Statistical Relationship Between Multibeam Backscatter, Sediment Grain Size and Bottom Currents

  • Mohd Azhafiz AbdullahEmail author
  • Razak Zakariya
  • Rozaimi Che Hasan
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 538)


The bathymetry data and backscatter data are collected using multibeam sonar (MBES) system to recognize seafloor types was identified in the three study area coral reef, natural reef, and artificial reef. Ground truth data in using Ponar grab for collect sediment samples and ADCP in currents flow were is collected 34 the study, the relationship between backscatter, sediment grain size and bottom currents is examined using linear regression and multiple linear regressions. As a result, show that there is significant backscatter from multibeam sonar and ground truth data. In linear regression, relationship R2 backscatter with sediment is a 0.703, sediment with bottom current (speed) is a 0.810 and multiple linear regression, relationship R2 backscatter, sediment and currents is a 0.709. The study provided a good relationship between backscatter, sediment and currents (speed).


Backscatter Sediment Currents 


  1. 1.
    Anderson, J.T., Holliday, V., Kloser, R., Reid, D. & Simard, Y.: Acoustic seabed classification of marine physical and biological landscapes. International Council for the Exploration of the Sea, p. 198. Copenhagen, Denmark (2007)Google Scholar
  2. 2.
    Anderson, J.T., van Holliday, D., Kloser, R., Reid, D.G., Simard, Y.: Acoustic seabed classification: current practice and future directions. J. Mar. Sci. 65(6), 1004–1011 (2008)Google Scholar
  3. 3.
    Fernandes, W, Chakraborty, B.: Multi-beam backscatter image data processing techniques employed to EM 1002 system. 2009 International symposium on ocean electronics (SYMPOL 2009), pp. 93–99. Cochin, India (2009)Google Scholar
  4. 4.
    Brown, C.J., Smith, S.J., Lawton, P., Anderson, J.T.: Benthic habitat mapping: a review of progress towards improved understanding of the spatial ecology of the seafloor using acoustic techniques. Est. Coast. Shelf Sci. 92(3), 502–520 (2011)CrossRefGoogle Scholar
  5. 5.
    Hasan, R.C., Ierodiaconou, D., Rattray, A., Monk, J., Laurenson, L.: Applications of multibeam echosounder data and video observations for biological monitoring on the south east Australian continental shelf. In: International symposium and exhibition on geoinformation 2011 (ISG2011) & ISPRS 2011, pp. 1–16. Shah Alam, Malaysia (2011)Google Scholar
  6. 6.
    Manik, H.M.: Underwater acoustic detection and signal processing near the seabed. Sonar System, N. Z. Kolev, IntechOpen, 225–274 (2011)Google Scholar
  7. 7.
    Jackson, D., Brigs, K.: High-frequency bottom backscattering roughness versus sediment volume scattering. J. Acoust. Soc. Am. 92(2), 962–977 (1992)CrossRefGoogle Scholar
  8. 8.
    Fonseca, L., Mayer, L.: Remote estimation of surficial seafloor properties through the application angular range analysis to multibeam sonar data. Mar. Geophysical Res. 28(2), 119–126 (2007)CrossRefGoogle Scholar
  9. 9.
    Jackson, D., Richardson, M.: High-frequency seafloor acoustics. The underwater acoustics series, pp. 1–442. Springer, New York (2007)CrossRefGoogle Scholar
  10. 10.
    Tegowski, J., Gorska, N., Kruss, A., Nowak, J., Blenski, P.: Analysis of single beam, multibeam and sidescan sonar data for benthic habitat classification in the southern Baltic Sea. In: Proceedings of the 3rd international conference and exhibition on underwater acoustic measurements: Technologies and Results, pp. 21–26, Poland (2009)Google Scholar
  11. 11.
    Ruiz-Cortés, V., Dainty, C.: Backscattering measurements from double-scale randomly rough surfaces. J. Opt. Soc. Am. A 29(6), 1154–1160 (2012)CrossRefGoogle Scholar
  12. 12.
    Huang, Z., Siwabessy, J., Nichol, S., Anderson, T., Brooke, B.: Predictive mapping of seabed cover types using angular response curves of multibeam backscatter data: Testing different feature analysis approaches. Continental Shelf Res. 61, 12–22 (2013)CrossRefGoogle Scholar
  13. 13.
    Zhi, H., Siwabessy, J., Nichol, S.L., Brooke, B.P.: Predictive mapping of seabed substrata using high-resolution multibeam sonar data: a case study from a shelf with complex geomorphology. Mar. Geol. 357, 37–52 (2014)CrossRefGoogle Scholar
  14. 14.
    Dyer, K.R.: Coastal and Estuarine Sediment Dynamics. Wiley Interscience, Chichester, New York, Brisbane, Toronto, Singapore (1986)Google Scholar
  15. 15.
    Matsunuma, M., Motomura, H., Matsuura, K., Shazili, N.A.M., Ambak, M.A. (eds.): Fishes of Terengganu-East coast of Malay Peninsula, Malaysia, National Museum of Nature and Science, Tokyo, Universiti Malaysia Terengganu, Terengganu, and Kagoshima University Museum, Kagoshima, 251 pp (2011)Google Scholar
  16. 16.
    Wentworth, C.K.: A scale of grade and class terms for clastic sediments. Geol. J. 30, 377–392 (1922)CrossRefGoogle Scholar
  17. 17.
    Folk, R.L., Ward, W.C.: Brazos river bar: a study on significance of grain size parameters. J. Sediment. Petrol. 31, 514–529 (1957)Google Scholar
  18. 18.
    Huang, Z., Siwabessy, J., Nichol, S.L., Brooke, B.P.: Predictive mapping of seabed substrata using high-resolution multibeam sonar data: a case study froma shelf with complex geomorphology, Mar. Geol. 357, 37–52 (2014)Google Scholar
  19. 19.
    Quas, L., Church, I., O’Brien, S. J., Wiggert1, J. D. & Williamson, M.: Application of high- resolution multibeam sonar backscatter to guide oceanographic investigations in the Mississippi Bight. In: US Hydro2017 (USHYDRO2017), pp. 1–15, Galveston, USA (2017)Google Scholar
  20. 20.
    QPS: FMGeocoder Toolbox Online Manual, Fledermaus 7.7.x Documentation (2016)Google Scholar
  21. 21.
    Chatterjee, S., Price, B.: Regression analysis by example, 2nd edn, Wiley, New York (1997)Google Scholar
  22. 22.
    George, D., Maller, P.: SPSS for Windows Step by Step. A Simple Guide and Reference 11 Update, 4th edn, Pearson Education, Inc., Boston (2003)Google Scholar
  23. 23.
    Stanic, S., Briggs, K.B., Fleischer, P., Sawyer, W.B., Ray, R.I.: High frequency acoustic backscattering froma coarse shell ocean bottom. J. Acoust. Soc. Am. 85, 125–136 (1989)CrossRefGoogle Scholar
  24. 24.
    Pujiyati S., Hartati S., Priyono, W.: Effect of size of granules, roughness, and basic hardness of waters on the returning value of hydro acoustic detection results. E-J. Trop. Mar. Sci. Technol. 2(1), 59-67 (2010)Google Scholar
  25. 25.
    Shields, A.: Application of similarity principles and turbulence research to bedload movement. Mitteilungen der Precessichen Versuchs antalt für Wasserbau und Schiffbau, Berlin. In: Ott, W.P., van Uchelen, J.C. (eds.) California Institute of Technology. W. M. Kech Lab. of Hydraulics and Water Resources, Rept. No. 167 (1936)Google Scholar
  26. 26.
    Vanoni, V.A. (ed.): Sedimentation Engineering, Manual and Reports on Engineering Practice. No. 54. American Society of Civil Engineers, New York (1977)Google Scholar
  27. 27.
    Gao, S., Collins, M.: Net sediment transport patterns inferred from grain- size trends, based upon definition of “transport vectors” Sediment. Geol. 81(1–2), 47–60 (1992)CrossRefGoogle Scholar
  28. 28.
    Li, M.Z., Amos, C.L.: SEDTRANS96: the upgraded and better calibrated sediment transport model for continental shelves. Comput. Geosci. 27(6), 619–645 (2001)CrossRefGoogle Scholar
  29. 29.
    Yang, C.T.: Non cohesive sediment transport. In: Yang, C.T. (ed.), Erosion and Sedimentation Manual: U.S. Bureau of Reclamation, Technical Service Center, Denver, CO, chapter 3, 111 p (2006)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Mohd Azhafiz Abdullah
    • 1
    Email author
  • Razak Zakariya
    • 1
  • Rozaimi Che Hasan
    • 2
  1. 1.School of Marine Science and EnviromentUniversity Malaysia TerengganuKuala NerusMalaysia
  2. 2.UTM Razak School of Engineering and Advanced TechnologyUniversiti Teknologi MalaysiaKuala LumpurMalaysia

Personalised recommendations