Advertisement

Voronoi Maps for Planar Sensor Networks Visualization

  • Maxim Kolomeets
  • Andrey ChechulinEmail author
  • Igor Kotenko
  • Martin Strecker
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 971)

Abstract

The paper describes Voronoi Maps – a new technique for visualizing sensor networks that can reduced to planar graph. Visualization in the form of Voronoi Maps as well as TreeMaps provides a great use of screen space, and at the same time allows us to visualize planar non-hierarchical decentralized topology. The paper provides an overview of existing techniques of information security visualization, the Voronoi Maps concept, Voronoi Maps mapping technique, Voronoi Maps cell area resizing technique and Voronoi Map usage examples for visualization of sensor network analysis processes.

Keywords

Security data visualization Sensor networks Security analysis of sensor networks Voronoi Maps TreeMaps Graph structures 

Notes

Acknowledgements

This work was partially supported by grants of RFBR (projects No. 16-29-09482, 18-07-01488), by the budget (the project No. AAAA-A16-116033110102-5), and by Government of Russian Federation (Grant 08-08).

References

  1. 1.
    Granadillo, G.G., Garcia-Alfaro, J., Debar, H.: Using a 3D geometrical model to improve accuracy in the evaluation and selection of countermeasures against complex cyber attacks. In: Thuraisingham, B., Wang, X., Yegneswaran, V. (eds.) SecureComm 2015. LNICST, vol. 164, pp. 538–555. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-28865-9_29CrossRefGoogle Scholar
  2. 2.
    Kolomeec, M., et al.: Choosing models for security metrics visualization. In: Rak, J., Bay, J., Kotenko, I., Popyack, L., Skormin, V., Szczypiorski, K. (eds.) MMM-ACNS 2017. LNCS, vol. 10446, pp. 75–87. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-65127-9_7CrossRefGoogle Scholar
  3. 3.
    Marty, R.: Applied Security Visualization. Addison-Wesley, Upper Saddle River (2009)Google Scholar
  4. 4.
    Kolomeec, M., Chechulin, A., Pronoza, A., Kotenko, I.: Technique of data visualization: example of network topology display for security monitoring. J. Wirel. Mobile Netw. Ubiquit. Comput. Dependable Appl. (JoWUA) 7(1), 58–78 (2016)Google Scholar
  5. 5.
    Chechulin, A., Kotenko, I.: Attack tree-based approach for real-time security event processing. Autom. Control Comput. Sci. 49, 701–704 (2015)CrossRefGoogle Scholar
  6. 6.
    Kotenko, I., Doynikova, E.: Selection of countermeasures against network attacks based on dynamical calculation of security metrics. J. Defense Model. Simul. Appl. Methodol. Technol. 15, 181–204 (2017)Google Scholar
  7. 7.
    McGuffin, M.: Simple algorithms for network visualization: a tutorial. Tsinghua Sci. Technol. 17, 383–398 (2012)CrossRefGoogle Scholar
  8. 8.
    Harrison, L., Spahn, R., Iannacone, M., Downing, E., Goodall, J.: NV: Nessus vulnerability visualization for the web. In: Proceedings of the Ninth International Symposium on Visualization for Cyber Security - VizSec 2012 (2012)Google Scholar
  9. 9.
    Balzer, M., Deussen, O., Lewerentz, C.: Voronoi treemaps for the visualization of software metrics. In: Proceedings of the 2005 ACM symposium on Software visualization - SoftVis 2005 (2005)Google Scholar
  10. 10.
    Aziz, N., Mohemmed, A., Alias, M.: A wireless sensor network coverage optimization algorithm based on particle swarm optimization and Voronoi diagram. In: 2009 International Conference on Networking, Sensing and Control (2009)Google Scholar
  11. 11.
  12. 12.
    Roberts, J.: Guest editor’s introduction: special issue on coordinated and multiple views in exploratory visualization. Inf. Vis. 2, 199–200 (2003)CrossRefGoogle Scholar
  13. 13.
    GraphViz Library. http://www.graphviz.org
  14. 14.
  15. 15.
    D3.js Library. https://d3js.org
  16. 16.
    Desnitsky, V., Levshun, D., Chechulin, A., Kotenko, I.: Design technique for secure embedded devices: application for creation of integrated cyber-physical security system. J. Wirel. Mobile Netw. Ubiquit. Comput. Dependable Appl. (JoWUA) 7(2), 60–80 (2016)Google Scholar
  17. 17.
    Aram, S., Shirvani, R.A., Pasero, E.G., Chouikha, M.F.: Implantable medical devices; networking security survey. J. Internet Serv. Inf. Secur. (JISIS) 6(3), 40–60 (2016)Google Scholar
  18. 18.
    Bordel, B., Alcarria, R., Manso, M.A., Jara, A.: Building enhanced environmental traceability solutions: from thing-to-thing communications to generalized cyber-physical systems. J. Internet Serv. Inf. Secur. (JISIS). 7(3), 17–33 (2017)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.St. Petersburg Institute for Informatics and Automation of the Russian Academy of SciencesSaint-PetersburgRussia
  2. 2.ITMO UniversitySaint-PetersburgRussia
  3. 3.Paul Sabatier UniversityToulouseFrance

Personalised recommendations