/acsbiomaterials.7b00169 CrossRefGoogle Scholar
  38. Chodak I (2008) Polyhydroxyalkanoates: origin, properties and applications. In: Belgacem M, Gandini A (eds) Monomers, polymers and composites from renewable resources. Elsevier, Amsterdam, pp 451–477.  https://doi.org/10.1016/B978-0-08-045316-3.00022-3. ISBN:9780080560519CrossRefGoogle Scholar
  39. Cilurzo F, Selmin F, Minghetti P, Adami M, Bertoni E, Lauria S, Montanari L (2011) Injectability evaluation: an open issue. AAPS Pharm Sci Tech 12:604–609.  https://doi.org/10.1208/s12249-011-9625-y CrossRefGoogle Scholar
  40. Clogston JD, Patri AK (2011) Zeta potential measurement. Methods Mol Biol 697:63–70.  https://doi.org/10.1007/978-1-60327-198-1_6 CrossRefPubMedGoogle Scholar
  41. Coats AW, Redfern JP (1963) Thermogravimetric analysis. A review. Analyst 88:906–906.  https://doi.org/10.1039/an9638800906 CrossRefGoogle Scholar
  42. Coimbra PA, De Sousa HC, Gil MH (2008) Preparation and characterization of flurbiprofen-loaded poly(3-hydroxybutyrate-co-3-hydroxyvalerate) microspheres. J Microencapsul 25:170–178.  https://doi.org/10.1080/02652040701814140 CrossRefPubMedGoogle Scholar
  43. Conte C, d’Angelo I, Miro A, Ungaro F, Quaglia F (2014) PEGylated polyester-based nanoncologicals. Curr Top Med Chem 14:1097–1114CrossRefPubMedGoogle Scholar
  44. Dahlin RL, Kasper FK, Mikos AG (2011) Polymeric nanofibers in tissue engineering. Tissue Eng 17:349–364.  https://doi.org/10.1089/ten.teb.2011.0238 CrossRefGoogle Scholar
  45. de Morais MG, de Morais EG, Vaz B d S, Gonçalves CF, Lisboa C, Vieira Costa JA (2016) Nanoencapsulation of the bioactive compounds of spirulina with a microalgal biopolymer coating. J Nanosci Nanotechnol 16:81–91.  https://doi.org/10.1166/jnn.2016.10899 CrossRefGoogle Scholar
  46. Di Mascolo D, Basnett P, Palange AL, Francardi M, Roy I, Decuzzi P (2016) Tuning core hydrophobicity of spherical polymeric nanoconstructs for docetaxel delivery. Polym Int 65:741–746.  https://doi.org/10.1002/pi.5072 CrossRefGoogle Scholar
  47. Díez-Pascual AM, Díez-Vicente AL (2014) Poly(3-hydroxybutyrate)/ZnO bionanocomposites with improved mechanical, barrier and antibacterial properties. Int J Mol Sci 15:10950–10973.  https://doi.org/10.3390/ijms150610950 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Dolmans DEJGJ, Fukumura D, Jain RK (2003) Photodynamic therapy for cancer. Nat Rev Cancer 3:380.  https://doi.org/10.1038/nrc1071 CrossRefPubMedGoogle Scholar
  49. Domínguez-Díaz M, Romo-Uribe A, Flores A, Cruz-Silva R (2012) Morphology-induced hydrophobic behavior of electrospun polyhydroxyalkanoate membranes. MRS Proc 1466.  https://doi.org/10.1557/opl.2012.1256
  50. Doyle C, Tanner ET, Bonfield W (1991) In vitro and in vivo evaluation of polyhydroxybutyrate and of polyhydroxybutyrate reinforced with hydroxyapatite. Biomaterials 12:841–847.  https://doi.org/10.1016/0142-9612(91)90072-I CrossRefPubMedGoogle Scholar
  51. Duran N, Alvarenga MA, Da Silva EC, Melo PS, Marcato PD (2008) Microencapsulation of antibiotic rifampicin in poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Arch Pharm Res 31:1509–1516.  https://doi.org/10.1007/s12272-001-2137-7 CrossRefPubMedGoogle Scholar
  52. Dutta RC (2007) Drug carriers in pharmaceutical design: promises and progress. Curr Pharm Des 13:761–769.  https://doi.org/10.2174/138161207780249119 CrossRefPubMedGoogle Scholar
  53. El-Say K (2016) Maximizing the encapsulation efficiency and the bioavailability of controlled-release cetirizine microspheres using Draper–Lin small composite design. Drug Des Dev Ther 10:825–839.  https://doi.org/10.2147/DDDT.S101900 CrossRefGoogle Scholar
  54. Embleton JK, Tighe BJ (1993) Polymers for biodegradable medical devices. X. Microencapsulation studies: control of poly-hydroxybutyrate-hydroxyvalerate microcapsules porosity via polycaprolactone blending. J Microencapsul 10:341–352.  https://doi.org/10.3109/02652049309031524 CrossRefPubMedGoogle Scholar
  55. Errico C, Bartoli C, Chiellini F, Chiellini E (2009) Poly(hydroxyalkanoates)-based polymeric nanoparticles for drug delivery. J Biomed Biotechnol 2009:571702–571702.  https://doi.org/10.1155/2009/571702 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Fang J, Nakamura H, Maeda H (2011) The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev 63:136–151.  https://doi.org/10.1016/j.addr.2010.04.009 CrossRefPubMedGoogle Scholar
  57. Fellah BH, Gauthier O, Weiss P, Chappard D, Layrolle P (2008) Osteogenicity of biphasic calcium phosphate ceramics and bone autograft in a goat model. Biomaterials 29:1177–1188.  https://doi.org/10.1016/j.biomaterials.2007.11.034 CrossRefPubMedGoogle Scholar
  58. Fonseca AC, Serra AC, Coelho JF (2015) Bioabsorbable polymers in cancer therapy: latest developments. EPMA J 6:22.  https://doi.org/10.1186/s13167-015-0045-z CrossRefPubMedPubMedCentralGoogle Scholar
  59. Foster L (2010) PEGylation and bioPEGylation of polyhydroxyalkanoates: synthesis, characterisationand applications. In: Elnashar M (ed) Biopolymers. InTech, Bolton, pp 223–256.  https://doi.org/10.5772/10265. ISBN:978-953-307-109-1Google Scholar
  60. Freier T, Kunze C, Nischan C, Kramer S, Sternberg K, Saß M, HoptU T, Schmitz K-P (2002) In vitro and in vivo degradation studies for development of a biodegradable patch based on poly(3-hydroxybutyrate). Biomaterials 23:2649–2657.  https://doi.org/10.1016/S0142-9612(01)00405-7 CrossRefPubMedGoogle Scholar
  61. Freitas S, Merkle HP, Gander B (2005) Microencapsulation by solvent extraction/evaporation: reviewing the state of the art of microsphere preparation process technology. J Control Release 102:313–332.  https://doi.org/10.1016/j.jconrel.2004.10.015 CrossRefPubMedGoogle Scholar
  62. Gangrade N, Price JC (1991) Poly(hydroxybutyrate-hydroxyvalerate) microspheres containing progesterone: preparation, morphology and release properties. J Microencapsul 8:185–202.  https://doi.org/10.3109/02652049109071487 CrossRefPubMedGoogle Scholar
  63. Gao Y, Chen L, Zhang Z, Gu W, Li Y (2010) Linear cationic click polymer for gene delivery: synthesis, biocompatibility, and in vitro transfection. Biomacromolecules 11:3102–3111.  https://doi.org/10.1021/bm100906m CrossRefPubMedGoogle Scholar
  64. Gogolewski S, Jovanovic M, Perren SM, Dillon JG, Hughes MK (1993) Tissue response and in vivo degradation of selected polyhydroxyacids: polylactides (PLA), poly(3-hydroxybutyrate) (PHB), and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHB/VA). J Biomed Mater Res 27:1135–1148.  https://doi.org/10.1002/jbm.820270904 CrossRefPubMedGoogle Scholar
  65. Gould PL, Holland SJ, Tighe BJ (1987) Polymers for biodegradable medical devices. IV. Hydroxybutyrate-valerate copolymers as non-disintegrating matrices for controlled-release oral dosage forms. Int J Pharm 38:231–237CrossRefGoogle Scholar
  66. Grage K, Jahns AC, Parlane N, Palanisamy R, Rasiah IA, Atwood JA, Rehm BHA (2009) Bacterial polyhydroxyalkanoate granules: biogenesis, structure, and potential use as nano-/micro-beads in biotechnological and biomedical applications. Biomacromolecules 10:660–669.  https://doi.org/10.1021/bm801394s CrossRefPubMedGoogle Scholar
  67. Grillo R, de Melo NFS, de Lima R, Lourenço RW, Rosa AH, Fraceto LF (2010) Characterization of atrazine-loaded biodegradable poly(hydroxybutyrate-co-hydroxyvalerate) microspheres. J Polym Environ 18:26–32.  https://doi.org/10.1007/s10924-009-0153-8 CrossRefGoogle Scholar
  68. Guh J-Y, Chuang T-D, Chen H-C, Hung W-C, Lai Y-H, Shin S-J, Chuang L-Y (2003) β-hydroxybutyrate–induced growth inhibition and collagen production in HK-2 cells are dependent on TGF-β and Smad3. Kidney Int 64:2041–2051.  https://doi.org/10.1046/j.1523-1755.2003.00330.x CrossRefPubMedGoogle Scholar
  69. Gürsel I, Hasirci V (1995) Properties and drug release behaviour of poly(3-hydroxybutyric acid) and various poly(3-hydroxybutyrate-hydroxyvalerate) copolymer microcapsules. J Microencapsul 12:185–193.  https://doi.org/10.3109/02652049509015289 CrossRefPubMedGoogle Scholar
  70. Gursel I, Korkusuz F, Turesin F, Alaeddinoglu NG, Hasirci V (2001) In vivo application of biodegradable controlled antibiotic release systems for the treatment of implant-related osteomyelitis. Biomaterials 22:73–80.  https://doi.org/10.1016/S0142-9612(00)00170-8 CrossRefPubMedGoogle Scholar
  71. Gursel I, Yagmurlu F, Korkusuz F, Hasirci V (2002) In vitro antibiotic release from poly (3-hydroxybutyrate-co-3-hydroxyvalerate) rods. J Microencapsul 19:153–164.  https://doi.org/10.1080/02652040110065413 CrossRefGoogle Scholar
  72. Hamoudeh M, Faraj AA, Canet-Soulas E, Bessueille F, Léonard D, Fessi H (2007) Elaboration of PLLA-based superparamagnetic nanoparticles: characterization, magnetic behaviour study and in vitro relaxivity evaluation. Int J Pharm 338:248–257.  https://doi.org/10.1016/j.ijpharm.2007.01.023 CrossRefPubMedGoogle Scholar
  73. Hazer DB, Kılıçay E, Hazer B (2012) Poly(3-hydroxyalkanoate)s: diversification and biomedical applications: a state of the art review. Mater Sci Eng C 32:637–647.  https://doi.org/10.1016/j.msec.2012.01.021 CrossRefGoogle Scholar
  74. He C, Kim SW, Lee DS (2008) In situ gelling stimuli-sensitive block copolymer hydrogels for drug delivery. J Control Release 127:189–207.  https://doi.org/10.1016/j.jconrel.2008.01.005 CrossRefPubMedGoogle Scholar
  75. Heathman TRJ, Webb WR, Han J, Dan Z, Chen GQ, Forsyth NR, El Haj AJ, Zhang ZR, Sun X (2014) Controlled production of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) nanoparticles for targeted and sustained drug delivery. J Pharm Sci 103:2498–2508.  https://doi.org/10.1002/jps.24035 CrossRefPubMedGoogle Scholar
  76. Hoare TR, Kohane DS (2008) Hydrogels in drug delivery: progress and challenges. Polymer 49:1993–2007.  https://doi.org/10.1016/j.polymer.2008.01.027 CrossRefGoogle Scholar
  77. Hoffman AS (2008) The origins and evolution of “controlled” drug delivery systems. J Control Release 132:153–163.  https://doi.org/10.1016/j.jconrel.2008.08.012 CrossRefPubMedGoogle Scholar
  78. Holmberg M, Stibius KB, Larsen NB, Hou X (2008) Competitive protein adsorption to polymer surfaces from human serum. J Mater Sci Mater Med 19:2179–2185.  https://doi.org/10.1007/s10856-007-3318-9 CrossRefPubMedGoogle Scholar
  79. Holowka EP, Bhatia SK (2014) Drug delivery: materials design and clinical perspective. Springer, New York, 63 pGoogle Scholar
  80. Hsu PH, Laddu AR (1994) Analysis of adverse events in a dose titration study. J Clin Pharmacol 34:136–141.  https://doi.org/10.1002/j.1552-4604.1994.tb03977.x CrossRefPubMedGoogle Scholar
  81. Hussein AS, Abdullah N, Fakru’l-razi A (2013) Optimizing the process parameters for encapsulation of linamarin into PLGA nanoparticles using double emulsion solvent evaporation technique. Adv Polym Tech 32:E486–E504.  https://doi.org/10.1002/adv.21295 CrossRefGoogle Scholar
  82. Imre B, Pukánszky B (2013) Compatibilization in bio-based and biodegradable polymer blends. Eur Polym J 49:1215–1233.  https://doi.org/10.1016/j.eurpolymj.2013.01.019 CrossRefGoogle Scholar
  83. Jain KK (2008) Drug delivery systems – an overview. Methods Mol Biol 437:1–50.  https://doi.org/10.1007/978-1-59745-210-6_1 CrossRefPubMedGoogle Scholar
  84. Jayakumar R, Prabaharan M, Nair SV, Tamura H (2010) Novel chitin and chitosan nanofibers in biomedical applications. Biotechnol Adv 28:142–150.  https://doi.org/10.1016/j.biotechadv.2009.11.001 CrossRefPubMedGoogle Scholar
  85. Jogani V, Jinturkar K, Vyas T, Misra A (2008) Recent patents review on intranasal administration for CNS drug delivery. Recent Pat Drug Deliv Formul 2:25–40.  https://doi.org/10.2174/187221108783331429 CrossRefPubMedGoogle Scholar
  86. Jones NL, Cooper JJ, Waters RD, Williams DF (2001) Resorption profile and biological response of calcium phosphate filled PLLA and PHB7V. In: Agarwal CM, Parr JE, Lin ST (eds) Synthetic bioabsorbable polymers for implants. Astm International, Pennsylvania, pp 69–82.  https://doi.org/10.1520/STP1396-EB. ISBN:978-0-8031-5444-5Google Scholar
  87. Kai D, Low ZW, Liow SS, Abdul Karim A, Ye H, Jin G, Li K, Loh XJ (2015) Development of lignin supramolecular hydrogels with mechanically responsive and self-healing properties. ACS Sustain Chem Eng 3:2160–2169.  https://doi.org/10.1021/acssuschemeng.5b00405 CrossRefGoogle Scholar
  88. Kamachi M, Zhang S, Goodwin S, Lenz RW (2001) Enzymatic polymerization and characterization of new poly(3-hydroxyalkanoate)s by a bacterial polymerase. Macromolecules 34:6889–6894.  https://doi.org/10.1021/ma010081z CrossRefGoogle Scholar
  89. Kamaly N, Yameen B, Wu J, Farokhzad OC (2016) Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release. Chem Rev 116:2602–2663.  https://doi.org/10.1021/acs.chemrev.5b00346 CrossRefPubMedPubMedCentralGoogle Scholar
  90. Kang J-S, Lee M-H (2009) Overview of therapeutic drug monitoring. Korean J Intern Med 24:1–10.  https://doi.org/10.3904/kjim.2009.24.1.1 CrossRefPubMedPubMedCentralGoogle Scholar
  91. Karim AA, Dou Q, Li Z, Loh XJ (2016) Emerging supramolecular therapeutic carriers based on host-guest interactions. Chem Asian J 11:1300–1321.  https://doi.org/10.1002/asia.201501434 CrossRefPubMedGoogle Scholar
  92. Kassab AC, Xu K, Denkbas EB, Dou Y, Zhao S, Piskin E (1997) Rifampicin carrying polyhydroxybutyrate microspheres as a potential chemoembolization agent. J Biomater Sci Polym Ed 8:947–961.  https://doi.org/10.1163/156856297X00119 CrossRefPubMedGoogle Scholar
  93. Kassab AC, Pişkin E, Bilgic S, Denkbaş E, Xu K (1999) Embolization with polyhydroxybutyrate (PHB) microspheres: in-vivo studies. J Bioact Compat Polym 14:291–303CrossRefGoogle Scholar
  94. Kawaguchi T, Tsugane A, Higashide K, Endoh H, Hasegawa T, Kanno H, Seki T, Juni K, Fukushima S, Nakano M (1992) Control of drug release with a combination of prodrug and polymer matrix: antitumor activity and release profiles of 2′, 3′-diacyl-5-fluoro-2′-deoxyuridine from poly (3-hydroxybutyrate) microspheres. J Pharm Sci 81:508–512.  https://doi.org/10.1002/jps.2600810606 CrossRefPubMedGoogle Scholar
  95. Kazuhiko J, Masahiro N, Miho K (1986) Controlled release of aclarubicim, an anticancer antibiotic, from poly-β-hydroxybutyric acid microspheres. J Control Release 4:25–32.  https://doi.org/10.1016/0168-3659(86)90030-1 CrossRefGoogle Scholar
  96. Kedar U, Phutane P, Shidhaye S, Kadam V (2010) Advances in polymeric micelles for drug delivery and tumor targeting. Nanomedicine 6:714–729.  https://doi.org/10.1016/j.nano.2010.05.005 CrossRefPubMedGoogle Scholar
  97. Khang G, Kim SW, Cho JC, Rhee JM, Yoon SC, Lee HB (2001) Preparation and characterization of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) microspheres for the sustained release of 5-fluorouracil. Biomed Mater Eng 11:89–103PubMedGoogle Scholar
  98. Kılıçay E, Demirbilek M, Türk M, Güven E, Hazer B, Denkbas EB (2011) Preparation and characterization of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHX) based nanoparticles for targeted cancer therapy. Eur J Pharm Sci 44:310–320.  https://doi.org/10.1016/j.ejps.2011.08.013 CrossRefPubMedGoogle Scholar
  99. Kilicay E, Karahaliloglu Z, Hazer B, Tekin IÖ, Denkbas EB (2016) Concanavaline A conjugated bacterial polyester-based PHBHHx nanoparticles loaded with curcumin for breast cancer therapy. J Microencapsul 33:274–285.  https://doi.org/10.3109/02652048.2016.1169325 CrossRefPubMedGoogle Scholar
  100. Kim H-N, Lee J, Kim H-Y, Kim Y-R (2009) Enzymatic synthesis of a drug delivery system based on polyhydroxyalkanoate-proteinblock copolymers. Chem Commun 46:7104–7106.  https://doi.org/10.1039/B912871A CrossRefGoogle Scholar
  101. Kim TH, Mount CW, Gombotz WR, Pun SH (2010) The delivery of doxorubicin to 3-D multicellular spheroids and tumors in a murine xenograft model using tumor-penetrating triblock polymeric micelles. Biomaterials 31:7386–7397.  https://doi.org/10.1016/j.biomaterials.2010.06.004 CrossRefPubMedGoogle Scholar
  102. Kirkizlar O, Kendir M, Karaali Z, Ure U, Ozbay G, Selcuk D, Kazancioglu R (2007) Acute renal failure in a patient with severe hemolysis. Int Urol Nephrol 39:651–654.  https://doi.org/10.1007/s11255-006-9096-3 CrossRefPubMedGoogle Scholar
  103. Knowles JC (1993) Development of a natural degradable polymer for orthopaedic use. J Med Eng Technol 17:129–137.  https://doi.org/10.3109/03091909309087593 CrossRefPubMedGoogle Scholar
  104. Knowles JC, Hastings GW (1993) In vitro and in vivo investigation of a range of phosphate glass-reinforced polyhydroxybutyrate-based degradable composites. J Mater Sci Mater Med 4:102–106.  https://doi.org/10.1007/bf00120377 CrossRefGoogle Scholar
  105. Knowles JC, Mahmud FA, Hastings GW (1991) Piezoelectric characteristics of a polyhydroxybutyrate-based composite. Clin Mater 8:155–158.  https://doi.org/10.1016/0267-6605(91)90024-A CrossRefGoogle Scholar
  106. Knowles JC, Hastings GW, Ohta H, Niwa S, Boeree N (1992) Development of a degradable composite for orthopaedic use: in vivo biomechanical and histological evaluation of two bioactive degradable composites based on the polyhydroxybutyrate polymer. Biomaterials 13:491–496.  https://doi.org/10.1016/0142-9612(92)90099-A CrossRefPubMedGoogle Scholar
  107. Korsatko W, Wabnegg B, Tillian H, Braunegg G, Lafferty R (1983) Poly-D-hydroxybutyric acid-a biologically degradable vehicle to regard release of a drug. Pharm Ind 45:1004–1007Google Scholar
  108. Kose GT, Kenar H, Hasirci N, Hasirci V (2003) Macroporous poly(3-hydroxybutyrate-co-3-hydroxyvalerate) matrices for bone tissue engineering. Biomaterials 24:1949–1958.  https://doi.org/10.1016/S0142-9612(02)00613-0 CrossRefPubMedGoogle Scholar
  109. Kose G, Korkusuz F, Korkusuz P, Hasirci V (2004) In vivo tissue engineering of bone using poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid) and collagen scaffolds. Tissue Eng 10:1234–1250.  https://doi.org/10.1089/ten.2004.10.1234 CrossRefPubMedGoogle Scholar
  110. Kost J, Langer R (2001) Responsive polymeric delivery systems. Adv Drug Deliv Rev 46:125–148.  https://doi.org/10.1016/S0169-409X(00)00136-8 CrossRefPubMedGoogle Scholar
  111. Kostopoulos L, Karring T (1994) Guided bone regeneration in mandibular defects in rats using a bioresorbable polymer. Clin Oral Implants Res 5:66–74.  https://doi.org/10.1034/j.1600-0501.1994.050202.x CrossRefPubMedGoogle Scholar
  112. Kreuter J (1978) Nanoparticles and nanocapsules – new dosage forms in the nanometer size range. Pharm Acta Helv 53:33–39PubMedGoogle Scholar
  113. Laurencin CT, Kumbar SG, Nukavarapu SP, James R, Hogan MV (2008) Recent patents on electrospun biomedical nanostructures: an overview. Recent Pat Biomed Eng 1:68–78.  https://doi.org/10.2174/1874764710801010068 CrossRefGoogle Scholar
  114. Le Ray AM, Chiffoleau S, Iooss P, Grimandi G, Gouyette A, Daculsi G, Merle C (2003) Vancomycin encapsulation in biodegradable poly(epsilon-caprolactone) microparticles for bone implantation. Influence of the formulation process on size, drug loading, in vitro release and cytocompatibility. Biomaterials 24:443–449.  https://doi.org/10.1016/S0142-9612(02)00357-5 CrossRefPubMedGoogle Scholar
  115. Lee Y-F, Sridewi N, Ramanathan S, Sudesh K (2016) The influence of electrospinning parameters and drug loading on polyhydroxyalkanoate (PHA) nanofibers for drug delivery. Int J Biotechnol Wellness Ind 4:103–113.  https://doi.org/10.6000/1927-3037.2015.04.04.1 CrossRefGoogle Scholar
  116. Lenz RW, Marchessault RH (2005) Bacterial polyesters: biosynthesis, biodegradable plastics and biotechnology. Biomacromolecules 6:1–8.  https://doi.org/10.1021/bm049700c CrossRefPubMedGoogle Scholar
  117. Li Z, Loh XJ (2017) Recent advances of using polyhydroxyalkanoate-based nanovehicles as therapeutic delivery carriers. Wiley Interdiscip Rev Nanomed Nanobiotechnol 9:e1429.  https://doi.org/10.1002/wnan.1429 CrossRefGoogle Scholar
  118. Li J, Li X, Ni X, Wang X, Li H, Leong KW (2006) Self-assembled supramolecular hydrogels formed by biodegradable PEO-PHB-PEO triblock copolymers and alpha-cyclodextrin for controlled drug delivery. Biomaterials 27:4132–4140.  https://doi.org/10.1016/j.biomaterials.2006.03.025 CrossRefPubMedGoogle Scholar
  119. Li W, Ding Y, Rai R, Roether JA, Schubert DW, Boccaccini AR (2014) Preparation and characterization of PHBV microsphere/45S5 bioactive glass composite scaffolds with vancomycin releasing function. Mater Sci Eng C Mater Biol Appl 41:320–328.  https://doi.org/10.1016/j.msec.2014.04.052 CrossRefPubMedGoogle Scholar
  120. Li X, Chang H, Luo H, Wang Z, Zheng G, Lu X, He X, Chen F, Wang T, Liang J, Xu M (2015) Poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) scaffolds coated with PhaP-RGD fusion protein promotes the proliferation and chondrogenic differentiation of human umbilical cord mesenchymal stem cells in vitro. J Biomed Mater Res A 103:1169–1175.  https://doi.org/10.1002/jbm.a.35265 CrossRefPubMedGoogle Scholar
  121. Li W, Jan Z, Ding Y, Liu Y, Janko C, Pischetsrieder M, Alexiou C, Boccaccini AR (2016) Facile preparation of multifunctional superparamagnetic PHBV microspheres containing SPIONs for biomedical applications. Sci Rep 6:23140.  https://doi.org/10.1038/srep23140 CrossRefPubMedPubMedCentralGoogle Scholar
  122. Liechty WB, Kryscio DR, Slaughter BV, Peppas NA (2010) Polymers for drug delivery systems. Annu Rev Chem Biomol Eng 1:149–173.  https://doi.org/10.1146/annurev-chembioeng-073009-100847 CrossRefPubMedPubMedCentralGoogle Scholar
  123. Liu Y, Cai D, Yang J, Wang Y, Zhang X, Yin S (2014a) In vitro hemocompatibility evaluation of poly (4-hydroxybutyrate) scaffold. Int J Clin Exp Med 7:1233–1243PubMedPubMedCentralGoogle Scholar
  124. Liu Y, Zhu YH, Mao CQ, Dou S, Shen S, Tan ZB, Wang J (2014b) Triple negative breast cancer therapy with CDK1 siRNA delivered by cationic lipid assisted PEG-PLA nanoparticles. J Control Release 192:114–121.  https://doi.org/10.1016/j.jconrel.2014.07.001 CrossRefPubMedGoogle Scholar
  125. Loh XJ, Goh SH, Li J (2007a) Hydrolytic degradation and protein release studies of thermogelling polyurethane copolymers consisting of poly[(R)-3-hydroxybutyrate], poly(ethylene glycol), and poly(propylene glycol). Biomaterials 28:4113–4123.  https://doi.org/10.1016/j.biomaterials.2007.05.016 CrossRefPubMedGoogle Scholar
  126. Loh XJ, Goh SH, Li J (2007b) New biodegradable thermogelling copolymers having very low gelation concentrations. Biomacromolecules 8:585–593.  https://doi.org/10.1021/bm0607933 CrossRefPubMedGoogle Scholar
  127. Loh XJ, Ong SJ, Tung YT, Choo HT (2013) Dual responsive micelles based on poly[(R)-3-hydroxybutyrate] and poly(2-(di-methylamino)ethyl methacrylate) for effective doxorubicin delivery. Polym Chem 4:2564–2574.  https://doi.org/10.1039/C3PY00096F CrossRefGoogle Scholar
  128. Lu X-Y, Zhang Y, Wang L (2010) Preparation and in vitro drug-release behavior of 5-fluorouracil-loaded poly(hydroxybutyrate- co -hydroxyhexanoate) nanoparticles and microparticles. J Appl Polym Sci 8:2944–2950.  https://doi.org/10.1002/app.31806 CrossRefGoogle Scholar
  129. Lu XY, Ciraolo E, Stefenia R, Chen GQ, Zhang Y, Hirsch E (2011) Sustained release of PI3K inhibitor from PHA nanoparticles and in vitro growth inhibition of cancer cell lines. Appl Microbiol Biotechnol 89:1423–1433.  https://doi.org/10.1007/s00253-011-3101-1 CrossRefPubMedGoogle Scholar
  130. Lü L-X, Zhang X-F, Wang Y-Y, Ortiz L, Mao X, Jiang Z-L, Xiao Z-D, Huang N-P (2013) Effects of hydroxyapatite-containing composite nanofibers on osteogenesis of mesenchymal stem cells in vitro and bone regeneration in vivo. ACS Appl Mater Interfaces 5:319–330.  https://doi.org/10.1021/am302146w CrossRefPubMedGoogle Scholar
  131. Lu X-Y, Li M-C, Zhu X-L, Fan F, Wang L-L, Ma J-G (2014) Microbial synthesized biodegradable PHBHHxPEG hybrid copolymer as an efficient intracellular delivery nanocarrier for kinase inhibitor. BMC Biotechnol 14:4–4.  https://doi.org/10.1186/1472-6750-14-4 CrossRefPubMedPubMedCentralGoogle Scholar
  132. Luef KP, Stelzer F, Wiesbrock F (2015) Poly(hydroxy alkanoate)s in medical applications. Chem Biochem Eng Q 29:287–297.  https://doi.org/10.15255/CABEQ.2014.2261 CrossRefPubMedPubMedCentralGoogle Scholar
  133. Luklinska ZB, Schluckwerder H (2003) In vivo response to HA-polyhydroxybutyrate/polyhydroxyvalerate composite. J Microsc 211:121–129.  https://doi.org/10.1046/j.1365-2818.2003.01204.x CrossRefPubMedGoogle Scholar
  134. Mader JS, Hoskin DW (2006) Cationic antimicrobial peptides as novel cytotoxic agents for cancer treatment. Expert Opin Investig Drugs 15:933–946.  https://doi.org/10.1517/13543784.15.8.933 CrossRefPubMedGoogle Scholar
  135. Mahapatro A, Singh DK (2011) Biodegradable nanoparticles are excellent vehicle for site directed in-vivo delivery of drugs and vaccines. J Nanobiotechnol 9:55. (51–59).  https://doi.org/10.1186/1477-3155-9-55 CrossRefGoogle Scholar
  136. Makadia HK, Siegel SJ (2011) Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers 3:1377–1397.  https://doi.org/10.3390/polym3031377 CrossRefPubMedPubMedCentralGoogle Scholar
  137. Mankin HJ, Fogelson FS, Thrasher AZ, Jaffer F (1976) Massive resection and allograft transplantation in the treatment of malignant bone tumors. N Engl J Med 294:1247–1255.  https://doi.org/10.1056/nejm197606032942301 CrossRefPubMedGoogle Scholar
  138. Mano JF, Sousa RA, Boesel LF, Neves NM, Reis RL (2004) Bioinert, biodegradable and injectable polymeric matrix composites for hard tissue replacement: state of the art and recent developments. Compos Sci Technol 64:789–817.  https://doi.org/10.1016/j.compscitech.2003.09.001 CrossRefGoogle Scholar
  139. Martínez Rivas CJ, Tarhini M, Badri W, Miladi K, Greige-Gerges H, Nazari QA, Galindo Rodríguez SA, Román RÁ, Fessi H, Elaissari A (2017) Nanoprecipitation process: from encapsulation to drug delivery. Int J Pharm 532:66–81.  https://doi.org/10.1016/j.ijpharm.2017.08.064 CrossRefPubMedGoogle Scholar
  140. Masood F, Chen P, Yasin T, Fatima N, Hasan F, Hameed A (2013a) Encapsulation of Ellipticine in poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) based nanoparticles and its in vitro application. Mater Sci Eng C Mater Biol Appl 33:1054–1060.  https://doi.org/10.1016/j.msec.2012.11.025 CrossRefPubMedGoogle Scholar
  141. Masood F, Chen P, Yasin T, Hasan F, Ahmad B, Hameed A (2013b) Synthesis of poly-(3-hydroxybutyrate-co-12 mol % 3-hydroxyvalerate) by Bacillus cereus FB11: its characterization and application as a drug carrier. J Mater Sci Mater Med 24:1927–1937.  https://doi.org/10.1007/s10856-013-4946-x CrossRefPubMedGoogle Scholar
  142. Matthews J, Gademann K, Jaun B, Seebach D (1998) Linear and cyclic [small beta]3-oligopeptides with functionalised side-chains (-CH2OBn, -CO2Bn, -CH2CH2CO2Bn) derived from serine and from aspartic and glutamic acid. J Chem Soc Perkin Trans 1:3331–3340.  https://doi.org/10.1039/A805478I CrossRefGoogle Scholar
  143. Maurus PB, Kaeding CC (2004) Bioabsorbable implant material review. Oper Tech Sports Med 12:158–160.  https://doi.org/10.1053/j.otsm.2004.07.015 CrossRefGoogle Scholar
  144. Mayya KS, Bhattacharyya A, Argillier JF (2003) Micro-encapsulation by complex coacervation: influence of surfactant. Polym Int 52:644–647.  https://doi.org/10.1002/pi.1125 CrossRefGoogle Scholar
  145. McGinity JW, O’Donnell PB (1997) Preparation of microspheres by the solvent evaporation technique. Adv Drug Deliv Rev 28:25–42.  https://doi.org/10.1016/S0169-409X(97)00049-5 CrossRefPubMedGoogle Scholar
  146. Mikhail AS, Allen C (2009) Block copolymer micelles for delivery of cancer therapy: transport at the whole body, tissue and cellular levels. J Control Release 138:214–223.  https://doi.org/10.1016/j.jconrel.2009.04.010 CrossRefPubMedGoogle Scholar
  147. Minost A, Delaveau J, Bolzinger M-A, Fessi H, Elaissari A (2012) Nanoparticles via nanoprecipitation process. Recent Pat Drug Deliv Formul 6:250–258.  https://doi.org/10.2174/187221112802652615 CrossRefPubMedGoogle Scholar
  148. Misra SK, Valappil SP, Roy I, Boccaccini AR (2006) Polyhydroxyalkanoate (PHA)/inorganic phase composites for tissue engineering applications. Biomacromolecules 7:2249–2258.  https://doi.org/10.1021/bm060317c CrossRefPubMedGoogle Scholar
  149. Modi S, Koelling K, Vodovotz Y (2011) Assessment of PHB with varying hydroxyvalerate content for potential packaging applications. Eur Polym J 47:179–186.  https://doi.org/10.1016/j.eurpolymj.2010.11.010 CrossRefGoogle Scholar
  150. Monnier A, Rombouts C, Kouider D, About I, Fessi H, Sheibat-Othman N (2016) Preparation and characterization of biodegradable polyhydroxybutyrate-co-hydroxyvalerate/polyethylene glycol-based microspheres. Int J Pharm 513:49–61.  https://doi.org/10.1016/j.ijpharm.2016.08.066 CrossRefPubMedGoogle Scholar
  151. Mousavioun P, Doherty WOS, George G (2010) Thermal stability and miscibility of poly(hydroxybutyrate) and soda lignin blends. Ind Crop Prod 32:656–661.  https://doi.org/10.1016/j.indcrop.2010.08.001 CrossRefGoogle Scholar
  152. Müller DJ, Dufrêne YF (2008) Atomic force microscopy as a multifunctional molecular toolbox in nanobiotechnology. Nat Nanotechnol 3:261–269.  https://doi.org/10.1038/nnano.2008.100 CrossRefPubMedGoogle Scholar
  153. Murueva AV, Shishatskaya EI, Kuzmina AM, Volova TG, Sinskey AJ (2013) Microparticles prepared from biodegradable polyhydroxyalkanoates as matrix for encapsulation of cytostatic drug. J Mater Sci Mater Med 24:1905–1915.  https://doi.org/10.1007/s10856-013-4941-2 CrossRefPubMedGoogle Scholar
  154. Murugesan S, Ganesan S, Averineni RK, Nahar M, Mishra P, Jain NK (2007) PEGylated poly(lactide-co-glycolide) (PLGA) nanoparticulate delivery of docetaxel: synthesis of diblock copolymers, optimization of preparation variables on formulation characteristics and in vitro release studies. J Biomed Nanotechnol 3:52–60.  https://doi.org/10.1166/jbn.2007.012 CrossRefGoogle Scholar
  155. Narayani R, Panduranga Rao K (1996) Gelatin microsphere cocktails of different sizes for the controlled release of anticancer drugs. Int J Pharm 143:255–258.  https://doi.org/10.1016/S0378-5173(96)04685-6 CrossRefGoogle Scholar
  156. Nguyen MK, Lee DS (2010) Injectable biodegradable hydrogels. Macromol Biosci 10:563–579.  https://doi.org/10.1002/mabi.200900402 CrossRefPubMedGoogle Scholar
  157. Ni J, Wang M (2002) In vitro evaluation of hydroxyapatite reinforced polyhydroxybutyrate composite. Mater Sci Eng C 20:101–109.  https://doi.org/10.1016/S0928-4931(02)00019-X CrossRefGoogle Scholar
  158. Nicolas J, Mura S, Brambilla D, Mackiewicz N, Couvreur P (2013) Design, functionalization strategies and biomedical applications of targeted biodegradable/biocompatible polymer-based nanocarriers for drug delivery. Chem Soc Rev 42:1147–1235.  https://doi.org/10.1039/c2cs35265f CrossRefPubMedGoogle Scholar
  159. Nicolson PC, Vogt J (2001) Soft contact lens polymers: an evolution. Biomaterials 22:3273–3283.  https://doi.org/10.1016/S0142-9612(01)00165-X CrossRefPubMedGoogle Scholar
  160. Nobes G, Maysinger D, Marchessault R (1998) Polyhydroxyalkanoates: materials for delivery systems. Drug Deliv 5:167–177.  https://doi.org/10.3109/10717549809052032 CrossRefPubMedGoogle Scholar
  161. O’Connor S, Szwej E, Nikodinovic-Runic J, O’Connor A, Byrne AT, Devocelle M, O’Donovan N, Gallagher WM, Babu R, Kenny ST, Zinn M, Zulian QR, O’Connor KE (2013) The anti-cancer activity of a cationic anti-microbial peptide derived from monomers of polyhydroxyalkanoate. Biomaterials 34:2710–2718.  https://doi.org/10.1016/j.biomaterials.2012.12.032 CrossRefPubMedGoogle Scholar
  162. Oerlemans C, Bult W, Bos M, Storm G, Nijsen JF, Hennink WE (2010) Polymeric micelles in anticancer therapy: targeting, imaging and triggered release. Pharm Res 27:2569–2589.  https://doi.org/10.1007/s11095-010-0233-4 CrossRefPubMedPubMedCentralGoogle Scholar
  163. Orts WJ, Nobes GA, Kawada J, Nguyen S, Yu G-E, Ravenelle F (2008) Poly (hydroxyalkanoates): biorefinery polymers with a whole range of applications. The work of robert H. Marchessault. Can J Chem 86:628–640.  https://doi.org/10.1139/v08-050 CrossRefGoogle Scholar
  164. Owen S, Chan DPY, Shoichet MS (2012) Polymeric micelle stability. Nano Today 7:53–65.  https://doi.org/10.1016/j.nantod.2012.01.002 CrossRefGoogle Scholar
  165. Panith N, Assavanig A, Lertsiri S, Bergkvist M, Surarit R, Niamsiri N (2016) Development of tunable biodegradable polyhydroxyalkanoates microspheres for controlled delivery of tetracycline for treating periodontal disease. J Appl Polym Sci 133:44128.  https://doi.org/10.1002/app.44128 CrossRefGoogle Scholar
  166. Park K (2014) Controlled drug delivery systems: past forward and future back. J Control Release 190:3–8.  https://doi.org/10.1016/j.jconrel.2014.03.054 CrossRefPubMedPubMedCentralGoogle Scholar
  167. Park S, Lee SH, Lee SY (2001) Preparation of optically active β-amino acids from microbial polyester polyhydroxyalkanoates. J Chem Res 2001:498–499.  https://doi.org/10.3184/030823401103168640 CrossRefGoogle Scholar
  168. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2:751–760.  https://doi.org/10.1038/nnano.2007.387 CrossRefPubMedGoogle Scholar
  169. Peng Q, Zhang Z-R, Sun X, Zuo J, Zhao D, Gong T (2010) Mechanisms of phospholipid complex loaded nanoparticles enhancing the oral bioavailability. Mol Pharm 7:565–575.  https://doi.org/10.1021/mp900274u CrossRefPubMedGoogle Scholar
  170. Peng X, Chen Y, Li Y, Wang Y, Zhang X (2016) A long-acting BMP-2 release system based on poly(3-hydroxybutyrate) nanoparticles modified by amphiphilic phospholipid for osteogenic differentiation. Biomed Res Int 2016:5878645.  https://doi.org/10.1155/2016/5878645 CrossRefPubMedPubMedCentralGoogle Scholar
  171. Pich A, Schiemenz N, Corten C, Adler H-JP (2006) Preparation of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) particles in O/W emulsion. Polymer 47:1912–1920.  https://doi.org/10.1016/j.polymer.2006.01.038 CrossRefGoogle Scholar
  172. Pietrzak WS, Sarver DR, Verstynen ML (1997) Bioabsorbable polymer science for the practicing surgeon. J Craniofac Surg 8:87–91.  https://doi.org/10.1097/00001665-199703000-00004 CrossRefPubMedGoogle Scholar
  173. Pillay V, Dott C, Choonara YE, Tyagi C, Tomar L, Kumar P, du Toit LC, Ndesendo VMK (2013) A review of the effect of processing variables on the fabrication of electrospun nanofibers for drug delivery applications. J Nanomater 2013:1–22.  https://doi.org/10.1155/2013/789289 CrossRefGoogle Scholar
  174. Poletto FS, Fiel LA, Donida B, Ré MI, Guterres SS, Pohlmann AR (2008) Controlling the size of poly(hydroxybutyrate-co-hydroxyvalerate) nanoparticles prepared by emulsification–diffusion technique using ethanol as surface agent. Colloids Surf A Physicochem Eng Asp 324:105–112.  https://doi.org/10.1016/j.colsurfa.2008.04.003 CrossRefGoogle Scholar
  175. Poste G, Kirsh R (1983) Site-specific (targeted) drug delivery in cancer therapy. Nat Biotechnol 1:869–878.  https://doi.org/10.1038/nbt1283-869 CrossRefGoogle Scholar
  176. Pouton CW, Akhtar S (1996) Biosynthetic polyhydroxyalkanoates and their potential in drug delivery. Adv Drug Deliv Rev 18:133–162CrossRefGoogle Scholar
  177. Pramanik N, Mitra T, Khamrai M, Bhattacharyya A, Mukhopadhyay P, Gnanamani A, Basu RK, Kundu PP (2015) Characterization and evaluation of curcumin loaded guar gum/polyhydroxyalkanoates blend films for wound healing applications. RSC Adv 5:63489–63501.  https://doi.org/10.1039/C5RA10114J CrossRefGoogle Scholar
  178. Pramual S, Assavanig A, Bergkvist M, Batt CA, Sunintaboon P, Lirdprapamongkol K, Svasti J, Niamsiri N (2016) Development and characterization of bio-derived polyhydroxyalkanoate nanoparticles as a delivery system for hydrophobic photodynamic therapy agents. J Mater Sci Mater Med 27:40.  https://doi.org/10.1007/s10856-015-5655-4 CrossRefPubMedGoogle Scholar
  179. Pushpamalar J, Veeramachineni AK, Owh C, Loh XJ (2016) Biodegradable polysaccharides for controlled drug delivery. ChemPlusChem 81:504–514.  https://doi.org/10.1002/cplu.201600112 CrossRefGoogle Scholar
  180. Qi X, Liu Y, Ding ZY, Cao JQ, Huang JH, Zhang JY, Jia WT, Wang J, Liu CS, Li XL (2017) Synergistic effects of dimethyloxallyl glycine and recombinant human bone morphogenetic protein-2 on repair of critical-sized bone defects in rats. Sci Rep 7:1–13.  https://doi.org/10.1038/srep42820 CrossRefGoogle Scholar
  181. Qu X-H, Wu Q, Liang J, Qu X, Wang S-G, Chen G-Q (2005) Enhanced vascular-related cellular affinity on surface modified copolyesters of 3-hydroxybutyrate and 3-hydroxyhexanoate (PHBHHx). Biomaterials 26:6991–7001.  https://doi.org/10.1016/j.biomaterials.2005.05.034 CrossRefPubMedGoogle Scholar
  182. Qu X-H, Wu Q, Chen G-Q (2006a) In vitro study on hemocompatibility and cytocompatibility of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). J Biomater Sci Polym Ed 17:1107–1121.  https://doi.org/10.1163/156856206778530704 CrossRefGoogle Scholar
  183. Qu X-H, Wu Q, Zhang K-Y, Chen GQ (2006b) In vivo studies of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) based polymers: biodegradation and tissue reactions. Biomaterials 27:3540–3548.  https://doi.org/10.1016/j.biomaterials.2006.02.015 CrossRefPubMedGoogle Scholar
  184. Radivojevic J, Skaro S, Senerovic L, Vasiljevic B, Guzik M, Kenny ST, Maslak V, Nikodinovic-Runic J, O’Connor KE (2016) Polyhydroxyalkanoate-based 3-hydroxyoctanoic acid and its derivatives as a platform of bioactive compounds. Appl Microbiol Biotechnol 100:161–172.  https://doi.org/10.1007/s00253-015-6984-4 CrossRefPubMedPubMedCentralGoogle Scholar
  185. Ravanat J-L, Douki T, Cadet J (2001) Direct and indirect effects of UV radiation on DNA and its components. J Photochem Photobiol B 63:88–102.  https://doi.org/10.1016/S1011-1344(01)00206-8 CrossRefPubMedGoogle Scholar
  186. Ravi S, Peh KK, Darwis Y, Murthy BK, Singh TRR, Mallikarjun C (2008) Development and characterization of polymeric microspheres for controlled release protein loaded drug delivery system. Indian J Pharm Sci 70:303–309.  https://doi.org/10.4103/0250-474X.42978 CrossRefPubMedPubMedCentralGoogle Scholar
  187. Ray S, Kalia VC (2017) Biomedical applications of polyhydroxyalkanoates. Indian J Microbiol 57:261–269.  https://doi.org/10.1007/s12088-017-0651-7 CrossRefPubMedPubMedCentralGoogle Scholar
  188. Reddy CSK, Ghai R, Rashmi, Kalia VC (2003) Polyhydroxyalkanoates: an overview. Bioresour Technol 87:137–146.  https://doi.org/10.1016/S0960-8524(02)00212-2 CrossRefPubMedGoogle Scholar
  189. Ruth K, Grubelnik A, Hartmann R, Egli T, Zinn M, Ren Q (2007) Efficient production of (R)-3-hydroxycarboxylic acids by biotechnological conversion of polyhydroxyalkanoates and their purification. Biomacromolecules 8:279–286.  https://doi.org/10.1021/bm060585a CrossRefPubMedGoogle Scholar
  190. Saito T, Tomita K, Juni K, Ooba K (1991) In vivo and in vitro degradation of poly(3-hydroxybutyrate) in rat. Biomaterials 12:309–312.  https://doi.org/10.1016/0142-9612(91)90039-D CrossRefPubMedGoogle Scholar
  191. Sajeev US, Anoop Anand K, Menon D, Nair S (2008) Control of nanostructures in PVA, PVA/chitosan blends and PCL through electrospinning. Bull Mater Sci 31:343–351.  https://doi.org/10.1007/s12034-008-0054-9 CrossRefGoogle Scholar
  192. Salman M, Sahin A, Onur M, Öge K, Kassab A, Aypar Ü (2003) Tramadol encapsulated into polyhydroxybutyrate microspheres: in vitro release and epidural analgesic effect in rats. Acta Anaesthesiol Scand 47:1006–1012.  https://doi.org/10.1034/j.1399-6576.2003.00180.x CrossRefPubMedGoogle Scholar
  193. Sanathanan LP, Peck CC (1991) The randomized concentration-controlled trial: an evaluation of its sample size efficiency. Control Clin Trials 12:780–794.  https://doi.org/10.1016/0197-2456(91)90041-J CrossRefPubMedGoogle Scholar
  194. Scheithauer EC, Li W, Ding Y, Harhaus L, Roether JA, Boccaccini AR (2015) Preparation and characterization of electrosprayed daidzein–loaded PHBV microspheres. Mater Lett 158:66–69.  https://doi.org/10.1016/j.matlet.2015.05.133 CrossRefGoogle Scholar
  195. Seebach D, Albert M, Arvidsson PI, Rueping M, Schreiber JV (2001) From the biopolymer PHB to biological investigations of unnatural β- and γ-peptides. Chimia 55:345–353Google Scholar
  196. Sendil D, Gursel I, Wise DL, Hasirci V (1999) Antibiotic release from biodegradable PHBV microparticles. J Control Release 59:207–217.  https://doi.org/10.1016/S0168-3659(98)00195-3 CrossRefPubMedGoogle Scholar
  197. Sevastianov VI, Tseytlina EA (1984) The activation of the complement system by polymer materials and their blood compatibility. J Biomed Mater Res 18:969–978.  https://doi.org/10.1002/jbm.820180902 CrossRefGoogle Scholar
  198. Sevastianov VI, Perova NV, Shishatskaya EI, Kalacheva GS, Volova TG (2003) Production of purified polyhydroxyalkanoates (PHAs) for applications in contact with blood. J Biomater Sci Polym Ed 14:1029–1042.  https://doi.org/10.1163/156856203769231547 CrossRefPubMedGoogle Scholar
  199. Shah M, Choi MH, Ullah N, Kim MO, Yoon SC (2011) Synthesis and characterization of PHV-block-mPEG diblock copolymer and its formation of amphiphilic nanoparticles for drug delivery. J Nanosci Nanotechnol 11:5702–5710.  https://doi.org/10.1166/jnn.2011.4493 CrossRefPubMedGoogle Scholar
  200. Shah M, Ullah N, Choi MH, Kim MO, Yoon SC (2012) Amorphous amphiphilic P(3HV-co-4HB)-b-mPEG block copolymer synthesized from bacterial copolyester via melt transesterification: nanoparticle preparation, cisplatin-loading for cancer therapy and in vitro evaluation. Eur J Pharm Biopharm 80:518–527.  https://doi.org/10.1016/j.ejpb.2011.11.014 CrossRefPubMedGoogle Scholar
  201. Shah M, Ullah N, Choi MH, Yoon SC (2014) Nanoscale poly(4-hydroxybutyrate)-mPEG carriers for anticancer drugs delivery. J Nanosci Nanotechnol 14:8416–8421.  https://doi.org/10.1166/jnn.2014.9924 CrossRefPubMedGoogle Scholar
  202. Sharma PK, Munir RI, de Kievit T, Levin DB (2017) Synthesis of polyhydroxyalkanoates (PHAs) from vegetable oils and free fatty acids by wild-type and mutant strains of Pseudomonas chlororaphis. Can J Microbiol 63:1009–1024.  https://doi.org/10.1139/cjm-2017-0412 CrossRefPubMedGoogle Scholar
  203. Shin SY, Lee SH, Yang ST, Park EJ, Lee DG, Lee MK, Eom SH, Song WK, Kim Y, Hahm KS, Kim JI (2001) Antibacterial, antitumor and hemolytic activities of alpha-helical antibiotic peptide, P18 and its analogs. J Pept Res 58:504–514.  https://doi.org/10.1034/j.1399-3011.2001.00934.x CrossRefPubMedGoogle Scholar
  204. Shishatskaya EI, Goreva AV, Voinova ON, Inzhevatkin EV, Khlebopros RG, Volova TG (2008a) Evaluation of antitumor activity of rubomycin deposited in absorbable polymeric microparticles. Bull Exp Biol Med 145:358–361.  https://doi.org/10.1007/s10517-008-0091-9 CrossRefPubMedGoogle Scholar
  205. Shishatskaya EI, Voinova ON, Goreva AV, Mogilnaya OA, Volova TG (2008b) Biocompatibility of polyhydroxybutyrate microspheres: in vitro and in vivo evaluation. J Mater Sci Mater Med 19:2493–2502.  https://doi.org/10.1007/s10856-007-3345-6 CrossRefPubMedGoogle Scholar
  206. Shrivastav A, Kim H-Y, Kim Y-R (2013) Advances in the applications of polyhydroxyalkanoate nanoparticles for novel drug delivery system. Biomed Res Int 2013:12.  https://doi.org/10.1155/2013/581684 CrossRefGoogle Scholar
  207. Simoes S, Figueiras A, Veiga F (2012) Modular hydrogels for drug delivery. J Biomater Nanobiotechnol 3:185.  https://doi.org/10.4236/jbnb.2012.32025 CrossRefGoogle Scholar
  208. Singh NK, Lee DS (2014) In situ gelling pH- and temperature-sensitive biodegradable block copolymer hydrogels for drug delivery. J Control Release 193:214–227.  https://doi.org/10.1016/j.jconrel.2014.04.056 CrossRefPubMedGoogle Scholar
  209. Singh R, Lillard JW Jr (2009) Nanoparticle-based targeted drug delivery. Exp Mol Pathol 86:215–223.  https://doi.org/10.1016/j.yexmp.2008.12.004 CrossRefPubMedPubMedCentralGoogle Scholar
  210. Sombatmankhong K, Sanchavanakit N, Pavasant P, Supaphol P (2007) Bone scaffolds from electrospun fiber mats of poly(3-hydroxybutyrate), poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and their blend. Polymer 48:1419–1427.  https://doi.org/10.1016/j.polymer.2007.01.014 CrossRefGoogle Scholar
  211. Sousa RA, Reis RL, Cunha AM, Bevis MJ (2003) Processing and properties of bone-analogue biodegradable and bioinert polymeric composites. Compos Sci Technol 63:389–402.  https://doi.org/10.1016/S0266-3538(02)00213-0 CrossRefGoogle Scholar
  212. Stamm C, Khosravi A, Grabow N, Schmohl K, Treckmann N, Drechsel A, Nan M, Schmitz KP, Haubold A, Steinhoff G (2004) Biomatrix/polymer composite material for heart valve tissue engineering. Ann Thorac Surg 78:2084–2092.  https://doi.org/10.1016/j.athoracsur.2004.03.106 CrossRefPubMedGoogle Scholar
  213. Suarez-Jimenez G-M, Burgos-Hernandez A, Ezquerra-Brauer J-M (2012) Bioactive peptides and depsipeptides with anticancer potential: sources from marine animals. Mar Drugs 10:963–986.  https://doi.org/10.3390/md10050963 CrossRefPubMedPubMedCentralGoogle Scholar
  214. Sun J, Dai Z, Zhao Y, Chen G-Q (2007) In vitro effect of oligo-hydroxyalkanoates on the growth of mouse fibroblast cell line L929. Biomaterials 28:3896–3903.  https://doi.org/10.1016/j.biomaterials.2007.05.011 CrossRefPubMedGoogle Scholar
  215. Sur S, Fries AC, Kinzler KW, Zhou S, Vogelstein B (2014) Remote loading of preencapsulated drugs into stealth liposomes. Proc Natl Acad Sci U S A 111:2283–2288.  https://doi.org/10.1073/pnas.1324135111 CrossRefPubMedPubMedCentralGoogle Scholar
  216. Tan L, Yu X, Wan P, Yang K (2013) Biodegradable materials for bone repairs: a review. J Mater Sci Technol 29:503–513.  https://doi.org/10.1016/j.jmst.2013.03.002 CrossRefGoogle Scholar
  217. Tan Y, Hu Y, Liu X, Yin Z, Chen XW, Liu M (2016) Improving drug safety: from adverse drug reaction knowledge discovery to clinical implementation. Methods 110:14–25.  https://doi.org/10.1016/j.ymeth.2016.07.023 CrossRefPubMedGoogle Scholar
  218. Tian H, Tang Z, Zhuang X, Chen X, Jing X (2012) Biodegradable synthetic polymers: preparation, functionalization and biomedical application. Prog Polym Sci 37:237–280.  https://doi.org/10.1016/j.progpolymsci.2011.06.004 CrossRefGoogle Scholar
  219. Titushkin IA, Vasin SL, Rozanova IB, Pokidysheva EN, Alekhin AP, Sevastianov VI (2001) Carbon coated polyethylene: effect of surface energetics and topography on human platelet adhesion. ASAIO J 47:11–17.  https://doi.org/10.1097/00002480-200101000-00005 CrossRefPubMedGoogle Scholar
  220. Tiwari G, Tiwari R, Sriwastawa B, Bhati L, Pandey S, Pandey P, Bannerjee SK (2012) Drug delivery systems: an updated review. Int J Pharma Investig 2:2–11.  https://doi.org/10.4103/2230-973X.96920 CrossRefGoogle Scholar
  221. Upadhyay M, Adena SKR, Mishra B (2017) Hydrogels: an introduction to a controlled drug delivery device, synthesis and application in drug delivery and tissue engineering. Austin J Biomed Eng 4:1037Google Scholar
  222. Vainionpaa S, Vihtonen K, Mero M, Patiala H, Rokkanen P, Kilpikari J, Tormala P (1986) Biodegradable fixation of rabbit osteotomies. Acta Orthop Scand 57:237–239.  https://doi.org/10.3109/17453678608994386 CrossRefPubMedGoogle Scholar
  223. Valappil SP, Misra SK, Boccaccini A, Roy I (2006) Biomedical applications of polyhydroxyalkanoates, an overview of animal testing and in vivo responses. Expert Rev Med Devices 3:853–868.  https://doi.org/10.1586/17434440.3.6.853 CrossRefPubMedGoogle Scholar
  224. Vardhan H, Mittal P, Adena SKR, Upadhyay M, Mishra B (2017) Development of long-circulating docetaxel loaded poly (3-hydroxybutyrate-co-3-hydroxyvalerate) nanoparticles: optimization, pharmacokinetic, cytotoxicity and in vivo assessments. Int J Biol Macromol 103:791–801.  https://doi.org/10.1016/j.ijbiomac.2017.05.125 CrossRefPubMedGoogle Scholar
  225. Vega-Castro O, Contreras-Calderon J, León E, Segura A, Arias M, Pérez L, Sobral PJA (2016) Characterization of a polyhydroxyalkanoate obtained from pineapple peel waste using Ralsthonia eutropha. J Biotechnol 231:232–238.  https://doi.org/10.1016/j.jbiotec.2016.06.018 CrossRefPubMedGoogle Scholar
  226. Vilar G, Tulla-Puche J, Albericio F (2012) Polymers and drug delivery systems. Curr Drug Deliv 9:367–394CrossRefPubMedGoogle Scholar
  227. Vilos, Gutiérrez Cutiño M, Escobar J, Morales Zavala F, Denardin J, Velasquez L, Altbir (2013) Superparamagnetic poly (3-hydroxybutyrate-co-3 hydroxyvalerate) (PHBV) nanoparticles for biomedical applications. Electron J Biotechnol 16.  https://doi.org/10.1016/j.ejbt.v16n5-8
  228. Vitezić D, Božina N, Mršić-Pelčić J, Turk VE, Francetić I (2016) Personalized medicine in clinical pharmacology. In: Bodiroga-Vukobrat N, Rukavina D, Pavelić K, Sander GG (eds) Personalized medicine: a new medical and social challenge. Springer, Cham, pp 265–278.  https://doi.org/10.1007/978-3-319-39349-0. ISBN:978-3-319-39349-0Google Scholar
  229. Wang L, Wang Z-H, Shen C-Y, You M-L, Xiao J-F, Chen G-Q (2010) Differentiation of human bone marrow mesenchymal stem cells grown in terpolyesters of 3-hydroxyalkanoates scaffolds into nerve cells. Biomaterials 31:1691–1698.  https://doi.org/10.1016/j.biomaterials.2009.11.053 CrossRefPubMedGoogle Scholar
  230. Witte F, Ulrich H, Rudert M, Willbold E (2007) Biodegradable magnesium scaffolds: part 1: appropriate inflammatory response. J Biomed Mater Res A 81:748–756.  https://doi.org/10.1002/jbm.a.31170 CrossRefPubMedGoogle Scholar
  231. Wong HM, Yeung KWK, Lam KO, Tam V, Chu PK, Luk KDK, Cheung KMC (2010) A biodegradable polymer-based coating to control the performance of magnesium alloy orthopaedic implants. Biomaterials 31:2084–2096.  https://doi.org/10.1016/j.biomaterials.2009.11.111 CrossRefPubMedGoogle Scholar
  232. Wu LP, Wang D, Parhamifar L, Hall A, Chen G-Q, Moghimi SM (2014) Poly(3-hydroxybutyrate-co-R-3-hydroxyhexanoate) nanoparticles with polyethylenimine coat as simple, safe, and versatile vehicles for cell targeting: population characteristics, cell uptake, and intracellular trafficking. Adv Healthc Mater 3:817–824.  https://doi.org/10.1002/adhm.201300533 CrossRefPubMedGoogle Scholar
  233. Xiao X-Q, Zhao Y, Chen G-Q (2007) The effect of 3-hydroxybutyrate and its derivatives on the growth of glial cells. Biomaterials 28:3608–3616.  https://doi.org/10.1016/j.biomaterials.2007.04.046 CrossRefPubMedGoogle Scholar
  234. Xiong YC, Yao YC, Zhan XY, Chen GQ (2010) Application of polyhydroxyalkanoates nanoparticles as intracellular sustained drug-release vectors. J Biomater Sci Polym Ed 21:127–140.  https://doi.org/10.1163/156856209x410283 CrossRefPubMedGoogle Scholar
  235. Xu JX, Tang JB, Zhao LH, Shen YQ (2009) Advances in the study of tumor pH-responsive polymeric micelles for cancer drug targeting delivery. Acta Pharm Sin 44:1328–1335Google Scholar
  236. Xu W, Ling P, Zhang T (2013) Polymeric micelles, a promising drug delivery system to enhance bioavailability of poorly water-soluble drugs. J Drug Deliv 2013:1–15.  https://doi.org/10.1155/2013/340315 CrossRefGoogle Scholar
  237. Ye H, Owh C, Loh XJ (2015) A thixotropic polyglycerol sebacate-based supramolecular hydrogel showing UCST behavior. RSC Adv 5:48720–48728.  https://doi.org/10.1039/C5RA08222F CrossRefGoogle Scholar
  238. Yu H-Y, Qin Z-Y (2014) Surface grafting of cellulose nanocrystals with poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Carbohydr Polym 101:471–478.  https://doi.org/10.1016/j.carbpol.2013.09.048 CrossRefPubMedGoogle Scholar
  239. Yu D-G, Zhu L-M, White K, Branford-White C (2009) Electrospun nanofiber-based drug delivery systems. Health 01:67–75.  https://doi.org/10.4236/health.2009.12012 CrossRefGoogle Scholar
  240. Yu X, Trase I, Ren M, Duval K, Guo X, Chen Z (2016) Design of nanoparticle-based carriers for targeted drug delivery. J Nanomater 2016:1–15.  https://doi.org/10.1155/2016/1087250 CrossRefGoogle Scholar
  241. Zawidlak B, Kawalec M, Bosek I, Łuczyk-Juzwa M, Adamus G, Rusin A, Filipczak P, Głowala-Kosińska M, Wolanska K, Krawczyk Z, Kurcok P (2010) Synthesis and antiproliferative properties of ibuprofen-oligo(3-hydroxybutyrate) conjugates. Eur J Med Chem 45:1833–1842.  https://doi.org/10.1016/j.ejmech.2010.01.020 CrossRefGoogle Scholar
  242. Zhang C, Zhang Z, Zhao L (2016) Folate-decorated poly(3-hydroxybutyrate-co-3-hydroxyoctanoate) nanoparticles for targeting delivery: optimization and in vivo antitumor activity. Drug Deliv 23:1830–1837.  https://doi.org/10.3109/10717544.2015.1122675 CrossRefPubMedGoogle Scholar
  243. Zhao X (2011) Bioactive materials in drug delivery systems. In: Zhao X, Courtney JM, Qian H (eds) Bioactive materials in medicine. Woodhead Publishing, Cambridge, pp 247–265.  https://doi.org/10.1533/9780857092939.2.247. ISBN:978-1-84569-624-5CrossRefGoogle Scholar
  244. Zhao S, Zhu M, Zhang J, Zhang Y, Liu Z, Zhu Y, Zhang C (2014) Three dimensionally printed mesoporous bioactive glass and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) composite scaffolds for bone regeneration. J Mater Chem B 2:6106–6118.  https://doi.org/10.1039/C4TB00838C CrossRefGoogle Scholar
  245. Zhu M, Zuo W, Yu H, Yang W, Chen Y (2006) Superhydrophobic surface directly created by electrospinning based on hydrophilic material. J Mater Sci 41:3793–3797.  https://doi.org/10.1007/s10853-005-5910-z CrossRefGoogle Scholar
  246. Zhu XH, Wang CH, Tong YW (2009) In vitro characterization of hepatocyte growth factor release from PHBV/PLGA microsphere scaffold. J Biomed Mater Res A 89:411–423.  https://doi.org/10.1002/jbm.a.31978 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Christos Papaneophytou
    • 1
  • George Katsipis
    • 2
  • Eleftherios Halevas
    • 2
  • Anastasia A. Pantazaki
    • 2
    Email author
  1. 1.Department of Life and Health Sciences, School of Sciences and EngineeringUniversity of NicosiaNicosiaCyprus
  2. 2.Laboratory of Biochemistry, Department of ChemistryAristotle UniversityThessalonikiGreece

Personalised recommendations