Elements of Medical Image Processing

  • T. Emami
  • S. S. Janney
  • S. Chakravarty


The advent of technology has taken us so far in our lives that we cannot imagine any field without technology or devices. Name any area today, for example, business, education, media and communication, aerospace, etc. There are no surprises that health care has become one of the most advanced prospectives for technologies and its application to be used. Currently we are in the era where medical professionals are using applications to speed up diagnosis, treatment, surgical procedures, recovery, etc., to provide better services to the public. One of the most interesting aspects is the medical image processing which has come a long way from requiring human intervention to current day scenario where application accurately predicts the cause and location of tumor or abnormalities from ultrasound, MRI, PET scan, CT scan, X-ray data, etc. Buzz is going on in the medical arena that in the near future technologies will replace some of the health-care professional jobs. Until then let us start by understanding the current state of affair between technology in biomedical image processing field and its applications.


  1. Aberle D, El-Saden S, Abbona P, Gomez A, Motamedi K, Ragavendra N, Bassett L, Seeger L, Brown M, Brown K, Bui AAT, Kangarloo H (2010) A primer on imaging anatomy and physiology. In: Medical imaging informatics. Springer, New York, pp 17–53Google Scholar
  2. Anbeek P, Vincken KL, van Bochove GS, van Osch MJP, van der Grond J (2005) Probabilistic segmentation of brain tissue in MR imaging. NeuroImage 27:795–804CrossRefGoogle Scholar
  3. Anthimopoulos M, Christodoulidis S, Ebner L, Christe A, Mougiakakou S (2016) Lung pattern classification for interstitial lung diseases using a deep convolutional neural network. IEEE Trans Med Imag 35(5):1207–1216CrossRefGoogle Scholar
  4. Ashburner J, Friston KJ (2011) Diffeomorphic registration using geodesic shooting and Gauss-Newton optimisation. NeuroImage 55(3):954–967CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bailey DL, Townsend DW, Valk PE, Maisey MN (2005) Positron-emission tomography: basic sciences. Springer, Secaucus, NJ. ISBN 1-85233-798-2CrossRefGoogle Scholar
  6. Bajcsy R, Kovačič S (1989) Multiresolution elasticmatching. Comput Vis Graph Image Process 46(1):1–21CrossRefGoogle Scholar
  7. Berahim M, Samsudin NA, Nathan SS (2018) A review: image analysis techniques to improve labeling accuracy of medical image classification. Int Conf Soft Comput Data Min 2018:298–307Google Scholar
  8. Besl PJ, McKay ND (Feb. 1992) Amethod for registration of 3-D shapes. IEEE Trans Pattern Anal Mach Intell 14(2):239–256CrossRefGoogle Scholar
  9. Bharatha A, Hirose M, Hata N, Warfield SK, Ferrant M, Zou KH, Suarez-Santana E, Ruiz-Alzola J, D’Amico A, Cormack RA, Kikinis R, Jolesz FA, Tempany CMC (2001) Evaluation of three-dimensional finite element-based deformable registration of pre and intraoperative prostate imaging. Med Phys 28(12):2551–2560CrossRefPubMedPubMedCentralGoogle Scholar
  10. Binh NT, Khare A (2010) Adaptive complex wavelet technique for medical image denoising. In Proceedings of third international conference on development of biomedical engineering, 195–198, Vietnam, January 11–14, 2010.Google Scholar
  11. Bookstein FL (Jun. 1989) Principal warps: thin-plate splines and the decomposition of deformations. IEEE Trans Pattern Anal Mach Intell 11(6):567–585CrossRefGoogle Scholar
  12. Bookstein FL (1991) Thin-plate splines and the atlas problem for biomedical images. Proc Int Conf Inf Process Med Imag:326–342Google Scholar
  13. Boykov Y, Veksler O, Zabih R (Nov. 2001) Fast approximate energy minimization via graph cuts. IEEE Trans Pattern Anal Mach Intell 23(11):1222–1239CrossRefGoogle Scholar
  14. Bradley WG (2008) History of medical imaging. Proc Am Philos Soc 152(3):349–361PubMedGoogle Scholar
  15. Cao X, Miao J, Xiao Y (2017) Medical image segmentation of improved genetic algorithm research based on dictionary learning. World J Eng Technol (5):90–96Google Scholar
  16. Carlson N (2012) “Physiology of behavior”, methods and strategies of research, 11th edn. Pearson, London, p 151. ISBN 0205239390Google Scholar
  17. Carroll QB (2014) Radiography in the digital age, 2nd edn. Charles C Thomas, Springfield, p 9. ISBN 9780398080976Google Scholar
  18. Cheung W, Hamarneh G (2009) n-SIFT: N-dimensional scale invariant feature transform. IEEE Trans Imag Process 18(9):2012–2021CrossRefGoogle Scholar
  19. Chung K, Scholten ET, Oudkerk M, De Jong PA, Prokop M, Van Ginneken B (2015) Automatic classification of pulmonary peri-fissural nodules in computed tomography using an ensemble of 2D views and a convolutional neural network out-of-the-box. Med Image Anal 26(1):195–202CrossRefPubMedPubMedCentralGoogle Scholar
  20. Clatz O, Sermesant M, Bondiau P-Y, Delingette H, Warfield SK, Malandain G, Ayache N (Oct. 2005) Realistic simulation of the 3-d growth of brain tumors in MR images coupling diffusion with biomechanical deformation. IEEE Trans Med Imag 24(10):1334–1346CrossRefGoogle Scholar
  21. Cootes TF, Taylor CJ, Cooper DH, Graham J (1995) Active shape models – their training and application. Comput Vis Imag Understand 61(1):38–59CrossRefGoogle Scholar
  22. Coyle SM, Ward TSE, Markham CM (2007) Brain–computer interface using a simplified functional near-infrared spectroscopy system. J Neur Eng 4(3):219–226. Scholar
  23. CT Scan (CAT Scan, Computerized Tomography) Imaging Procedure (2018) MedicineNet. Retrieved 29 Nov 2018Google Scholar
  24. Declerck J, Feldmar J, Goris ML, Betting F (Dec. 1997) Automatic registration and alignment on a template of cardiac stress and rest reoriented SPECT images. IEEE Trans Med Imag 16(6):727–737CrossRefGoogle Scholar
  25. Deserno TM, Antani S, Long R (2009) Ontology of gaps in content-based image retrieval. J Digit Imaging 22(2):202–215CrossRefPubMedPubMedCentralGoogle Scholar
  26. Despotovi I, Goossens B, Philips W (2015) MRI segmentation of the human brain: challenges, methods, and applications. Comput Math Methods Med 2015Google Scholar
  27. Dhawan AP (2008) Image segmentation and feature extraction. In: Principles and advanced methods in medical imaging and image analysis. World Scientific Publishing Co. Pte. Ltd, Singapore, pp 197–228CrossRefGoogle Scholar
  28. Dhawan AP, Dai S (2008) Clustering and pattern classification. In: Principles and advanced methods in medical imaging and image analysis. World Scientific Publishing Co. Pte. Ltd, Singapore, pp 229–265CrossRefGoogle Scholar
  29. DistanceDoc and MedRecorder: New Approach to Remote Ultrasound Imaging, Solutions, Epiphan Systems Archived 2011-02-14 at the Wayback Machine.. Retrieved on 2011-11-13.Google Scholar
  30. Dolovich M, Labiris R (2004) Imaging drug delivery and drug responses in the lung. Proc Am Thorac Soc 1:329–337CrossRefGoogle Scholar
  31. Dou Q, Member S, Chen H, Member S, Yu L, Zhao L, Qin J (2016) Automatic detection of cerebral microbleeds from MR images via 3D convolutional neural networks. IEEE Trans Med Imaging 11(4):1–14Google Scholar
  32. Duggal R, Gupta A, Gupta R, Wadhwa M, Ahuja C (2016) Overlapping cell nuclei segmentation in microscopic images using deep belief networks. In: Proceedings of the tenth Indian conference on computer vision, graphics and image processing. ACM, New York, p 82Google Scholar
  33. Erickson BJ, Korfiatis P, Akkus Z, Kline TL (2017) Machine learning for medical imaging. Radiographics 37(2):505–515CrossRefPubMedPubMedCentralGoogle Scholar
  34. Esteva A et al (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542(7639):115–118CrossRefGoogle Scholar
  35. Faggella D (2018) Machine learning healthcare applications – 2018 and beyond, article published in in Mar 2018Google Scholar
  36. Fletcher R, Reeves CM (1964) Function minimization by conjugate gradients. Comput J 7(2):149–154CrossRefGoogle Scholar
  37. Ford LR, Fulkerson DR (1956) Maximal flow through a network (PDF). Can J Math 8:399–404Google Scholar
  38. Frey BJ, MacKay DJC (1997) A revolution: belief propagation in graphs with cycles. Proc Conf Adv Neural Inf Process Syst:479–485Google Scholar
  39. Ganser KA, Dickhaus H, Metzner R, Wirtz CR (2004) A deformable digital brain atlas system according to Talairach and Tournoux. Med Imag Anal 8:3–22CrossRefGoogle Scholar
  40. Ge C et al (2018) 3D multi-scale convolutional networks for Glioma grading using MR images. IEEE Int Conf Imag Process Proc:141–145Google Scholar
  41. Gee JC, Bajcsy R (1999) Elastic matching: continuum mechanical and probabilistic analysis. Brain Warp:183–197Google Scholar
  42. Gefen S, Tretiak O, Nissanov J (Nov. 2003) Elastic 3-D alignment of rat brain histological images. IEEE Trans Med Imag 22(11):1480–1489CrossRefGoogle Scholar
  43. Gholipur K, Briggs G (2007) Brain function Localization: a survey of Image Registration techniques. IEEE Trans Med Imag 26(4):427–451CrossRefGoogle Scholar
  44. Ghose A, Ghose A, Dasgupta P (2018) New surgical robots on the horizon and the potential role of artificial intelligence. J Invest Clin Urol.
  45. Goel N, Yadav A, Singh BM (2016) Medical image processing: a review, IEEE CIPECH, Nov 2016Google Scholar
  46. Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial networks. arXiv:1406.2661Google Scholar
  47. Gopalakrishnan V, Menon PG, Madan S (2015) cMRI-BED: a novel informatics framework for cardiac MRI biomarker extraction and discovery applied to pediatric cardiomyopathy classification. BioMed Eng 14(suppl 2):1–16Google Scholar
  48. Greig DM, Porteous BT, Seheult AH (1989) Exact maximuma posteriori estimation for binary images. J R Stat Soc Ser B (Methodol) 51(2):271–279Google Scholar
  49. Haber E, Modersitzki J (2007) Image registration with guaranteed displacement regularity. Int J Comput Vis 71(3):361–372CrossRefGoogle Scholar
  50. Hadamard J (1923) Lectures on the Cauchy’s Problem in Linear Partial Differential Equations. Yale Univ. Press, New Haven, CTGoogle Scholar
  51. Hager WW, Zhang H (2006) A survey of nonlinear conjugate gradient methods. Pacific J Optimizat 2(1):35–58Google Scholar
  52. Hansen N, Ostermeier A (2001) Completely derandomized self-adaptation in evolution strategies. Evolution Comput 9(2):159–195CrossRefGoogle Scholar
  53. Haralick RM, Shapiro LG (1985) Image segmentation techniques. Comput Vis Grap Imag Process 29(1):100–132CrossRefGoogle Scholar
  54. Havaei M et al (2017) Brain tumor segmentation with deep neural networks. Med Imag Anal 35:18–31CrossRefGoogle Scholar
  55. He J, Christensen GE (2003) Large deformation inverse consistent elastic image registration. Int Conf Inf Process Med Imag:438–449Google Scholar
  56. Hellier P, Barillot C, Mémin É, Pérez P (2001) Hierarchical estimation of a dense deformation field for 3-D robust registration. IEEE Trans Med Imag 20(5):388–402CrossRefGoogle Scholar
  57. Hensel JM, Ménard C, Chung PW, Milosevic MF, Kirilova A, Moseley JL, Haider MA, Brock KK (2007) Development of multiorgan finite element-based prostate deformation model enabling registration of endorectal coil magnetic resonance imaging for radiotherapy planning. Int J Radiat Oncol Biol Phys 68(5):1522–1528CrossRefPubMedPubMedCentralGoogle Scholar
  58. Hestenes MR, Stiefel E (1952) Methods of conjugate gradients for solving linear systems. J Res Nat Bureau Stand 49(6):409–436CrossRefGoogle Scholar
  59. Hogea C, Biros G, Abraham F, Davatzikos C (2007) A robust framework for soft tissue simulations with application to modeling brain tumor mass effect in 3d MR images. Phys Med Biol (23):6893–6908Google Scholar
  60. Hong J, Vicory J, Schulz J, Styner M, Marron JS, Pizer SM (2016) Non-Euclidean classification of medically imaged objects via s-reps R. Med Image Anal 31:37–45CrossRefPubMedPubMedCentralGoogle Scholar
  61. Iwahori Y, Hattori A, Adachi Y, Bhuyan MK, Robert J (2015) Automatic detection of polyp using hessian filter and HOG features. In: Procedia computer science international conference in knowledge based and intelligent information and engineering systems - KES2015, pp 730–739Google Scholar
  62. James AP, Dasarathy BV (2014) Medical image fusion: a survey of state of the art. Inf Fusion 19:4–19. arXiv:1401.0166CrossRefGoogle Scholar
  63. Jian B, Vemuri B (2011) Robust point set registration using Gaussian mixture models. IEEE Trans Pattern Anal Mach Intell 33(8):1633–1645CrossRefPubMedPubMedCentralGoogle Scholar
  64. Jin KH, McCann MT, Froustey E, Unser M (2017) Deep convolutional neural network for inverse problems in imaging. IEEE Trans Image Process 26(9):4509–4522CrossRefGoogle Scholar
  65. Kadir T, Brady M (2001) Saliency, scale and image description. Int J Comput Vis 45(2):83–105CrossRefGoogle Scholar
  66. Kaur G, Singh B (2011) Intensity based image segmentation using wavelet analysis and clustering techniques. Indian J Comput Sci Eng 2(3)Google Scholar
  67. Kaushik D, Singh U, Singhal P, Singh V (2013) Medical image segmentation using genetic algorithm. Int J Comput Appl 81(18)Google Scholar
  68. Ker J, Wang L, Rao J, Lim T (2017) Deep learning applications in medical image analysis, Special section on soft computing techniques for image analysis in the medical industry current trends, challenges and solutions, IEEE Access, Dec 2017Google Scholar
  69. Kevles BH (1996) Naked to the bone medical imaging in the twentieth century. Rutgers University Press, Camden, NJ, pp 19–22. ISBN 978-0-8135-2358-3Google Scholar
  70. Khalvati F, Wong A, Haider MA (2015) Automated prostate cancer detection via comprehensive multi-parametric magnetic resonance imaging texture feature models. BMC Med Imag:1–14Google Scholar
  71. Kim J, Fessler JA (Nov. 2004) Intensity-based image registration using robust correlation coefficients. IEEE Trans Med Imag 23(11):1430–1444CrossRefGoogle Scholar
  72. Klein S, Staring M, Pluim JPW (Dec. 2007) Evaluation of optimization methods for nonrigid medical image registration using mutual information and B-splines. IEEE Trans Image Process 16(12):2879–2890CrossRefGoogle Scholar
  73. Komodakis N, Tziritas G (2007) Approximate labeling via graph cuts based on linear programming. IEEE Trans Pattern Anal Mach Intell 29(8):1436–1453CrossRefGoogle Scholar
  74. Komodakis N, Tziritas G, Paragios N (2008) Performance vs computational efficiency for optimizing single and dynamic MRFs: setting the state of the art with primal-dual strategies. Comput Vis Imag Understand 112(1):14–29CrossRefGoogle Scholar
  75. Kruggel F, Yves von Cramon D (Jun. 1999) Alignment of magnetic-resonance brain datasets with the stereotactical coordinate system. Med Imag Anal 3:175–185CrossRefGoogle Scholar
  76. Kybic J, Unser M (Nov. 2003) Fast parametric elastic image registration. IEEE Trans Imag Process 12(11):1427–1442CrossRefGoogle Scholar
  77. Lai ZF, Deng HF (2018) Medical image classification based on deep features extracted by deep model and statistic feature fusion with multilayer perceptron. Comp Intel Neurosci 2018Google Scholar
  78. Lashari SA, Ibrahim R (2013) A framework for medical images classification using soft set. Proc Technol 11:548–556CrossRefGoogle Scholar
  79. Last Image Hold Feature (2010) Fluoroscopic Radiation Management. Walter L. Robinson & Associates. Retrieved April 3, 2010Google Scholar
  80. LeCun Y (2013) LeNet-5, convolutional neural networks. Retrieved 16 Nov 2013Google Scholar
  81. Leow A, Huang S-C, Geng A, Becker J, Davis S, Toga A, Thompson P (2005) Inverse consistent mapping in 3D deformable image registration: its construction and statistical properties. Int Conf Inf Process Med Imag:493–503Google Scholar
  82. Lilja AR, Strong CW, Bailey BJ, Thurecht KJ, Houston ZH, Fletcher NL, McGhee JB (2018) Design-led 3D visualization of nanomedicines in virtual reality, VRST, Proceeding of the 24th ACM symposium on Virtual Reality Software and Technology Article No. 48Google Scholar
  83. Lin Q, Xu Z, Li B, Baucom R, Poulose B, Landman BA, Bodenheimera RE (2013) Immersive virtual reality for visualization of abdominal CT. Proc SPIE 28:8673. Scholar
  84. Litjens, Geert, Kooi, Thijs, Bejnordi, Babak Ehteshami, Setio, Arnaud Arindra Adiyoso, Ciompi, Francesco, Ghafoorian, Mohsen, Van Der Laak, Jeroen Awm, Van Ginneken, Clara I. Sánchez. (2017). A survey on deep learning in medical image analysis, Med Image Anal, vol. 42, pp. 60–88Google Scholar
  85. Liu T, Shen D, Davatzikos C (2004) Deformable registration of cortical structures via hybrid volumetric and surface warping. NeuroImage 22(4):1790–1801CrossRefPubMedPubMedCentralGoogle Scholar
  86. Liu J, Ma W, Liu F, Hu Y, Yang J, Xu X (2007) Study and application of medical image visualization technology, ICDHM 2007: Digital Human Modeling, 668–677Google Scholar
  87. Long LR, Antani S, Deserno TM, Thoma GR (2009) Contentbased image retrieval in medicine retrospective assessment, state of the art, and future directions. Int J Health Inform Syst Informat 4(1):1–16CrossRefGoogle Scholar
  88. Maes F, Collignon A, Vandermeulen D, Marchal G, Suetens P (1997) Multimodality image registration by maximization of mutual information. IEEE Trans Med Imag 16(2):187–198CrossRefGoogle Scholar
  89. Maier-Hein L, Eisenmann M, Reinke A, Onogur S, Stankovic M, Scholz P, Arbel T, Bogunovic H, Bradley AP, Carass A, Feldmann C, Frangi AF, Full PM, van Ginneken B, Hanbury A, Honauer K, Kozubek M, Landman BA, März K, Maier O, MaierHein K, Menze BH, Müller H, Neher PF, Niessen W, Rajpoot N, Sharp GC, Sirinukunwattanal K, Speidel S, Stock C, Stoyanov D, Taha AA, van der Sommen F, Wang C-W, Weber M-A, Zheng G, Jannin P, Kopp-Schneider A (n.d.) Is the winner really the best? A critical analysis of common research practice in biomedical image analysis competitions,
  90. Masood A, Al-jumaily A (2015) Semi advised SVM with adaptive differential evolution based feature selection for skin cancer diagnosis. J Comput Comm 3:184–190CrossRefGoogle Scholar
  91. Mazziotta J (2002) The international consortium for brain mapping: a probabilistic atlas and reference system for the human brain. In: Toga AW, Mazziotta JC (eds) Brain mapping: the methods. Academic, New York, pp 727–755CrossRefGoogle Scholar
  92. Mazziotta JC, Toga AW, Evans A, Fox P, Lancaster J (1995) A probabilistic atlas of the human brain: theory and rationale for its development. NeuroImage (2):89–101Google Scholar
  93. Mikolajczyk K, Schmid C (2004) Scale & affine invariant interest point detectors. Int J Comput Vis 60(1):63–86CrossRefGoogle Scholar
  94. Mikolajczyk K, Schmid C (Oct. 2005) A performance evaluation of local descriptors. IEEE Trans Pattern Anal Mach Intell 27(10):1615–1630CrossRefPubMedPubMedCentralGoogle Scholar
  95. Mikolajczyk K, Tuytelaars T, Schmid C, Zisserman A, Matas J, Schaffalitzky F, Kadir T, Gool LV (2005) A comparison of affine region detectors. Int J Comput Vis 65(1–2):43–72CrossRefGoogle Scholar
  96. Miranda E, Aryuni M, Irwansyah E (2016) A survey of medical image classification techniques. Int Conf Inf Manag Technol (ICIMTech):56–61, 2016Google Scholar
  97. Mittal D, Rani A (2016) Detection and classification of focal liver lesions using support vector machine classifiers. J Biomed Eng Med Imaging 3(1):21–34Google Scholar
  98. Modersitzki J (2008) Flirt with rigidity-image registration with a local nonrigidity penalty. Int J Comput Vis 76(2):153–163CrossRefGoogle Scholar
  99. Moré JJ, Thuente DJ (1994) Line search algorithms with guaranteed sufficient decrease. ACM Trans Math Software 20(3):286–307CrossRefGoogle Scholar
  100. Morel J-M, Yu G (2009) Asift: a new framework for fully affine invariant image comparison. SIAM J Imag Sci 2(2):438–469CrossRefGoogle Scholar
  101. Murphy KP, Weiss Y, Jordan MI (1999) Loopy belief propagation for approximate inference: an empirical study. Proc Conf Uncert Artif Intell:467–475Google Scholar
  102. Nandi D, Ashour AS, Samanta S, Chakraborty S, Salem MAM, Dey N (2015) Principal component analysis in medical image processing: a study. Int J Image Mining 1(1):65–86CrossRefGoogle Scholar
  103. Nguyen LD, Lin D, Lin Z, Cao J (2018) Deep CNNs for microscopic image classification by exploiting transfer learning and feature concatenation. In: Circuits and Systems (ISCAS), 2018 IEEE international symposium, pp 1–5Google Scholar
  104. Ni D, Qu Y, Yang X, Chui Y, Wong T-T, Ho S, Heng P (2008) Volumetric ultrasound panorama based on 3d sift. Proc Int Conf Med Image Comput Assist Intervent:52–60Google Scholar
  105. Novelline R (1997) Squire’s fundamentals of radiology, 5th edn. Harvard University Press, Cambridge, MA, pp 34–35. ISBN 0-674-83339-2Google Scholar
  106. Nowinski WL, Thirunavuukarasuu A (2001) Atlas-assisted localization analysis of functional images. Med Imag Anal 5:207–220CrossRefGoogle Scholar
  107. Passat N, Ronse C, Baruthio J, Armspach J-P, Maillot C, Jahn C (2005) Region-growing segmentation of brain vessels: an atlas-based automatic approach. J Magn Res Imag 21(6):715–725CrossRefGoogle Scholar
  108. Pedram SA, Ferguson P, Ma J, Dutson E, Rosen J (2017) Autonomous suturing via surgical robot: an algorithm for optimal selection of needle diameter, shape, and path. In: Proceedings of IEEE international conference on robotics and automation. IEEE, SingaporeGoogle Scholar
  109. Pennec X, Stefanescu R, Arsigny V, Fillard P, Ayache N (2005) Riemannian elasticity: a statistical regularization framework for non-linear registration. In International conference Medical Image Computing and Computer-Assisted Intervention, 943–950Google Scholar
  110. Pereira S, Pinto A, Alves V, Silva CA (2016) Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Trans Med Imag 35(5):1240–1251CrossRefGoogle Scholar
  111. Pestscharing S, Schoffmann K (2017) Learning laparoscopic video shot classification for gynecological surgery. Multimed Tools Appl 77:8061–8079. Scholar
  112. Petitjean C, Dacher J-N (2011) A review of segmentation methods in short axis cardiac MR images. Med Imag Anal 15(2):169–184CrossRefGoogle Scholar
  113. Pham DL, Xu C, Prince JL (2000) Current methods in medical image segmentation. Ann Rev Biomed Eng 2(1):315–337CrossRefGoogle Scholar
  114. Polyak BT (1969) The conjugate gradient method in extremal problems. USSR Computat Math Math Phys 9(4):94–112CrossRefGoogle Scholar
  115. Que Q, Tang Z, Wang R, Zeng Z, Wang J, Chua M, Gee TS, Yang X, Veeravalli B (2018) CardioXNet: automated detection for cardiomegaly based on deep learning. IEEE EMBC.
  116. Rabbitt RD, Weiss JA, Christensen GE, Miller MI (1995) Mapping of hyperelastic deformable templates using the finite element method. In: Proceedings of SPIE Visual Geometry, pp 252–265Google Scholar
  117. Radiographic Standard Operating Protocols (PDF) (2015) HEFT Radiology Directorate. Heart of England NHS Foundation Trust. Retrieved 27 Jan 2016Google Scholar
  118. Radiology – acute indications (2017) Royal Children’s Hospital, Melbourne. Retrieved 23 July 2017Google Scholar
  119. Rao KMM, Rao VDP Medical image processingGoogle Scholar
  120. Razzak MI, Naz S, Zaib A (n.d.) Deep learning for medical image processing: overview, challenges and future,
  121. Richard P, Coiffet P (1995) Human perceptual issues in virtual environments: sensory substitution and information redundancy. In: Proceedings of IEEE international workshop on robot and human communication. IEEE, TokyoGoogle Scholar
  122. Roell J (2017) Understanding recurrent neural networks: the preferred neural network for time-series data, Article in towards data science, Jun 26, 2017Google Scholar
  123. Roland PE, Zilles K (Nov. 1994) Brain atlases – a new research tool. Trends Neurosci 17:458–467CrossRefPubMedPubMedCentralGoogle Scholar
  124. Roland PE, Geyer S, Amunts K, Schormann T, Schleicher A, Malikovic A, Zilles K (1997) Cytoarchitectural maps of the human brain in standard anatomical space. Hum Brain Mapp 5:222–227CrossRefPubMedPubMedCentralGoogle Scholar
  125. Roth HR et al (2015) Deeporgan: multi-level deep convolutional networks for automated pancreas segmentation. Proc Int Conf Med Imag Comput Assist Intervent 2015:556–564Google Scholar
  126. Rueckert D, Sonoda LI, Hayes C, Hill DLG, Leach MO, Hawkes DJ (1999) Nonrigid registration using free-form deformations: application to breast MR images. IEEE Trans Med Imag 18(8):712–721CrossRefGoogle Scholar
  127. Sahoo PK, Soltani S, Wong AKC (1988) A survey of thresholding techniques. Comput Vis Graph Image Proc 41:233–260CrossRefGoogle Scholar
  128. Sakamoto M, Nakano H (2016) Cascaded neural networks with selective classifiers and its evaluation using lung x-ray ct images. arXiv preprint arXiv:1611.07136Google Scholar
  129. Sample S (2007-03-27) X-Rays. The electromagnetic spectrum. NASA. Retrieved 3 Dec 2007
  130. Sarikaya D, Corso JJ, Guru KA (2017) Detection and localization of robotic tools in robot-assisted surgery videos using deep neural networks for region proposal and detection. IEEE Trans Med Imag.
  131. Scholl I, Aach T, Deserno TM, Kuhlen T (2011) Challenges of medical image processing. Comput Sci Res Dev 26:5–13. Scholar
  132. Seetharaman K, Sathiamoorthy S (2016) A unified learning framework for content based medical image retrieval using a statistical model. J King Saud Univ Comput Inf Sci 28(1):110–124Google Scholar
  133. Setio AAA, Ciompi F, Litjens G, Gerke P, Jacobs C, Van Riel SJ, Wille MW, Naqibullah M, Clara IS, Van Ginneken B (2016) Pulmonary nodule detection in CT images: false positive reductionusing multi-view convolutional networks. IEEE Trans Med Imag 35(5):1160–1169CrossRefGoogle Scholar
  134. Sharma A (2015) A refinement: better classification of images using LDA in contrast with SURF and SVM for CBIR system. Int J Comput App 117(16)Google Scholar
  135. Sharma N, Aggarwal LM (2010) Automated medical image segmentation techniques. J Med Phys Assoc Med Phys India 35(1):3Google Scholar
  136. Shrimpton PC, Miller HC, Lewis MA, Dunn M (2011) Doses from Computed Tomography (CT) examinations in the UK – 2003 Review Archived 2011-09-22 at the Wayback Machine.Google Scholar
  137. Shvets A, Rakhlin A, Kalinin AA, Iglovikov V (2018) Automatic instrument segmentation in robot-assisted surgery using deep learning. bioRxiv.
  138. Sirinukunwattana K, Raza SEA, Tsang Y, Snead DRJ, Cree IA, Rajpoot NM (2016) Locality sensitive deep learning for detection and classification of nuclei in routine colon cancer histology images. IEEE Trans Med Imaging 35(5):1–12CrossRefGoogle Scholar
  139. Solodova RF, Galatenko VV, Nakashidze ER, Andreytsev IL, Galatenko AV, Senchik DK et al (2016) Instrumental tactile diagnostics in robot-assisted surgery. Med Devices Evid Res 9:377–382. Scholar
  140. Song Y, Cai W, Huang H, Zhou Y, Wang Y, Feng DD (2015) Locality-constrained subcluster representation ensemble for lung image classification. Med Image Anal 22(1):102–113CrossRefPubMedPubMedCentralGoogle Scholar
  141. Tagare HD, Jaffe CC, Duncan J (1997) Medical image databases: a content-baseGoogle Scholar
  142. Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain. Thieme, New YorkGoogle Scholar
  143. Thirumaran J, Shylaja S (2014) Medical image processing – an introduction, IJSR, ISSN (Online): 2319-7064Google Scholar
  144. Thompson PM, Woods RP, Mega MS, Toga AW (2000) Mathematical/computational challenges in creating deformable and probabilistic atlases of the brain. Hum Brain Mapp 9:81–92CrossRefGoogle Scholar
  145. Toennies KD (2012) Guide to medical image analysis. Springer Adv Patt Recogn.
  146. Torresani L, Kolmogorov V, Rother C (2008) Feature correspondence via graph matching: models and global optimization. Proc Eur Conf Comput Vis:596–609Google Scholar
  147. Triggs B (2004) Detecting keypoints with stable position, orientation, and scale under illumination changes. Proc Eur Conf Comput Vis:100–113Google Scholar
  148. Tsui P-H, Yeh CK, Huang C-C (2012) Noise-assisted correlation algorithm for suppressing noise-induced artifacts in ultrasonic Nakagami images. IEEE Trans Infor Technol Biomed 16(3)Google Scholar
  149. Ultrasound Imaging of the Pelvis. Archived from the original on 2008-06-25. Retrieved 2008-06-21Google Scholar
  150. Upadhyay A, Kashyap R (2016) Fast segmentation methods for medical images. Int J Comput Appl 156(3):18–23Google Scholar
  151. Van Grinsven MJJP, Van Ginneken B, Hoyng CB, Theelen T, Clara IS (2016) Fast convolutional neural network training using selective data sampling: application to hemorrhage detection in color fundus images. IEEE Trans Med Imaging 35(5):1273–1284CrossRefGoogle Scholar
  152. Van Tulder G, De Bruijne M (2016) Combining generative and discriminative representation learning for lung CT analysis with convolutional restricted boltzmann machines. IEEE Trans Med Imaging 35(5):1262–1272CrossRefGoogle Scholar
  153. Varytimidis C, Rapantzikos K, Loukas C, Kolias S (2016) Surgical video retrieval using deep neural networks. In: Proceedings of workshop and challenges on modeling and monitoring of computer assisted interventions. MICCAI, AthensGoogle Scholar
  154. Viola P, Wells WM III (1997) Alignment by maximization of mutual information. Int J Comput Vis 24(2):137–154CrossRefGoogle Scholar
  155. Wang J, Blackburn TJ (2000) The AAPM/RSNA physics tutorial for residents: X-ray image intensifiers for fluoroscopy. Radiographics 20(5): 1471–1477. doi: ISSN 0271-5333. PMID 10992034.
  156. Wang L, Pedersen PC, Agu E, Strong DM, Tulu B (2017) Area determination of diabetic foot ulcer images using a cascaded two-stage SVM-based classification. IEEE Trans Biomed Eng 64(9):2098–2109CrossRefGoogle Scholar
  157. Weizenecker J, Gleich B, Rahmer J, Dahnke H, Borgert J (2009) Three-dimensional real-time in vivo magnetic particle imaging. Phys Med Biol 54(5):L1–L10. Scholar
  158. Withey DJ, Koles, ZJ (2007) Medical image segmentation: methods and software, 140–143Google Scholar
  159. Woods RP (2003) Characterizing volume and surface deformations in an atlas framework: theory, applications, and implementation. Neuroimage 18:769–788CrossRefGoogle Scholar
  160. Wu Y-T, Kanade T, Li C-C, Cohn J (2000) Image registration using wavelet-based motion model. Int J Comput Vis 38(2):129–152CrossRefGoogle Scholar
  161. Xue Z, Shen D, Davatzikos C (Oct. 2004) Determining correspondence in 3-D MR brain images using attribute vectors as morphological signatures of voxels. IEEE Trans Med Imag 23(10):1276–1291CrossRefGoogle Scholar
  162. Yamamoto T, Abolhassani N, Jung S, Okamura AM, Judkins T (2012) Augmented reality and haptic interfaces for robot-assisted surgery. Int J Med Robotics Comput Assist Surg 8:45–56. Scholar
  163. Yang X, Xue Z, Liu X, Xiong D (2011) Topology preservation evaluation of compact-support radial basis functions for image registration. Pattern Recognit Lett 32(8):1162–1177CrossRefGoogle Scholar
  164. Yu YE, Bishop M, Zheng B, Ferguson RM, Khandhar AP, Kemp SJ, Krishnan KM, Goodwill PW, Conolly SM (2017) Magnetic particle imaging: a novel in vivo imaging platform for cancer detection. Nano Lett 17(3):1648–1654. Scholar
  165. Zagorchev L, Goshtasby A (2006) A comparative study of transformation functions for nonrigid image registration. IEEE Trans Imag Process 15(3):529–538CrossRefGoogle Scholar
  166. Zhang W et al (2015) Deep convolutional neural networks for multi-modality isointense infant brain image segmentation. NeuroImage 108:214–224CrossRefPubMedPubMedCentralGoogle Scholar
  167. Zhao Z, Voros S, Weng Y, Chang F, Li R (2017) Tracking-by-detection of surgical instruments in minimally invasive surgery via the convolutional neural network deep learning-based method. Comput Assist Surg 22:26–35. Scholar
  168. Zhu H (2003) Medical image processing overviewGoogle Scholar
  169. Zhu Q, Du B, Wu J, Yan P (2018) A deep learning health data analysis approach: automatic 3D prostate MR segmentation with densely-connected volumetric convnets. IJCNN.

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • T. Emami
    • 1
  • S. S. Janney
    • 1
  • S. Chakravarty
    • 1
  1. 1.Department of Electrical EngineeringKennesaw State UniversityKennesawGeorgia

Personalised recommendations