Optimization of Single Input Fuzzy Logic Controller Using PSO for Unmanned Underwater Vehicle

  • Mohd Shahrieel Mohd ArasEmail author
  • Shahrum Shah Abdullah
  • Hazriq Izuan Jaafar
  • Ahmad Anas Yusof
  • Mohd Zaidi Mohd Tumari
  • Ho Gui Yan
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 538)


This paper describes the optimization technique using Particle Swarm Optimization (PSO) are applied to tune parameter of Single Input Fuzzy Logic Controller (SIFLC) for depth control of the Unmanned Underwater Vehicle (UUV). Two parameter SIFLC will be considered to tune the parameter based on off-line results for PSO algorithm to give a best system response in terms of overshoot and rise time. The parameter after look-up table will be fixed because the gain obtained by using the PSO algorithm is almost the same. This paper also investigated the parameter of look-up table for five input rules. Simulation is conducted within MATLAB/Simulink environment to verify the performance of the controller. It is demonstrated that the controller is effective to move the UUV as fast as possible to the desired depth with the best response system in terms of zero overshoot and 5 s rise time performances.


Particle swarm optimization, single input fuzzy logic controller Unmanned underwater vehicle 



Special appreciation and gratitude to the honorable University (Universiti Teknikal Malaysia Melaka, UTeM and Universiti Teknologi Malaysia, UTM) especially to the both Faculties of Electrical Engineering for providing the financial as well as moral support to complete this project successfully.


  1. 1.
    Ishaque, K., Abdullah, S.S., Ayob, S.M., Salam, Z.: Single input fuzzy logic controller for unmanned underwater vehicle. J. Intell. Robot Syst. 59, 87–100 (2010)CrossRefGoogle Scholar
  2. 2.
    A, A.F., Sallam, E.A., Elawady, W.M.: Quasi sliding mode-based single input fuzzy self-tuning decoupled fuzzy PI control for robot manipulators with uncertainty. Int. J. Robust Nonlinear Control 22(18), 2026–2054 (2012). Scholar
  3. 3.
    Lee, Shih-Chih, Shih, Ching-Long: Optimal single input PID-type fuzzy logic controller. J. Chin. Inst. Eng. 35(4), 413–420 (2012). Scholar
  4. 4.
    Lee, S.C., Shih, C.L.: Enhancement of a single-input fuzzy logic control system using a novel method. J. Chin. Inst. Eng. 35(2), 151–163 (2012). Scholar
  5. 5.
    Taeed, Fazel, Salam, Zainal, Ayob, Shahrin M.: FPGA implementation of a single-input fuzzy logic controller for boost converter with the absence of an external analog-to-digital converter. IEEE Trans. Ind. Electron. 59(2), 1208–1217 (2012). Scholar
  6. 6.
    Ishaque, K., Abdullah, S.S., Ayob, S.M., Salam, Z.: A simplified approach to design fuzzy logic controller for an underwater vehicle. Ocean Eng. 38, 1–14 (2010)zbMATHGoogle Scholar
  7. 7.
    Ishaque, K.: Intelligent control of diving system of an underwater vehicle. Master Thesis. Universiti Teknologi, Malaysia (2009)Google Scholar
  8. 8.
    Aras, M.S.M., Azis, F.A., Syed Abdul Hamid, S.M.S., Ali, F.A., Abdullah, S.S.: Study of the effect in the output membership function when tuning a fuzzy logic controller. In: 2011 IEEE International Conference on Control System, Computing and Engineering (ICCSCE 2011) Google Scholar
  9. 9.
    Azis, F.A., Aras, M.S.M., Abdullah, S.S., Rashid, M.Z.A., Othman, M.N.: Problem identification for underwater remotely operated vehicle (ROV): a case study. Procedia Eng. 41, 554–560 (2012)CrossRefGoogle Scholar
  10. 10.
    Aras, M.S., Abdullah, S.S., Rahman, A.A., Aziz, M.A.: Thruster modelling for underwater vehicle using system identification method. Int. J. Adv. Robot. Syst. 10, 1–12 (2013)CrossRefGoogle Scholar
  11. 11.
    Aras, M.S., Azis, F.A., Othman, M.N., Abdullah, S.S.: A low cost 4 DOF remotely operated underwater vehicle integrated with IMU and pressure sensor. In: 4th International Conference on Underwater System Technology: Theory and Applications 2012 (USYS’12), pp 18–23. Malaysia (2012)Google Scholar
  12. 12.
    Aras, M.S.M., Abdullah, S.S., Rashid, M.Z.A., Rahman, A.A., Aziz, M.A.A.: Development and modeling of underwater remotely operated vehicle using system identification for depth control. J. Theor. Appl. Inf. Technol. 56, 1 (2013)Google Scholar
  13. 13.
    Aras, M.A.M.: Adaptive simplified fuzzy logic controller for depth control of underwater remotely operated vehicle, Thesis (2015)Google Scholar
  14. 14.
    Jaafar, H.I., Mohamed, Z., Abidin, A.F.Z., Ghan, Z.A.: PSO-tuned PID controller for a nonlinear gantry, crane system. In: IEEE International Conference on Control System, Computing and Engineering, pp. 1–5, 23–25 Nov 2012Google Scholar
  15. 15.
    Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the 1995 IEEE International Conference on Neural Networks, pp. 1942–1948 (1995)Google Scholar
  16. 16.
    Pires, E.S., Machado, J.T., de Moura Oliveira, P.B.: Particle swarm optimization: dynamical analysis through fractional calculus, Chapter 24, InTech Publisher (2009)Google Scholar
  17. 17.
    Kim, Tae-Hyoung, Maruta, Ichiro, Sugie, Toshiharu: Robust PID controller tuning based on constrained particle swarm optimization. Automatica 44(4), 1104–1110 (2008)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Solihin, M.I., Kamal, M.A.S., Legowo, A.: Optimal PID controller tuning of automatic gantry crane using PSO algorithm. In: Proceeding of the 5th International Symposium on Mechatronics and its Applications (ISMA08), pp. 1–5. Amman, Jordan, 27–29 May 2008Google Scholar
  19. 19.
    Clerc, M.: Kennedy J (2002) The particle swarm—explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evol. Comput. 6(1), 58–73 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Mohd Shahrieel Mohd Aras
    • 1
    Email author
  • Shahrum Shah Abdullah
    • 2
  • Hazriq Izuan Jaafar
    • 1
  • Ahmad Anas Yusof
    • 3
  • Mohd Zaidi Mohd Tumari
    • 4
  • Ho Gui Yan
    • 1
  1. 1.Fakulti Kejuruteraan ElektrikUniversiti Teknikal Malaysia MelakaDurian TunggalMalaysia
  2. 2.Department of Electric and ElectronicsMalaysia-Japan International Institute of Technology, Universiti Teknologi MalaysiaKuala LumpurMalaysia
  3. 3.Fakulti Kejuruteraan MekanikalUniversiti Teknikal Malaysia MelakaDurian TunggalMalaysia
  4. 4.Fakulti Teknologi Kejuruteraan Elektrik dan ElektronikUniversiti Teknikal Malaysia MelakaDurian TunggalMalaysia

Personalised recommendations