Proceedings of the 10th National Technical Seminar on Underwater System Technology 2018 pp 79-97 | Cite as
Robust Controller Design for Autonomous Underwater Glider Using Backstepping Super Twisting Sliding Mode Control Algorithm
Abstract
This paper proposes the design methodology of the backstepping super twisting sliding mode control algorithm. The proposed controller algorithm is designed to improve the tracking performance of the original super twisting sliding mode. The controller is designed for trajectory tracking problem in existence of external disturbance and parameter variations. The controller is designed for the gliding path from 25° downward to 25° upward. The performance of the proposed controller is compared to original super-twisting algorithm. The simulation results have shown that the proposed controller has improved the performance and the undesired chattering in control input and sliding surface has been reduced.
Keywords
Autonomous underwater glider (AUG) Backstepping Super twisting sliding mode control Chattering reductionNotes
Acknowledgements
This research is supported by Universiti Malaysia Pahang (UMP) research grant Vot: RDU1703134, Development of Controller for an Underactuated Autonomous Underwater Vehicle (AUV).
References
- 1.Stommel, H.: The Slocum mission. Oceanography 2, 22–25 (1989)CrossRefGoogle Scholar
- 2.Webb, D.C., Simonetti, P.J., Jones, C.P.: SLOCUM: an underwater glider propelled by environmental energy. IEEE J. Ocean. Eng. 26(4), 447–452 (2001)CrossRefGoogle Scholar
- 3.Sherman, J., Davis, R.E., Owens, W.B., Valdes, J.: The autonomous underwater glider ‘Spray’. IEEE J. Ocean. Eng. 26(4), 437–446 (2001)CrossRefGoogle Scholar
- 4.Eriksen, C.C., Osse, T.J., Light, R.D., Wen, T., Lehman, T.W., Sabin, P.L., Ballard, J.W., Chiodi, A.M.: Seaglider: a long-range autonomous underwater vehicle for oceanographic research. IEEE J. Ocean. Eng. 26(4), 424–436 (2001)CrossRefGoogle Scholar
- 5.Graver, J.G.: Underwater gliders: dynamics, control and design. PhD thesis, Princeton University, USA (2005)Google Scholar
- 6.Rudnick, D.L., Davis, R.E., Eriksen, C.C., Fratantoni, D.M., Perry, M.J.: Underwater gliders for ocean research. Mar. Technol. Soc. J. 38(2), 73–84 (2004)CrossRefGoogle Scholar
- 7.Zhang, F., Zhang, F., Tan, X.: Steady spiraling motion of gliding robotic fish. In: IEEE International Conference on Intelligent Robots and Systems, pp. 1754–1759. Vilamoura, Portugal (2012)Google Scholar
- 8.Isa, K., Arshad, M.R.: Experimental analysis of homeostatic-inspired motion controller for a hybrid-driven autonomous underwater glider. J. Teknologi 74(9), 51–63 (2015)Google Scholar
- 9.Alvarez, A., Caffaz, A., Caiti, A., Casalino, G., Gualdesi, L., Turetta, A., Viviani, R.: Fòlaga: a low-cost autonomous underwater vehicle combining glider and AUV capabilities. Ocean Eng. 36(1), 24–38 (2009)CrossRefGoogle Scholar
- 10.Arima, M., Ichihashi, N., Miwa, Y.: Modelling and motion simulation of an underwater glider with independently controllable main wings. In: Oceans 2009-Europe, pp. 1–6. Bremen, Germany (2009)Google Scholar
- 11.Leonard, N.E., Graver, J.: Model-based feedback control of autonomous underwater gliders. IEEE J. Ocean. Eng. 26(4), 633–645 (2001)CrossRefGoogle Scholar
- 12.Yuh, J.: Design and control of autonomous underwater robots: a survey. Auton. Robots, Kluwer Academic Publishers, 8(1), 7–24 (2000)Google Scholar
- 13.Ullah, B., Ovinis, M., Baharom, M.B., Javaid, M.Y., Izhar, S.S.: Underwater gliders control strategies: a review. In: 2015 10th Asian Control Conference: Emerging Control Techniques for a Sustainable World (ASCC 2015), pp. 1–6. Kota Kinabalu, Malaysia (2015)Google Scholar
- 14.Bender, A., Steinberg, D.M., Friedman, A.L., Williams, S.B.: Analysis of an autonomous underwater glider. In: Proceedings of ACRA 2008, pp. 1–10. Canberra, Australia (2008)Google Scholar
- 15.Mahmoudian, N., Woolsey, C.: Underwater glider motion control. In: 2008 47th IEEE Conference on Decision and Control, pp. 552–557. Cancun, Mexico (2008)Google Scholar
- 16.Mat-Noh, M., Arshad, M.R., Mokhtar, R.M.: Depth and pitch control of USM underwater glider: performance comparison PID vs. LQR. Indian J. Geo-Marine Sci. 40(2), 200–206 (2011)Google Scholar
- 17.Kan, L., Zhang, Y., Fan, H., Yang, W., Chen, Z.: MATLAB-based simulation of buoyancy-driven underwater glider motion. J. Ocean Univ. China 7(1), 113–118 (2008)CrossRefGoogle Scholar
- 18.Isa, K., Arshad, M.R.: Modeling and motion control of a hybrid-driven underwater glider. Indian J. Geo-Marine Sci. 42(8), 971–979 (2013)Google Scholar
- 19.Tatone, F., Vaccarini, M., Longhi, S.: Modeling and attitude control of an autonomous underwater glider. In: 8th IFAC International Conference on Manoeuvring and Control of Marine Craft, pp. 217–222. Guarujá, Brazil (2009)Google Scholar
- 20.Shan, Y., Yan, Z.: Model predictive control of underwater gliders based on a one-layer recurrent neural network. In: 2013 Sixth International Conference on Advanced Computational Intelligence, pp. 328–333. Hangzhou, China (2013)Google Scholar
- 21.Abraham, I., Yi, J.: Model predictive control of buoyancy propelled autonomous underwater glider. In: 2015 American Control Conference, pp. 1181–1186. Chicago, USA (2015)Google Scholar
- 22.Mat-Noh, M., Arshad, M. R., Mokhtar, R.M.: Control of 1 DoF USM underwater glider (USMUG). In: 4th International Conference on Underwater System Technology: Theory and Applications 2012, pp. 1–6. Shah Alam, Malaysia (2012)Google Scholar
- 23.Mat-Noh, M., Arshad, M.R., Mokhtar, R.M.: Nonlinear control of autonomous underwater glider based on super-twisting sliding mode control (STSMC). In: 2017 7th IEEE International Conference on System Engineering and Technology (ICSET 2017), pp. 71–76. Shah Alam, Malaysia (2017)Google Scholar
- 24.Mat-Noh, M., Arshad, M.R., Mokhtar, R.M.: The evaluation of controller tracking performance based on Taylor’s series expansion model. J. Teknologi 74(9), 175–181 (2015)Google Scholar
- 25.Yang, H., Ma, J.: Sliding mode tracking control of autonomous underwater glider. In: 2010 International Conference on Computer Application and System Modeling (ICCASM2010), pp. 555–558. Taiyuan, China (2010)Google Scholar
- 26.Yang, H., Ma, J.: Nonlinear control for autonomous underwater glider motion based on inverse system method. J. Shanghai Jiaotong Univ. 15(6), 713–718 (2010)CrossRefGoogle Scholar
- 27.Isa, K., Arshad, M.R.: Neural networks control of hybrid-driven underwater glider. In: 2012 Oceans—Yeosu, pp. 2–8. Yeaosu, South Korea (2011)Google Scholar
- 28.Fliess, M.: Generalized controller canonical forms for linear and nonlinear dynamics. IEEE Trans. Autom. Control 35(9), 994–1001 (1990)MathSciNetCrossRefGoogle Scholar
- 29.Levant, A.: Sliding order and sliding accuracy in sliding mode control. Int. J. Control 58(6), 1247–1263 (1993)MathSciNetCrossRefGoogle Scholar
- 30.Bartolini, G., Ferrara, A., Levant, A., Usai, E.: On second order sliding mode controllers. In: Young, K.D., Ozgiine, U. (eds.) Variable Structure Systems Sliding Mode Nonlinear Control, vol. 247, pp. 329–350. Springer, London, Great Britain (1999)Google Scholar
- 31.Levant, A., Pridor, A.: Aircraft pitch control via second order sliding technique. AIAA J. Guidance Control Dyn. 23(4), 586–594 (2000)CrossRefGoogle Scholar