Representational Models and Computational Foundations of Some Types of Uncertain Linguistic Expressions

  • Hai WangEmail author
  • Zeshui Xu
Part of the Uncertainty and Operations Research book series (UOR)


Based on the literature review in Chap. 1, we focus on some types of ULEs and introduce the corresponding models in this chapter. These models are based on the virtual linguistic model. Thus, we introduce a theoretical discussion on this model because it triggered off some debates due to the lack of syntactical and semantic rules.


  1. 1.
    Brouwer, L.E.J.: Über abbildung von mannigfaltigkeiten. Math. Ann. 71(1), 97–115 (1911)CrossRefGoogle Scholar
  2. 2.
    Bustince, H., Fernández, J., Kolesárová, A., Mesiar, R.: Generation of linear orders for intervals by means of aggregation functions. Fuzzy Sets Syst. 220, 69–77 (2013)CrossRefGoogle Scholar
  3. 3.
    Casillas, J., Cordón, O., Del Jesus, M.J., Herrera, F.: Genetic tuning of fuzzy rule deep structures preserving interpretability and its interaction with fuzzy rule set reduction. IEEE Trans. Fuzzy Syst. 13(1), 13–29 (2005)CrossRefGoogle Scholar
  4. 4.
    Cordón, O., del Jesus, M.J., Herrera, F.: Genetic learning of fuzzy rule-based classification systems cooperating with fuzzy reasoning methods. Int. J. Intell. Syst. 13(10–11), 1025–1053 (1998)CrossRefGoogle Scholar
  5. 5.
    De Cock, M., Kerre, E.E.: Fuzzy modifiers based on fuzzy relations. Inf. Sci. 160(1), 173–199 (2004)Google Scholar
  6. 6.
    De Miguel, L., Bustince, H., Fernández, J., Induráin, E., Kolesárová, A., Mesiar, R.: Construction of admissible linear orders for interval-valued atanassov intuitionistic fuzzy sets with an application to decision making. Inf. Fusion 27, 189–197 (2016)CrossRefGoogle Scholar
  7. 7.
    De Cock, M., Radzikowska, A.M., Kerre, E.E.: A fuzzy-rough approach to the representation of linguistic hedges. In: Technologies for Constructing Intelligent Systems 1, pp. 33–42. Springer (2002)Google Scholar
  8. 8.
    Degani, R., Bortolan, G.: The problem of linguistic approximation in clinical decision making. Int. J. Approx. Reason. 2(2), 143–162 (1988)CrossRefGoogle Scholar
  9. 9.
    Dong, Y.C., Xu, Y.F., Yu, S.: Linguistic multiperson decision making based on the use of multiple preference relations. Fuzzy Sets Syst. 160(5), 603–623 (2009)CrossRefGoogle Scholar
  10. 10.
    Dubois, D., Prade, H.: Rough fuzzy sets and fuzzy rough sets. Int. J. Gen. Syst. 17(2–3), 191–209 (1990)CrossRefGoogle Scholar
  11. 11.
    Falcó, E., García-Lapresta, J.L., Roselló, L.: Allowing agents to be imprecise: a proposal using multiple linguistic terms. Inf. Sci. 258, 249–265 (2014)CrossRefGoogle Scholar
  12. 12.
    Herrera, F., Herrera-Viedma, E.: Linguistic decision analysis: Steps for solving decision problems under linguistic information. Fuzzy Sets Syst. 115(1), 67–82 (2000)CrossRefGoogle Scholar
  13. 13.
    Herrera, F., Martínez, L.: A 2-tuple fuzzy linguistic representation model for computing with words. IEEE Trans. Fuzzy Syst. 8(6), 746–752 (2000)CrossRefGoogle Scholar
  14. 14.
    Komorníková, M., Mesiar, R.: Aggregation functions on bounded partially ordered sets and their classification. Fuzzy Sets Syst. 175(1), 48–56 (2011)CrossRefGoogle Scholar
  15. 15.
    Kyselová, D., Dubois, D., Komorníková, M., Mesiar, R.: Refining aggregation operator-based orderings in multifactorial evaluation-Part I: continuous scales. IEEE Trans. Fuzzy Syst. 15(6), 1100–1106 (2007)CrossRefGoogle Scholar
  16. 16.
    Lakoff, G.: Hedges: a study in meaning criteria and the logic of fuzzy concepts. In: Contemporary Research in Philosophical Logic and Linguistic Semantics, pp. 221–271. Springer (1975)Google Scholar
  17. 17.
    Lewis, M., Lawry, J.: A label semantics approach to linguistic hedges. Int. J. Approx. Reason. 55(5), 1147–1163 (2014)CrossRefGoogle Scholar
  18. 18.
    Liang, Q.L., Mendel, J.M.: Interval type-2 fuzzy logic systems: theory and design. IEEE Trans. Fuzzy Syst. 8(5), 535–550 (2000)CrossRefGoogle Scholar
  19. 19.
    Liao, H.C., Xu, Z.S., Zeng, X.J.: Distance and similarity measures for hesitant fuzzy linguistic term sets and their application in multi-criteria decision making. Inf. Sci. 271, 125–142 (2014)CrossRefGoogle Scholar
  20. 20.
    Liao, H.C., Xu, Z.S., Zeng, X.J.: Hesitant fuzzy linguistic VIKOR method and its application in qualitative multiple criteria decision making. IEEE Trans. Fuzzy Syst. 23(5), 1343–1355 (2015)CrossRefGoogle Scholar
  21. 21.
    Merigó, J.M., Palacios-Marqués, D., Zeng, S.Z.: Subjective and objective information in linguistic multi-criteria group decision making. Eur. J. Oper. Res. 248(2), 522–531 (2016)CrossRefGoogle Scholar
  22. 22.
    Rodríguez, R.M., Martínez, L.: An analysis of symbolic linguistic computing models in decision making. Int. J. Gen. Syst. 42(1), 121–136 (2013)CrossRefGoogle Scholar
  23. 23.
    Rodríguez, R.M., Martínez, L., Herrera, F.: Hesitant fuzzy linguistic term sets for decision making. IEEE Trans. Fuzzy Syst. 20(1), 109–119 (2012)CrossRefGoogle Scholar
  24. 24.
    Torra, V.: Negation functions based semantics for ordered linguistic labels. Int. J. Intell. Syst. 11(11), 975–988 (1996)CrossRefGoogle Scholar
  25. 25.
    Türkşen, I.B.: Type 2 representation and reasoning for CWW. Fuzzy Sets Syst. 127(1), 17–36 (2002)CrossRefGoogle Scholar
  26. 26.
    Wang, H.: Extended hesitant fuzzy linguistic term sets and their aggregation in group decision making. Int. J. Comput. Intell. Syst. 8(1), 14–33 (2015)CrossRefGoogle Scholar
  27. 27.
    Wang, H., Xu, Z.S.: Total orders of extended hesitant fuzzy linguistic term sets: definitions, generations and applications. Knowl. Based Syst. 107, 142–154 (2016)CrossRefGoogle Scholar
  28. 28.
    Wang, H., Xu, Z.S., Zeng, X.J.: Linguistic terms with weakened hedges: a model for qualitative decision making under uncertainty. Inf. Sci. 433–434(3), 37–54 (2018a)CrossRefGoogle Scholar
  29. 29.
    Wang, H., Xu, Z.S., Zeng, X.J.: Hesitant fuzzy linguistic term sets for linguistic decision making: current developments, issues and challenges. Inf. Fusion 43, 1–12 (2018b)CrossRefGoogle Scholar
  30. 30.
    Xu, Z.S.: Uncertain linguistic aggregation operators based approach to multiple attribute group decision making under uncertain linguistic environment. Inf. Sci. 168(1), 171–184 (2004a)CrossRefGoogle Scholar
  31. 31.
    Xu, Z.S.: A method based on linguistic aggregation operators for group decision making with linguistic preference relations. Inf. Sci. 166(1), 19–30 (2004b)CrossRefGoogle Scholar
  32. 32.
    Xu, Z.S.: Deviation measures of linguistic preference relations in group decision making. Omega 33(3), 249–254 (2005)CrossRefGoogle Scholar
  33. 33.
    Xu, Z.S.: On generalized induced linguistic aggregation operators. Int. J. General Syst. 35(1), 17–28 (2006)CrossRefGoogle Scholar
  34. 34.
    Xu, Z.S.: Linguistic aggregation operators: an overview. In: Fuzzy Sets and Their Extensions: Representation, Aggregation and Models, pp. 163–181. Springer (2008a)Google Scholar
  35. 35.
    Xu, Z.S.: Group decision making based on multiple types of linguistic preference relations. Inf. Sci. 178(2), 452–467 (2008b)CrossRefGoogle Scholar
  36. 36.
    Xu, Z.S.: An interactive approach to multiple attribute group decision making with multigranular uncertain linguistic information. Group Decis. Negot. 18(2), 119–145 (2009)CrossRefGoogle Scholar
  37. 37.
    Xu, Z.S., Wang, H.: On the syntax and semantics of virtual linguistic terms for information fusion in decision making. Inf. Fusion 34, 43–48 (2017)CrossRefGoogle Scholar
  38. 38.
    Yager, R.R.: A new methodology for ordinal multiobjective decisions based on fuzzy sets. Decis. Sci. 12(4), 589–600 (1981)CrossRefGoogle Scholar
  39. 39.
    Yang, J.B., Xu, D.L.: On the evidential reasoning algorithm for multiple attribute decision analysis under uncertainty. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 32(3), 289–304 (2002)Google Scholar
  40. 40.
    Yu, X.H., Xu, Z.S., Chen, Q.: A method based on preference degrees for handling hybrid multiple attribute decision making problems. Expert Syst. Appl. 38(4), 3147–3154 (2011)CrossRefGoogle Scholar
  41. 41.
    Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning-II. Inf. Sci. 8(4), 301–357 (1975)CrossRefGoogle Scholar
  42. 42.
    Zadeh, L.A.: Fuzzy logic = computing with words. IEEE Trans. Fuzzy Syst. 4(2), 103–111 (1996)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.School of Information EngineeringNanjing Audit UniversityNanjingChina
  2. 2.Business SchoolSichuan UniversityChengduChina

Personalised recommendations