Biodegradable Composite Scaffold for Bone Tissue Regeneration

  • Sandip Bag


At micro-architectural viewpoint, human bone is composed of polymer ceramic composite having similar mechanical characteristics that can be tailored by synthetic composite materials. To mimic the properties of bone, research on bone substituted analogous biomaterials was initiated by reinforcing active biomolecules within the matrices of biocompatible polymers to formulate suitable bone analogous. The major advantages of the composites over conventional homogeneous materials like metals, ceramics, and polymers are superior mechanical, biological, and other physical properties that can be matched with the requirements of particular applications. Modern technology has not been able to provide a suitable bone substitute that replaces autogenous bone. The availability and suitability of conventional autogenous or homogeneous prosthetic elements to repair severe bone trauma or large defects caused by various bone diseases are critically limited; as a result, profound interest concentrated on application of man-made polymeric composite materials as biodegradable scaffold, which would provide support and a symptomatic, long-term function within the body or in contact with body fluid. In tissue engineering, biodegradable scaffolds play a crucial role, where matrix degradation and tissue in growth are of immense phenomenon for decisive performance of tissue-scaffold system during regenerative process.


Bone Bone graft Bioactive composite Biodegradable scaffold Prosthesis Tissue regeneration 


  1. Akbarzadeh R, Yousefi AM (2014) Effects of processing parameters in thermally induced phase separation technique on porous architecture of scaffolds for bone tissue engineering. J Biomed Mater Res B Appl Biomater 102(6):1304–1315CrossRefPubMedPubMedCentralGoogle Scholar
  2. Ambrose CG, Hartline BE, Clanton TO, Lowe WR, McGarvey WC (2015) Polymers in orthopaedic surgery. In: Advanced polymers in medicine. Springer, Berlin/Heidelberg, pp 129–145Google Scholar
  3. Ami R, Amini, Laurencin CT, Nukavarapu SP (2012) Bone tissue engineering: recent advances and challenges. Crit Rev Biomed Eng 40(5):363–408CrossRefGoogle Scholar
  4. Amin Y, Wauthle R, Böttger AJ, Schrooten J, Weinans H, Zadpoor AA (2014) Crystal structure and nanotopographical features on the surface of heat-treated and anodized porous titanium biomaterials produced using selective laser melting. Appl Surf Sci 290:287–294CrossRefGoogle Scholar
  5. Annalia A, Luciana G (2014) Natural and synthetic biodegradable polymers: different scaffolds for cell expansion and tissue formation. Int J Artif Organs 37(3):187–205Google Scholar
  6. Asti A, Gioglio L (2014) Natural and synthetic biodegradable polymers: different scaffolds for cell expansion and tissue formation. Int J Artif Organs 37(3):187–205PubMedPubMedCentralGoogle Scholar
  7. Balani K, Narayan R, Agarwal A (2015) Surface engineering and modification for biomedical applications. In Balani K, Verma V, Agaqrwal A, Narayan R (Eds) Biosurfaces: materials science and engineering perspective, John Wiley, pp 201–238Google Scholar
  8. BaoLin G, Ma PX (2014) Synthetic biodegradable functional polymers for tissue engineering: a brief review. Sci China Chem 57(4):490–500CrossRefPubMedPubMedCentralGoogle Scholar
  9. Basile MA, d’Ayala GG, Malinconico M, Laurienzo P, Coudane J, Nottelet B, Ragione FD, Oliva A (2015) Functionalized PCL/HA nanocomposites as microporous membranes for bone regeneration. Mater Sci Eng C Mater Biol Appl 48:457–468CrossRefPubMedPubMedCentralGoogle Scholar
  10. Bastioli C (2005) Handbook of biodegradable polymers. Rapra Technology, Shawbury/Shrewsbury/Shropshire. ISBN 9781847350442Google Scholar
  11. Bertazzo S, Bertran CA (2006) Morphological and dimensional characteristics of bone mineral crystals. Bioceramics 3(10):309–311Google Scholar
  12. Bhattacharjee A, Bansal M (2005) Critical review collagen structure: the madras triple helix and the current scenario. IUBMB Life 57:161–172CrossRefPubMedPubMedCentralGoogle Scholar
  13. Bitar KN, Zakhem E (2014) Design strategies of biodegradable scaffolds for tissue regeneration. Biomed Eng Comput Biol 6:13–20CrossRefPubMedPubMedCentralGoogle Scholar
  14. Blokhuis TJ (2014) Bioresorbable bone graft substitutes. In: Bone substitute biomaterials, pp 80–92, ElsevierGoogle Scholar
  15. Borden M, Attawia M, Khan Y, El-Amin SF, Laurencin CT (2004) Tissue-engineered bone formation in vivo using a novel sintered polymeric microsphere matrix. J Bone Joint Surg Br 86:1200–1208CrossRefPubMedPubMedCentralGoogle Scholar
  16. Boschetti F, Tomei AA, Turri S, Swartz MA, Levi M (2008) Design, fabrication, and characterization of a composite scaffold for bone tissue engineering. Int J Artif Organs 31(8):697–707CrossRefPubMedPubMedCentralGoogle Scholar
  17. Bret DU, Lakshmi SN, Cato TL (2011) Biomedical applications of biodegradable polymers. Biomedical applications of biodegradable polymers. J Polym Sci B Polym Phys 49(12):832–864CrossRefGoogle Scholar
  18. Brodsky B, Persikov AV (2005) Molecular structure of thecollagen triple helix. Adv Protein Chem 70:301–339CrossRefPubMedPubMedCentralGoogle Scholar
  19. Buehler MJ (2006) Nature designs tough collagen: explaining the nanostructure of collagen fibrils. PNAS 103(33):12285–12290CrossRefPubMedPubMedCentralGoogle Scholar
  20. Cardiel JJ, Zhao Y, Kim J-H, Chung J-H, Shen AQ, Shen AQ (2014) Electro-conductive porous scaffold with single-walled carbon nanotubes in wormlike micellar networks. Carbon 80:203–212CrossRefGoogle Scholar
  21. Chan BP, Leong KW (2008) Scaffolding in tissue engineering: general approaches and tissue-specific considerations. Eur Spine J 17(S4):467–479CrossRefPubMedPubMedCentralGoogle Scholar
  22. Chandra R, Rustgi R (1998) Biodegradable polymers. Prog Polym Sci 23:1273–1335CrossRefGoogle Scholar
  23. Chanlalit C, Shukla DR, Fitzsimmons JS, An KN, O’Driscoll SW (2012) Stress shielding around radial head prostheses. J Hand Surg 37:2118–2125CrossRefGoogle Scholar
  24. Chun-Jen L, Chin-Fu C, Jui-Hsiang C, Shu-Fung C, Yu-Ju L, Ken-Yuan C (2002) Fabrication of porous biodegradable polymer scaffolds using a solvent merging/particulate leaching method. J Biomed Mater Res Part A 59(4):676–681CrossRefGoogle Scholar
  25. Cox SC, Thornby JA, Gibbons GJ, Williams MA, Mallick KK (2015) 3D printing of porous hydroxyapatite scaffolds intended for use in bone tissue engineering applications. Mater Sci Eng C 47:237–247CrossRefGoogle Scholar
  26. Cunniffe G, O’Brien F (2011) Collagen scaffolds for orthopedic regenerative medicine. J Miner Met Mater Soc 63(4):66–73CrossRefGoogle Scholar
  27. Currey JD (2002) The structure of bone tissue. In: Bones: structure and mechanics. Princeton University Press, Princeton, pp 12–14Google Scholar
  28. Dahlin RL, Kasper FK, Mikos AG (2011) Polymeric nanofibers in tissue engineering. Tissue Eng B Rev 17:349–364CrossRefGoogle Scholar
  29. De Santis R, Gloria A, Russo T, Amora UD, Zeppetelli S, Tampieri A, Herrmannsdorfer T, Ambrosio L (2011) A route toward the development of 3D magnetic scaffolds with tailored mechanical and morphological properties for hard tissue regeneration: preliminary study. Virtual Phys Prototyping 6(4):189–195CrossRefGoogle Scholar
  30. Dinopoulos H, Dimitriou R, Giannoudis PV (2012) Bone graft substitutes: what are the options? Surgeon 10(4):230–239CrossRefGoogle Scholar
  31. Dumic-Cule I, Pecina M, Jelic M, Jankolija M, Popek I, Grgurevic L, Vukicevic S (2015) Biological aspects of segmental bone defects management. Int Orthop 39:1005–1011CrossRefGoogle Scholar
  32. Edwards SL, Werkmeister JA, Ramshaw JA (2009) Carbon nanotubes in scaffolds for tissue engineering. Expert Rev Med Devices 6(5):499–505CrossRefGoogle Scholar
  33. Fabrizio M, Lorenzo N, DianaChicon P, Massimo I (2011) New biomaterials for bone regeneration. Clin Cases Miner Bone Metab 8(1):21–24Google Scholar
  34. Francesca G, Alessandro S, Giuseppe MP (2013) The biomaterialist’s task: scaffold biomaterials and fabrication technologies. Joints 1(3):130–137CrossRefGoogle Scholar
  35. Fu Q, Saiz E, Rahaman MN, Tomsia AP (2011) Bioactive glass scaffolds for bone tissue engineering: state of the art and future perspectives. Mater Sci Eng C Mater Biol 31(7):1245–1256CrossRefGoogle Scholar
  36. Galois L, Mainard D, Delagoutte J (2002) Beta-tricalcium phosphate ceramic as a bone substitute in orthopaedic surgery. Int Orthop 26:109–115CrossRefPubMedPubMedCentralGoogle Scholar
  37. Gloria A, Russo T, D’Amora U, Zeppetelli S, D’Alessandro T, Sandri M, Bañobre-López M, Piñeiro-Redondo Y, Uhlarz M, Tampieri A, Rivas J, Herrmannsdörfer T, Dediu VA, Ambrosio L, DeSantis R (2013) Magnetic poly(ε-caprolactone)/iron-doped hydroxyapatite nanocomposite substrates for advanced bone tissue engineering. J R Soc Interface 10(80):8–33CrossRefGoogle Scholar
  38. Goldberg M, Kulkarni AB, Young M, Boskey A (2011) Dentin: structure, composition and mineralization-the role of dentin ECM in dentin formation and mineralization. Front Biosci (Elite Ed) 3:711–735CrossRefGoogle Scholar
  39. Gunatillake PA, Adhikari R (2003) Biodegradable synthetic polymers for tissue engineering. Eur Cell Mater 5:1–16CrossRefGoogle Scholar
  40. Haase K, Rouhi G (2013) Prediction of stress shielding around an orthopedic screw. Using stress and strain energy density as mechanical stimuli. Comput Biol Med 43:1748–1757CrossRefGoogle Scholar
  41. Haigang GU, Zhilian Y, Bramasta N, Leong WS, Tan JP (2010) Control of invitro neural differentiation of mesenchymal stem cells in 3D macroporous, cellulosic hydrogels. Regen Med 5:245–253CrossRefGoogle Scholar
  42. Hench LL (2013) Chronology of bioactive glass development and clinical applications. Sci Res 3:67–73Google Scholar
  43. Huayu Tian, Zhaohui Tang, Xiuli Zhuang, Xuesi Chen, Xiabin Jing (2012) Biodegradable synthetic polymers: preparation, functionalization and biomedical application. Prog Polym Sci 37(2):237–280CrossRefGoogle Scholar
  44. Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21(24):2529–2543CrossRefGoogle Scholar
  45. Iftikhar A, Nazia J (2016) Polyhydroxyalkanoates: current applications in the medical field. Front Biol 11(1):19–27CrossRefGoogle Scholar
  46. Ikada Y (2006) Challenges in tissue engineering. J R Soc Interface 3:589–601CrossRefPubMedPubMedCentralGoogle Scholar
  47. Jack KS, Velayudhan S, Luckman P, Trau M, Grøndahl L, Cooper-White J (2009) The fabrication and characterization of biodegradable HA/PHBV nanoparticle-polymer composite scaffolds. Acta Biomater 5(7):2657–2667CrossRefGoogle Scholar
  48. Khan R, Khan MH (2013) Use of collagen as a biomaterial: an update. J Indian Soc Periodontol 17(4):539–542CrossRefPubMedPubMedCentralGoogle Scholar
  49. Krishnan V, Lakshmi T (2013) Bioglass: a novel biocompatible innovation. J Adv Pharm Technol Res 4(2):78–83CrossRefPubMedPubMedCentralGoogle Scholar
  50. Lalwani G, Gopalan A, D’Agati M, Sankaran JS, Judex S, Qin YX, Sitharaman B (2015) Porous three-dimensional carbon nanotube scaffolds for tissue engineering. J Biomed Mater Res 103(10):3212–3225CrossRefGoogle Scholar
  51. Laurin M, Canoville A, Germain D (2011) Bone microanatomy and lifestyle: a descriptive approach. Comptes Rendus Palevol 10(5–6):381–402CrossRefGoogle Scholar
  52. Lee DW et al (2006) Strong adhesion and cohesion of chitosan in aqueous solutions. Langmuir 29(46):14222–14229CrossRefGoogle Scholar
  53. Lee JW, Kim JY, Kim JY, Cho D-W, Cho D-W (2010a) Solid free-form fabrication technology and its application to bone tissue engineering. Int J Stem Cells 3(2):85–95CrossRefPubMedPubMedCentralGoogle Scholar
  54. Lee K-W, Wang S, Dadsetan M, Yaszemski MJ, Lu L (2010b) Enhanced cell ingrowth and proliferation through three-dimensional nanocomposite scaffolds with controlled pore structures. Biomacromolecules 11(3):682–689CrossRefPubMedPubMedCentralGoogle Scholar
  55. Lendlein A, Sisson A (eds) (2011) Handbook of biodegradable polymers : synthesis, characterization and applications. Weinheim, Wiley-VCHGoogle Scholar
  56. Levrero F, Margetts L et al (2016) Evaluating the macroscopic yield behaviour of trabecular bone using a nonlinear homogenisation approach. J Mech Behav Biomed Mater 61:384–396CrossRefGoogle Scholar
  57. Li X, Cui R, Sun L, Aifantis KE, Fan Y, Feng Q, Cui F, Watari F (2014) 3D-printed biopolymers for tissue engineering application. Int J Polym Sci 2014:1–13Google Scholar
  58. Lim LT, Auras R, Rubino M (2008) Processing technologies for poly (lactic acid). Prog Polym Sci 33(8):820–852CrossRefGoogle Scholar
  59. Liu B, Lun DX (2012) Current application of β-tricalcium phosphate composites in orthopaedics. Orthop Surg 4:139–144CrossRefPubMedPubMedCentralGoogle Scholar
  60. Ma PX (2004) Scaffolds for tissue fabrication. Mater Today 7(5):30–40CrossRefGoogle Scholar
  61. Makadia HK, Siegel SJ (2011) Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers (Basel) 3(3):1377–1397CrossRefGoogle Scholar
  62. Maria Fátima Vaz, Helena CanhÐo, JoÐo Eurico Fonseca (2011) Bone: a composite natural material. In: Pavla (ed) Advances in composite materials – analysis of natural and man-made materials. Intech, CroatiaGoogle Scholar
  63. Masina M (2011) Use of an absorbent non-woven fabric dressing based on benzyl ester of hyaluronic acid (Hyallofill®-F) in the treatment of difficult to heal ulcers of the lower extremities. Acta Vulcanol 9(4):173–181Google Scholar
  64. Massera J, Fagerlund S, Hupa L, Hupa M (2012) Crystallization mechanism of bioactive glasses 45S5 and S53P4. J Am Ceram Soc 95(2):607–613CrossRefGoogle Scholar
  65. Middleton J, Tipton A (1998) Synthetic biodegradable polymers as medical devices. Med Plast Biomater Mag 5(2):30–39Google Scholar
  66. Mikael PE, Nukavarapu SP (2011) Functionalized carbon nanotube composite scaffolds for bone tissue engineering: prospects and progress. J Biomater Tissue Eng 1(1):76–85CrossRefGoogle Scholar
  67. Miranda P, Saiz E, Gryn K, Tomsia AP (2006) Sintering and robocasting of β-tricalcium phosphate scaffolds for orthopaedic applications. Acta Biomater 2:457–466CrossRefGoogle Scholar
  68. Mirza SB, Dunlop DG, Panesar SS, Naqvi SG, Gangoo S, Salih S (2010) Basic science considerations in primary total hip replacement arthroplasty. Open Orthop J 4:169–180CrossRefPubMedPubMedCentralGoogle Scholar
  69. Niu XF, Li XM, Liu HF (2012) Homogeneous chitosan/poly(L-lactide) composite scaffolds prepared by emulsion freeze-drying. J Biomater Sci Polym Ed 23:391–404CrossRefGoogle Scholar
  70. Oh Y, Islam MF (2015) Preformed Nanoporous carbon nanotube scaffold-based multifunctional polymer composites. ACS Nano 9(4):4103–4110CrossRefPubMedPubMedCentralGoogle Scholar
  71. Oonishi H (1991) Orthopaedic applications of hydroxyapatite. Biomaterials 12(2):171–178CrossRefPubMedPubMedCentralGoogle Scholar
  72. Osborn JF, Newesely H (1980) The material science of calcium phosphate ceramics. Biomaterials 1(2):108–111CrossRefPubMedPubMedCentralGoogle Scholar
  73. Peck M, Dusserre N, McAllister TN, L’Heureux N (2011) Tissue engineering by self- assembly. Mater Today 14:218–224CrossRefGoogle Scholar
  74. PeitlFilho O, LaTorre GP, Hench LL (1996) Effect of crystallization on apatite-layer formation of bioactive glass 45S5. J Biomed Mater Res 30(4):509–514CrossRefGoogle Scholar
  75. Persson M, Lorite GS, Kokkonen HE, Cho SW, Lehenkari PP, Skrifvars M, Tuukkanen J (2014) Effect of bioactive extruded PLA/HA composite films on focal adhesion formation of preosteoblastic cells. Colloids Surf B Biointerfaces 121:409–416CrossRefGoogle Scholar
  76. Polo-Corrales L, Latorre-Esteves M, Ramirez-Vick JE (2014) Scaffold design for bone regeneration. J Nanosci Nanotechnol 14(1):15–56CrossRefPubMedPubMedCentralGoogle Scholar
  77. Prakasam M, Locs J, Salma-Ancane K, Loca D, Largeteau A, Berzina-Cimdina L (2015) Fabrication, properties and applications of dense hydroxyapatite: a review. J Funct Biomater 6(4):1099–1140CrossRefPubMedPubMedCentralGoogle Scholar
  78. Raeisdasteh Hokmabad V, Davaran S, Ramazani A, Salehi R (2017) Design and fabrication of porous biodegradable scaffolds: a strategy for tissue engineering. J Biomater Sci Polym Ed 28(16):1797–1825CrossRefGoogle Scholar
  79. Rahaman MN, Day DE, Bal BS, Fu Q, Jung SB (2011) Bioactive glass in tissue engineering. Acta Biomater 7(6):2355–2373CrossRefPubMedPubMedCentralGoogle Scholar
  80. Rahaman MN, Liu X, Bal BS, Day DE, Bi L, Bonewald LF (2012) Bioactive glass in bone tissue engineering. Biomater Sci 237:73–82Google Scholar
  81. Ratner BD (2004) Biomaterials science: an introduction to materials in medicine. Academic Press, WalthamGoogle Scholar
  82. Raynaud S, Champion E, Bernache-Assollant D, Thomas P (2002) Calcium phosphate apatites with variable Ca/P atomic ratio I. Synthesis, characterisation and thermal stability of powders. Biomaterials 23(4):1065–1072CrossRefPubMedPubMedCentralGoogle Scholar
  83. Razak SIA, Sharif N, Rahman W (2012) Biodegradable polymers and their bone applications: a review. Int J Basic Appl Sci 12:31–49Google Scholar
  84. Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR (2006) Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27(18):3413–3431CrossRefGoogle Scholar
  85. Sahoo NG, Pan YZ, Li L, He CB (2013) Nanocomposites for bone tissue regeneration. Nanomedicine 8(4):639–653CrossRefPubMedPubMedCentralGoogle Scholar
  86. Samavedi S, Whittington AR, Goldstein AS (2013) Calcium phosphate ceramics in bone tissue engineering: a review of properties and their influence on cell behavior. Acta Biomater 9(9):8037–8045CrossRefPubMedPubMedCentralGoogle Scholar
  87. Saska S, Mendes LS, Gaspar AMM, de Oliveira Capote TS (2015) Bone substitute materials in implant dentistry. Implant Dent 2:158–167Google Scholar
  88. Schaschke C, Audic JL (Editorial) (2014) Biodegradable materials. Int J Mol Sci 15:21468–21475CrossRefGoogle Scholar
  89. Si-Chong Chen, Zhi-Xuan Zhou, Yu-Zhong Wang, Xiu-Li Wang, Ke-Ke Yang (2006) A novel biodegradable poly(p-dioxanone)-grafted poly(vinyl alcohol) copolymer with a controllable in vitro degradation. Polymer 47(1):32–36CrossRefGoogle Scholar
  90. Simamora P, Chern W (2006) Poly-L-lactic acid: an overview. J Drugs Dermatol 5(5):436–440PubMedGoogle Scholar
  91. Singh AB, Majumdar S (2014) The composite of hydroxyapatite with collagen as a bone grafting material. J Adv Med Dent Sci Res 2:53–55CrossRefGoogle Scholar
  92. Singh M, Sandhu B, Scurto A, Berkland C, Detamore MS (2010) Microsphere-based scaffolds for cartilage tissue engineering: using subcritical CO(2) as a sintering agent. Acta Biomater 6(1):137–143CrossRefGoogle Scholar
  93. Sokolsky PM, Agashi K, Olaye A, Shakesheff K, Domb AJ (2007) Polymer carriers for drug delivery in tissue engineering. Adv Drug Deliv Rev 59:187–206CrossRefGoogle Scholar
  94. Sumner DR (2015) Long-term implant fixation and stress-shielding in total hip replacement. J Biomech 48:797–800CrossRefGoogle Scholar
  95. Tamimi F, Sheikh Z, Barralet J (2012) Dicalcium phosphate cements: Brushite and monetite. Acta Biomater 8:474–487CrossRefGoogle Scholar
  96. Tan L, Yu X, Wan P, Yang K (2013) Biodegradable materials for bone repairs: a review. J Mater Sci Technol 29:503–513CrossRefGoogle Scholar
  97. Tian H, Tang Z, Zhuang X, Chen X, Jing X (2012) Biodegradable synthetic polymers: preparation, functionalization and biomedical application. Prog Polym Sci 37(2):237–280CrossRefGoogle Scholar
  98. Udeni Gunathilake TMS, Ching YC, Chuah CH, Sabariah JJ, Pai-Chen L (2016) Fabrication of porous materials from natural/synthetic biopolymers and their composites. Materials 9(12):991CrossRefGoogle Scholar
  99. Ulrike G, Wegst K, Bai H, Eduardo S, Antoni PT, Ritchie RO (2015) Bioinspired structural materials. Nat Mater 14:23–36CrossRefGoogle Scholar
  100. Valappil SP, Misra SK, Boccaccini AR, Roy I (2006) Biomedical applications of polyhydroxyalkanoates: an overview of animal testing and in vivo responses. Expert Rev Med Devices 3(6):853–868CrossRefGoogle Scholar
  101. Vallittu PK, Närhi TO, Hupa L (2015) Fiber glass–bioactive glass composite for bone replacing and bone anchoring implants. Dent Mater 31:371–381CrossRefGoogle Scholar
  102. Vindigni V, Cortivo R, Iacobellis L, Abatangelo G, Zavan B (2009) Hyaluronan benzyl ester as a scaffold for tissue engineering. Int J Mol Sci 10(7):2972–2985CrossRefPubMedPubMedCentralGoogle Scholar
  103. Wang Y, Jiang XL, Peng SW, Guo XY, Shang GG, Chen JC, Wu Q, Chen GQ (2013) Induced apoptosis of osteoblasts proliferating on polyhydroxyalkanoates. Biomaterials 34(15):3737–3746CrossRefGoogle Scholar
  104. Wu Q, Wang Y, Chen GQ (2009) Medical application of microbial biopolyesters polyhydroxyalkanoates artificial cells. Blood Substitutes Biotechnol 37(1):1–12CrossRefGoogle Scholar
  105. Xiao L, Wang B, Yang G, Gauthier M (2012) Poly (lactic acid)-based biomaterials: synthesis, modification and applications. In: Biomedical science, engineering and technology, pp 247–282. InTech, CroatiaGoogle Scholar
  106. Yamamuro T (2012) Clinical applications of bioactive glass-ceramics. New Mater Technol Healthc 1:1–97Google Scholar
  107. Zanello LP, Zhao B, Hu H, Haddon RC (2006) Bone cell proliferation on carbon nanotubes. Nano Lett 6(3):562–567CrossRefGoogle Scholar
  108. Zeeshan S, Shariq N, Zohaib K, Vivek V, Haroon R, Michael G (2015) Biodegradable materials for bone repair and tissue engineering applications. Materials (Basel) 8(9):5744–5794CrossRefGoogle Scholar
  109. Zhao J, Han W, Chen H (2011) Preparation, structure and crystallinity of chitosan nano-fibers by a solid-liquid phase separation technique. Carbohydr Polym 83:1541–1546CrossRefGoogle Scholar
  110. Zhao Q, Wang S, Kong M, Geng W, Li RK, Song C, Kong D (2012) Phase morphology, physical properties, and biodegradation behavior of novel PLA/PHBHHx blends. J Biomed Mater Res B Appl Biomater 100(1):23–31CrossRefPubMedPubMedCentralGoogle Scholar
  111. Zhu S, Sun H, Geng H, Liu D, Zhang X, Cai Q, Yang X (2016a) Dual functional polylactide–hydroxyapatite nanocomposites for bone regeneration with nano-silver being loaded via reductive polydopamine. RSC Adv 6:91349–91360CrossRefGoogle Scholar
  112. Zhu W, Holmes B, Glazer RI, Zhang LG (2016b) 3D printed nanocomposite matrix for the study of breast cancer bone metastasis. Nanomedicine 12(1):69–79CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Sandip Bag
    • 1
  1. 1.JIS College of EngineeringKalyaniIndia

Personalised recommendations