Advertisement

Data-Driven PID Tuning for Liquid Slosh-Free Motion Using Memory-Based SPSA Algorithm

  • Nik Mohd Zaitul Akmal Mustapha
  • Mohd Zaidi Mohd Tumari
  • Mohd Helmi Suid
  • Raja Mohd Taufika Raja Ismail
  • Mohd Ashraf AhmadEmail author
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 538)

Abstract

This study proposes a data-driven PID tuning for liquid slosh suppression based on enhanced stochastic approximation. In particular, a new version of Simultaneous Perturbation Stochastic Approximation (SPSA) based on memory type function is introduced. This memory-based SPSA (M-SPSA) algorithm has the capability to obtain a better optimization accuracy than the conventional SPSA since it is able to keep the best design parameter during the tuning process. The effectiveness of this algorithm is tested to data-drive PID tuning for liquid slosh problem. The achievement of the M-SPSA based algorithm is assessed in terms of trajectory tracking of trolley position, slosh angle reduction and also computation time. The outcome of this study shows that the PID-tuned M-SPSA is able to provide better control performance accuracy than the other variant of SPSA based method.

Keywords

Data-driven control PID controller Stochastic approximation 

Notes

Acknowledgements

The study was funded by Research Grant RDU170104 from the University of Malaysia Pahang under Research and Innovation Department, and Ministry of Higher Education with reference no. JPT.S (BPKI) 2000/09/01 Jld.25 (29).

References

  1. 1.
    Budiansky, B.: Sloshing of liquids in circular canals and spherical tanks. J. Aerosp. Sci. 27(3), 161–173 (1960)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Fischer, D.: Dynamic fluid effects in liquid‐filled flexible cylindrical tanks. Earthquake Eng. Struct. Dyn. 7(6), 587–601 (1979)CrossRefGoogle Scholar
  3. 3.
    Dutta, S., Laha, M.K.: Analysis of the small amplitude sloshing of a liquid in a rigid container of arbitrary shape using a low-order boundary element method. Int. J. Numer. Methods Eng. 47(9), 1633–1648 (2000)CrossRefGoogle Scholar
  4. 4.
    Kang, X., Rakheja, S., Stiharu, I.: Effects of tank shape on the roll dynamic response of a partly filled tank vehicle. Veh. Syst. Dyn. 35(2), 75–102 (2001)CrossRefGoogle Scholar
  5. 5.
    Hasheminejad, S.M., Aghabeigi, M.: Liquid sloshing in half-full horizontal elliptical tanks. J. Sound Vib. 324(1–2), 332–349 (2009)CrossRefGoogle Scholar
  6. 6.
    Rebouillat, S., Liksonov, D.: Fluid–structure interaction in partially filled liquid containers: a comparative review of numerical approaches. Comput. Fluids 39(5), 739–746 (2010)CrossRefGoogle Scholar
  7. 7.
    Azadi, S., Jafari, A., Samadian, M.: Effect of tank shape on roll dynamic response of an articulated vehicle carrying liquids. Int. J. Heavy Veh. Syst. 21(3), 221–240 (2014)CrossRefGoogle Scholar
  8. 8.
    Kolaei, A., Rakheja, S., Richard, M.J.: Three-dimensional dynamic liquid slosh in partially-filled horizontal tanks subject to simultaneous longitudinal and lateral excitations. Eur. J. Mech. B/Fluids 53, 251–263 (2015)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Park, J.J., Kim, S.Y., Kim, Y., Seo, J.H., Jin, C.H., Joh, K.H., Kim, B.W., Suh, Y.S.: Study on tank shape for sloshing assessment of LNG vessels under unrestricted filling operation. J. Mar. Sci. Technol. 20(4), 640–651 (2015)CrossRefGoogle Scholar
  10. 10.
    Hasheminejad, S.M., Mohammadi, M.M.: Effect of anti-slosh baffles on free liquid oscillations in partially filled horizontal circular tanks. Ocean Eng. 38(1), 49–62 (2011)CrossRefGoogle Scholar
  11. 11.
    Biswal, K.C., Bhattacharyya, S.K., Sinha, P.K.: Free-vibration analysis of liquid-filled tank with baffles. J. Sound Vib. 259(1), 177–192 (2003)CrossRefGoogle Scholar
  12. 12.
    Modaressi-Tehrani, K., Rakheja, S., Stiharu, I.: Three-dimensional analysis of transient slosh within a partly-filled tank equipped with baffles. Veh. Syst. Dyn. 45(6), 525–548 (2007)CrossRefGoogle Scholar
  13. 13.
    Biswal, K.C., Bhattacharyya, S.K., Sinha, P.K.: Non-linear sloshing in partially liquid filled containers with baffles. Int. J. Num. Methods Eng. 68(3), 317–337 (2006)CrossRefGoogle Scholar
  14. 14.
    Kolaei, A., Rakheja, S., Richard, M.J.: A coupled multimodal and boundary-element method for analysis of anti-slosh effectiveness of partial baffles in a partly-filled container. Comput. Fluids 107, 43–58 (2015)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Wang, W., Guo, Z., Peng, Y., Zhang, Q.: A numerical study of the effects of the T-shaped baffles on liquid sloshing in horizontal elliptical tanks. Ocean Eng. 111, 543–568 (2016)CrossRefGoogle Scholar
  16. 16.
    Wang, Q.Y., Rakheja, S., Shangguan, W.B.: Effect of baffle geometry and air pressure on transient fluid slosh in partially filled tanks. Int. J. Heavy Veh. Syst. 24(4), 378–401 (2017)CrossRefGoogle Scholar
  17. 17.
    Liu, Z., Li, C.: Influence of slosh baffles on thermodynamic performance in liquid hydrogen tank. J. Hazard. Mat. 346, 253–262 (2018)CrossRefGoogle Scholar
  18. 18.
    Cheng, X., Jing, W., Gong, L.: Liquid sloshing problem in a concrete rectangular LSS with a vertical baffle. Arab. J. Sci. Eng. 1–12 (2018)Google Scholar
  19. 19.
    Pridgen, B., Bai, K., Singhose, W.: Slosh suppression by robust input shaping. In: Proceedings of IEEE Conference on Decision and Control, pp. 2316–2321 (2010)Google Scholar
  20. 20.
    Aboel-Hassan, A., Arafa, M., Nassef, A.: Design and optimization of input shapers for liquid slosh suppression. J. Sound Vib. 320(1–2), 1–15 (2009)CrossRefGoogle Scholar
  21. 21.
    Baozeng, Y., Lemei, Z.: Hybrid control of liquid-filled spacecraft maneuvers by dynamic inversion and input shaping. AIAA J. 52(3), 618–626 (2014)CrossRefGoogle Scholar
  22. 22.
    Kurode, S., Spurgeon, S.K., Bandyopadhyay, B., Gandhi, P.S.: Sliding mode control for slosh-free motion using a nonlinear sliding surface. IEEE/ASME Trans. Mech. 18(2), 714–724 (2013)CrossRefGoogle Scholar
  23. 23.
    Acarman, T., Ozguner, U.: Rollover prevention for heavy trucks using frequency shaped sliding mode control. In: Proceedings of 2003 IEEE Conference on Control Applications, pp. 7–12 (2003)Google Scholar
  24. 24.
    Bandyopadhyay, B., Kurode, S., Gandhi, P.S.: Sliding mode control for slosh-free motion—a class of underactuated system. Int. J. Adv. Mech. Syst. 1(3), 203–213 (2009)Google Scholar
  25. 25.
    Acarman, T., Ozguner, U.: Rollover prevention for heavy trucks using frequency shaped sliding mode control. Veh. Syst. Dyn. 44(10), 737–762 (2006)CrossRefGoogle Scholar
  26. 26.
    Richter, H.: Motion control of a container with slosh: constrained sliding mode approach. J. Dyn. Syst. Meas. Control 132(3), 031002 (2010)CrossRefGoogle Scholar
  27. 27.
    Shtessel, Y.B., Hall, C.E.: Multiple time scale sliding mode control of reusable launch vehicles in ascent and descent modes. In: Proceedings of the American Control Conference, pp. 4357–4362 (2001)Google Scholar
  28. 28.
    De Souza, L.C., De Souza, A.G.: Satellite attitude control system design considering the fuel slosh dynamics. Shock Vib. (2014)Google Scholar
  29. 29.
    De Souza, A.G., De Souza, L.C.: Satellite attitude control system design taking into account the fuel slosh and flexible dynamics. Math. Prob. Eng. (2014)Google Scholar
  30. 30.
    De Souza, A.G., De Souza, L.C.: Design of satellite attitude control system considering the interaction between fuel slosh and flexible dynamics during the system parameters estimation. Appl. Mech. Mat. 706, 14–24 (2015)CrossRefGoogle Scholar
  31. 31.
    Zhang, T., Yang, J.: Nonlinear dynamics and robust control of sloshing in a tank. J. Vib. Control, 1077546318772256 (2018)Google Scholar
  32. 32.
    Kuang, J., Leung., T.: H-infinity feedback for attitude control of liquid-filled spacecraft. J. Guidance Control Dyn. 24(1), 46–53 (2001)Google Scholar
  33. 33.
    Mishra, J.P., Kurode, S.R.: Robust output-feedback control for container-slosh system using variable gain super-twisting algorithm. In: 13th International Workshop on Variable Structure Systems, pp. 1–6 (2014)Google Scholar
  34. 34.
    Nair, A.P., Selvaganesan, N., Lalithambika, V.R.: Lyapunov based PD/PID in model reference adaptive control for satellite launch vehicle systems. Aerosp. Sci. Technol. 51, 70–77 (2016)CrossRefGoogle Scholar
  35. 35.
    Sira-Ramirez, H.: A flatness based generalized PI control approach to liquid sloshing regulation in a moving container. In: Proceedings of the American Control Conference, pp. 2909–2914 (2002)Google Scholar
  36. 36.
    Purnomo, D.S., Besari, A.R.A., Darojah, Z.: Control of liquid sloshing container using active force control method. In: IOP Conference Series: Materials Science and Engineering, p. 012007 (2017)CrossRefGoogle Scholar
  37. 37.
    Terzic, E., Nagarajah, R., Alamgir, M.: A neural network approach to fluid quantity measurement in dynamic environments. Mechatronics 21(1), 145–155 (2011)CrossRefGoogle Scholar
  38. 38.
    Hyun-Soo, K., Young-Shin, L.: Optimization design technique for reduction of sloshing by evolutionary methods. J. Mech. Sci. Technol. 22(1), 25–33 (2008)CrossRefGoogle Scholar
  39. 39.
    Mazmanyan, L., Ayoubi, M.A.: Takagi-Sugeno fuzzy model-based attitude control of spacecraft with partially-filled fuel tank. In: AIAA/AAS Astrodynamics Specialist Conference, p. 4215 (2014)Google Scholar
  40. 40.
    Mazmanyan, L., Ayoubi, M.A.: Fuzzy attitude control of spacecraft with fuel sloshing via linear matrix inequalities. IEEE Trans. Aerosp. Electron. Syst. (2018)Google Scholar
  41. 41.
    Shen, Y., Wang, Z.: Fuzzy control of liquid surface sloshing in liquid delivery. J. Shenyang Jianzhu Univ. (Natural Science) 4, 031 (2013)Google Scholar
  42. 42.
    Wang, Z., Wang, Q., Zhang, X.J.: An adaptive fuzzy sliding-mode technique for attitude control of launch vehicle. In: International Conference on Mechatronics and Automation, pp. 1587–1592 (2007)Google Scholar
  43. 43.
    Grundelius, M., Bernhardsson, B.: Constrained iterative learning control of liquid slosh in an industrial packaging machine. In Proceedings of IEEE Conference on Decision and Control, pp. 4544–4549 (2000)Google Scholar
  44. 44.
    Ahmad, M.A., Rohani, M.A., Raja Ismail, R.M.T., Mat Jusof, M.F., Suid, M.H., Nasir, A.N.K.: A model-free PID tuning to slosh control using simultaneous perturbation stochastic approximation. In: Proceedings of 5th IEEE International Conference on Control Systems, Computing and Engineering, pp. 343–347 (2015)Google Scholar
  45. 45.
    Ahmad, M.A., Azuma, S., Sugie, T.: Performance analysis of model-free PID tuning of MIMO systems based on simultaneous perturbation stochastic approximation. Expert Syst. Appl. 41(14), 6361–6370 (2014)CrossRefGoogle Scholar
  46. 46.
    Ahmad, M.A., Raja Ismail, R.M.T.: A data-driven sigmoid-based PI controller for buck-converter powered dc motor. In: Proceedings of IEEE Symposium on Computer Applications and Industrial Electronics (2017)Google Scholar
  47. 47.
    Bandyopadhyay, B., Gandhi, P.S., Kurode, S.: Sliding mode observer based sliding mode controller for slosh-free motion through PID scheme. IEEE Trans. Ind. Electron. 56(9), 3432–3442 (2009)CrossRefGoogle Scholar
  48. 48.
    Spall, J.C.: Multivariate stochastic approximation using a simultaneous perturbation gradient approximation. IEEE Trans. Autom. Control 37(3), 332–341 (1992)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Nik Mohd Zaitul Akmal Mustapha
    • 1
  • Mohd Zaidi Mohd Tumari
    • 2
  • Mohd Helmi Suid
    • 1
  • Raja Mohd Taufika Raja Ismail
    • 1
  • Mohd Ashraf Ahmad
    • 1
    Email author
  1. 1.Faculty of Electrical and Electronics EngineeringUniversiti Malaysia PahangPekanMalaysia
  2. 2.Faculty of Engineering TechnologyUniversiti Teknikal Malaysia MelakaDurian TunggalMalaysia

Personalised recommendations