Secure Data and Services Management in Distributed Structures and in the Cloud with Application of Blockchain Technologies

  • Marek R. OgielaEmail author
  • Lidia Ogiela
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 971)


In this paper will be presented new ideas of application of security procedures for data and services management in distributed computer infrastructures, and in Cloud Computing. Services management in Cloud Computing will be connected with application of secure cognitive information systems supporting management activities and securing data using blockchain technologies and distributed ledger. Application of distributed ledger enables the development of decentralized management protocols, which allow verification of all performed operations by all authorized parties. Such protocols give the opportunity to create secure and efficient data sharing protocols in structures, where all authorized entities are equal and can independently verify the type of operations, and instances that process such data.


Distributed ledger Blockchain technology Data sharing Information management 



This work has been supported by the National Science Centre, Poland, under project number DEC-2016/23/B/HS4/00616.


  1. 1.
    Larios-Hernández, G.J.: Blockchain entrepreneurship opportunity in the practices of the unbanked. Bus. Horiz. 60, 865–874 (2017)CrossRefGoogle Scholar
  2. 2.
    Li, J., Wu, J., Chen, L.: Block-secure: blockchain based scheme for secure P2P cloud storage. Inf. Sci. 465, 219–231 (2018)CrossRefGoogle Scholar
  3. 3.
    Jallow, A.K., Demian, P., Anumba, Ch.J., Baldwin, A.N.: An enterprise architecture framework for electronic requirements information management. Int. J. Inf. Manag. 37, 455–472 (2017)CrossRefGoogle Scholar
  4. 4.
    Ogiela, L.: Cognitive information systems in management sciences. Elsevier, Academic Press (2017)Google Scholar
  5. 5.
    Ogiela, L., Ogiela, M.R. Management Information Systems. LNEE, vol. 331, pp. 449–456 (2015)Google Scholar
  6. 6.
    Ogiela, M.R., Ogiela, U.: Grammar encoding in DNA-like secret sharing infrastructure. In: Kim, T.-h., Adeli, H. (eds.) ACN/AST/ISA/UCMA -2010. LNCS, vol. 6059, pp. 175–182. Springer, Heidelberg (2010). Scholar
  7. 7.
    Ogiela, M.R., Ogiela, U.: Secure information management in hierarchical structures. In: Kim, T.-h., Adeli, H., Robles, R.J., Balitanas, M. (eds.) AST 2011. CCIS, vol. 195, pp. 31–35. Springer, Heidelberg (2011). Scholar
  8. 8.
    Kshetri, N.: Blockchain’s roles in strengthening cybersecurity and protecting privacy. Telecommun. Policy 41(10), 1027–1038 (2017)CrossRefGoogle Scholar
  9. 9.
    Gregg, M., Schneier, B.: Security Practitioner and Cryptography Handbook and Study Guide Set. Wiley, Hoboken (2014)Google Scholar
  10. 10.
    Ogiela, L., Ogiela, M.R.: Data mining and semantic inference in cognitive systems. In: Xhafa, F., Barolli, L., Palmieri, F., et al. (eds.) 2014 International Conference on Intelligent Networking and Collaborative Systems (IEEE INCoS 2014), Italy, pp. 257–261 (2014)Google Scholar
  11. 11.
    Ogiela, L.: Towards cognitive economy. Soft. Comput. 18, 1675–1683 (2014)CrossRefGoogle Scholar
  12. 12.
    Ogiela, M.R., Ogiela, L.: On using cognitive models in cryptography. In: IEEE AINA 2016 - The IEEE 30th International Conference on Advanced Information Networking and Applications, Crans-Montana, Switzerland, pp. 1055–1058 (2016).
  13. 13.
    Ogiela, M.R., Ogiela, L.: Cognitive keys in personalized cryptography. In: IEEE AINA 2017 - The 31st IEEE International Conference on Advanced Information Networking and Applications, Taipei, Taiwan, pp. 1050–1054 (2017).
  14. 14.
    Hahn, Ch., Hur, J.: Efficient and privacy-preserving biometric identification in cloud. ICT Express 2, 135–139 (2016)CrossRefGoogle Scholar
  15. 15.
    Reyna, A., Martín, C., Chen, J., Soler, E., Díaz, M.: On blockchain and its integration with IoT. Challenges and opportunities. Futur. Gener. Comput. Syst. 88, 173–190 (2018)CrossRefGoogle Scholar
  16. 16.
    Alsuhibany, S.: Evaluating the usability of optimizing text-based CAPTCHA generation. Int. J. Adv. Comput. Sci. Appl. 7(8), 164–169 (2016)Google Scholar
  17. 17.
    Bursztein, E., Bethard, S., Fabry, C., Mitchell, J., Jurafsky, D.: How good are humans at solving CAPTCHAs? A large scale evaluation. In: Proceedings - IEEE Symposium on Security and Privacy, pp. 399–413 (2010)Google Scholar
  18. 18.
    Krzyworzeka, N., Ogiela, L.: Visual CAPTCHA for data understanding and cognitive management. In: Barolli, L., Xhafa, F., Conesa, J. (eds.) BWCCA 2017. LNDECT, vol. 12, pp. 249–255. Springer, Cham (2018). Scholar
  19. 19.
    Ogiela, L.: Cognitive computational intelligence in medical pattern semantic understanding. In: Guo, M.Z., Zhao, L., Wang, L.P. (eds.) ICNC 2008: Fourth International Conference on Natural Computation, vol. 6, Proceedings, Jian, Peoples R China, 18–20 October, pp. 245–247 (2008)Google Scholar
  20. 20.
    Ogiela, L., Ogiela, M.R.: Insider threats and cryptographic techniques in secure information management. IEEE Syst. J. 11, 405–414 (2017)CrossRefGoogle Scholar
  21. 21.
    Osadchy, M., Hernandez-Castro, J., Gibson, S., Dunkelman, O., Perez-Cabo, D.: No bot expects the DeepCAPTCHA! Introducing immutable adversarial examples, with applications to CAPTCHA generation. IEEE Trans. Inf. Forensics Secur. 12(11), 2640–2653 (2017)CrossRefGoogle Scholar
  22. 22.
    Carniani, E., Costantino, G., Marino, F., Martinelli, F., Mori, P.: Enhancing video surveillance with usage control and privacy-preserving solutions. J. Wirel. Mob. Netw. Ubiquitous Comput. Dependable Appl. 7(4), 20–40 (2016)Google Scholar
  23. 23.
    Kim, J.S., Pan, S.B.: A study on EMG-based biometrics. J. Internet Serv. Inf. Secur. (JISIS) 7(2), 19–31 (2017)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Cryptography and Cognitive Informatics Research GroupAGH University of Science and TechnologyKrakówPoland
  2. 2.Pedagogical University of CracowKrakówPoland

Personalised recommendations