Advertisement

Paper-Based Sensors for Biomedical Applications

  • Mohd Aurif Shergujri
  • Rabeuj Jaman
  • Arup Jyoti Baruah
  • Mrityunjoy Mahato
  • Davidson Pyngrope
  • L. Robindro Singh
  • Manashjit Gogoi
Chapter

Abstract

Paper-based sensor is a new analytical technique applicable in healthcare monitoring, environmental monitoring, food quality control, etc. Currently, these technologies are drawing great attention due to ease of fabrication, cost-effectiveness, and their simple, portable, and disposable nature. The inherent qualities of paper, such as availability in large quantities, cheap, lightweight, and biodegradability, are being exploited to develop sustainable devices. The application of paper as a substrate material in litmus paper was dated back to seventeenth century. The semiquantitative detection of glucose in urine and immune chromatographic paper test strips for pregnancy test kits are examples of paper-based sensing devices. Today, microfluidic paper-based sensors with advanced designs involving complex 3D geometrics for handling multiples analytes are under investigation. It is foreseen that advancements in the fabrication and analytical techniques will help in improving the accuracy and sensitivity of paper-based sensors. Different types of detection approaches used in microfluidic paper-based devices are colorimetry, luminescence, electrochemical detection, fluorescence, and surface-enhanced Raman scattering.

This book chapter focuses on different microfluidic paper-based devices used for healthcare applications. The coverage of this chapter is also extended to its current status and future prospects with elaborative and graphical examples.

Keywords

Paper-based sensor Microfluidic Lab-on-a-chip Diagnostic Analytical sensors 

References

  1. Abe K, Suzuki K, Citterio D (2008) Inkjet-printed microfluidic multianalyte chemical sensing paper. Anal Chem 80(18):6928–6934CrossRefPubMedPubMedCentralGoogle Scholar
  2. Ali MM, Aguirre SD, Xu Y, Filipe CDM, Pelton R, Li Y (2009) Detection of DNA using bioactive paper strips. Chem Commun 43:6640–6642CrossRefGoogle Scholar
  3. Amoto AA, Adamson JW, Achermann JC, Aboulhosn J, Abbruzzese JL, Harrison TR, Loscalzo J, Hauser SL, Fauci AS, Jameson JL (2012) Harrison’s principles of internal medicine, 18th edn. McGraw Hill Financial, Inc, New YorkGoogle Scholar
  4. Apilux A, Dungchai W, Siangproh W, Praphairaksit N, Henry CS, Chailapakul O (2010) Lab-on-paper with dual electrochemical/colorimetric detection for simultaneous determination of gold and iron. Anal Chem 82:1727–1732CrossRefPubMedPubMedCentralGoogle Scholar
  5. Blick KE (2014) The benefits of a rapid, point-of-care “Tnl-only” zero and 2-hour protocol for the evaluation of chest pain patients in the emergency department. Clin Lab Med 34:75–85CrossRefPubMedPubMedCentralGoogle Scholar
  6. Caragher TE, Fernandez BB, Jacobs FL, Barr LA (2002) Evaluation of quantitative cardiac biomarker point-of-care testing in the emergency department. J Emerg Med 22:1–7CrossRefPubMedPubMedCentralGoogle Scholar
  7. Carrilho E, Martinez AW, Whitesides GM (2009) Understanding wax printing : a simple micropatterning process for paper-based microfluidics. Anal Chem 81(16):7091–7095CrossRefPubMedPubMedCentralGoogle Scholar
  8. Chitnis G, Ding Z, Chang C-L, Savran CA, Ziaie B (2011) Laser-treated hydrophobic paper: an inexpensive microfluidic platform. Lab Chip 11:1161–1165CrossRefPubMedPubMedCentralGoogle Scholar
  9. Collinson P, Goodacre S, Gaze D, Gray A, Arrowsmith C, Barth J, Benger J, Bradburn M, Capewell S, Chater T (2012) Very early diagnosis of chest pain by point-of-care testing: comparison of the diagnostic efficiency of a panel of cardiac biomarkers compared with troponin measurement alone in the RATPAC trial. Heart 98:312–318CrossRefPubMedPubMedCentralGoogle Scholar
  10. Comer JP (1956) Semiquantitative specific test paper for glucose in urine. Anal Chem 28:1748–1750CrossRefGoogle Scholar
  11. Cunningham JC, Brenes NJ, Crooks RM (2014) Paper electrochemical device for detection of DNA and thrombin by target-induced conformational switching. Anal Chem 86(12):6166–6170CrossRefPubMedPubMedCentralGoogle Scholar
  12. Delaney JL, Hogan CF, Tian JF, Shen W (2011) Electrogenerated chemiluminescence detection in paper-based microfluidic sensors. Anal Chem 83:1300–1306CrossRefPubMedPubMedCentralGoogle Scholar
  13. Demirel G, Babur E (2014) Vapor-phase deposition of polymers as a simple and versatile technique to generate paper-based microfluidic platforms for bioassay applications. Analyst 139:2326–2331CrossRefPubMedPubMedCentralGoogle Scholar
  14. Deng L, Zhang L, Shang L, Guo S, Wen D, Wang F, Dong S (2009) Electrochemiluminescence detection of NADH and ethanol based on partial sulfonation of sol–gel network with gold nanoparticles. Biosens Bioelectron 24(7):2273–2276CrossRefPubMedPubMedCentralGoogle Scholar
  15. Dossi N, Toniolo R, Piccin E, Susmel S, Pizzariello A, Bontempelli G (2013) Pencil-drawn dual electrode detectors to discriminate between analytes comigrating on paper-based fluidic devices but undergoing electrochemical processes with different reversibility. Electroanalysis 25:2515–2522CrossRefGoogle Scholar
  16. Dungchai W, Chailapakul O, Henry CS (2009) Electrochemical detection for paper-based microfluidics. Anal Chem 81:5821–5826CrossRefPubMedPubMedCentralGoogle Scholar
  17. Dungchai W, Chailapakul O, Henry CS (2011) A low-cost, simple, and rapid fabrication method for paper-based microfluidics using wax screen-printing. Analyst 136:77–82CrossRefPubMedPubMedCentralGoogle Scholar
  18. Frank R, Hargreaves R (2003) Clinical biomarkers in drug discovery and development. Nat Rev Drug Discov 2:566–580CrossRefPubMedPubMedCentralGoogle Scholar
  19. Ge L, Yan J, Song X, Yan M, Ge S, Yu J (2012) Three-dimensional paper-based electro chemiluminescence immune device for multiplexed measurement of biomarkers and point of care testing. Biomaterials 33:1024–1031CrossRefPubMedPubMedCentralGoogle Scholar
  20. Ge L, Wang S, Yu J, Li N, Ge S, Yan M (2013) Molecularly imprinted polymer grafted porous Au-paper electrode for an microfluidic electro-analytical origami device. Adv Funct Mater 23:3115–3123CrossRefGoogle Scholar
  21. Gopinath PG, Anitha VR, Aruna Mastani S (2015) Microcantilever based biosensor for disease detection applications. J Med Bioeng 4(4):307–311Google Scholar
  22. Govindasamy K, Potgieter S, Land K, Muzenda E (2012) Fabrication of paper based microfluidic devices. In: Proceedings of the world congress on engineering- III (WCE 2012), July 4–6, 2012, LondonGoogle Scholar
  23. Han M, Li Y, Liu M, Li Y, Cong B (2012) Renal neutrophil gelatinase associated lipocalin expression in lipopolysaccharide-induced acute kidney injury in the rat. BMC Nephrol 13(25):1–10.  https://doi.org/10.1186/1471-2369-13-25CrossRefGoogle Scholar
  24. Haq SA, Tavakol M, Silber S, Bernstein L, Kneifati-Hayek J, Schleffer M, Banko LT, Heitner JF, Sacchi TJ, Puma JA (2011) Enhancing the diagnostic performance of troponins in the acute care setting. J Emerg Med 40:367–373CrossRefPubMedPubMedCentralGoogle Scholar
  25. Hoffmann D, Fuchs TC, Henzler T, Matheis KA, Herget T, Dekant W, Hewitt P, Mally A (2010) A evaluation of a urinary kidney biomarker panel in rat models of acute and subchronic nephrotoxicity. Toxicology 277(1–3):49–58CrossRefPubMedPubMedCentralGoogle Scholar
  26. Hsieh YH, Hogan MT, Barnes M, Jett-Goheen M, Huppert J, Rompalo AM, Gaydos C (2010) A perceptions of an ideal point-of-care test for sexually transmitted infections – a qualitative study of focus group discussions with medical providers. PLoS One 5:e14144CrossRefPubMedPubMedCentralGoogle Scholar
  27. Hsieh YH, Gaydos C, Hogan T, Uy O, Jackman J, Jett-Goheen MR (2011) A perceptions on point-of-care tests for sexually transmitted infections-disconnect between frontline clinicians and professionals in industry. Sex Transm Infect 87:A82–A83CrossRefGoogle Scholar
  28. Ko YJ, Maeng JH, Ahn Y, Hwang SY, Cho NG, Lee SH (2008) Microchip-based multiplex electro-immunosensing system for the detection of cancer biomarkers. Electrophoresis 29(16):3466–3476CrossRefPubMedPubMedCentralGoogle Scholar
  29. Koesdjojo MT, Wu Y, Boonloed A, Dunfield EM, Remcho VT (2014) Low-cost, high-speed identification of counterfeit antimalarial drugs on paper. Talanta 130:122–127CrossRefPubMedPubMedCentralGoogle Scholar
  30. Lee LG, Nordman ES, Johnson MD, Oldham MF (2013) A low-cost, high-performance system for fluorescence lateral flow assays. Biosensors 3:360–373CrossRefPubMedPubMedCentralGoogle Scholar
  31. Li X, Ballerini DR, Shen W (2012) A perspective on paper-based microfluidics: current status and future trends. Biomicrofluidics 6(1):11301–1130113CrossRefPubMedPubMedCentralGoogle Scholar
  32. Liana DD, Raguse B, Gooding JJ, Chow E (2012) Recent advances in paper-based sensors. Sensors 12(9):11505–11526CrossRefPubMedPubMedCentralGoogle Scholar
  33. Lin R, Skandarajah A, Gerver RE, Neira HD, Fletcher DA, Herr AE (2015) A lateral electrophoretic flow diagnostic assay. Lab Chip 15(6):1488–1496CrossRefPubMedPubMedCentralGoogle Scholar
  34. Liu W, Yang H, Ding Y, Ge S, Yu J, Yan M, Song X (2014a) Paper-based colorimetric immunosensor for visual detection of carcinoembryonic antigen based on the high peroxidase-like catalytic performance of ZnFe2O4–multiwalled carbon nanotubes. Analyst 139:251–258CrossRefGoogle Scholar
  35. Liu F, Ge S, Yu J, Yan M, Song X (2014b) Electrochemical device based on a Pt nanosphere-paper working electrode for in situ and real-time determination of the flux of H2O2 releasing from SK-BR-3 cancer cells. Chem Commun 50:10315–10318CrossRefGoogle Scholar
  36. Macdonald SP, Nagree Y (2008) Rapid risk stratification in suspected acute coronary syndrome using serial multiple cardiac biomarkers: a pilot study. Emerg Med Australas 20:403–409PubMedGoogle Scholar
  37. Marrer E, Dieterle F (2010) Impact of biomarker development on drug safety assessment. Toxicol Appl Pharmacol 243:167–179CrossRefPubMedPubMedCentralGoogle Scholar
  38. Martinez AW, Phillips ST, Butte MJ, Whitesides GM (2007) Patterned paper as a platform forinexpensive, low-volume, portable bioassays. Angew Chem Int Ed Eng 46:1318–1320CrossRefGoogle Scholar
  39. Martinez AW, Phillips ST, Carrilho E, Thomas SW, Sindi H, Whitesides GM (2008) Simple telemedicine for developing regions: camera phones and paper-based microfluidic devices for real-time, off-site diagnosis. Anal Chem 80:3699–3707CrossRefPubMedPubMedCentralGoogle Scholar
  40. McCullough PA, Nowak RM, Foreback C, Tokarski G, Tomlanovich MC, Khoury NE, Weaver WD, Sandberg KR, McCord J (2002) Performance of multiple cardiac biomarkers measured in the emergency department in patients with chronic kidney disease and chest pain. Acad Emerg Med 9:1389–1396CrossRefPubMedPubMedCentralGoogle Scholar
  41. Mudanyali O, Dimitrov S, Sikora U, Padmanabhan S, Navruz I, Ozcan A (2012) Integrated rapid-diagnostic-test reader platform on a cellphone. Lab Chip 12:2678–2686CrossRefPubMedPubMedCentralGoogle Scholar
  42. Murthy KSN, Prasad GRK, Saikiran NLNV, Manoj TVS (2016) Design and simulation of MEMS biosensor for the detection of tuberculosis. Indian J Sci Technol 9(31).  https://doi.org/10.17485/ijst/2016/v9i31/90638
  43. Nie ZH, Nijhuis CA, Gong JL, Chen X, Kumachev A, Martinez AW, Narovlyansky M, Whitesides GM (2010a) Electrochemical sensing in paper-based microfluidic devices. Lab Chip 10:477–483CrossRefPubMedPubMedCentralGoogle Scholar
  44. Nie ZH, Deiss F, Liu XY, Akbulut O, Whitesides GM (2010b) Integration of paper-based microfluidic devices with commercial electrochemical readers. Lab Chip 10:3163–3169CrossRefPubMedPubMedCentralGoogle Scholar
  45. Nie J, Liang Y, Zhang Y, Le S, Li D, Zhang S (2013) One-step patterning of hollow microstructures in paper by laser cutting to create microfluidic analytical devices. Analyst 138:671–676CrossRefPubMedPubMedCentralGoogle Scholar
  46. Noiphung J, Songjaroen T, Dungchai W, Henry CS, Chailapakul O, Laiwattanapaisal W (2013) Electrochemical detection of glucose from whole blood using paper-based microfluidic devices. Anal Chim Acta 788:39–45CrossRefPubMedPubMedCentralGoogle Scholar
  47. Olkkonen J, Lehtinen K, Erho T (2010) Flexographically printed fluidic structures in paper. Anal Chem 82:10246–10250CrossRefPubMedPubMedCentralGoogle Scholar
  48. Paroloa C, Merkoçi A (2013) Paper-based nanobiosensors for diagnostics. Chem Soc Rev 42:450–457CrossRefGoogle Scholar
  49. Parveen S, Aslam MS, Hu L et al (2013) Electrogenerated chemiluminescence: protocols and applications. Springer, Berlin/HeidelbergCrossRefGoogle Scholar
  50. Phan JH, Moffitt RA, Stokes TH, Liu J, Young AN, Nie SM, Wang MD (2009) Convergence of biomarkers, bioinformatics and nanotechnology for individualized cancer treatment. Trends Biotechnol 27:350–358CrossRefPubMedPubMedCentralGoogle Scholar
  51. Pires NMM, Dong T, Hanke U, Hoivik N (2014) Recent developments in optical detection technologies in lab-on-a-chip devices for biosensing applications. Sensors 14(8):15458–15479CrossRefPubMedPubMedCentralGoogle Scholar
  52. Pollock NR, Rolland JP, Kumar S, Beattie PD, Jain S, Noubary F, Wong VL, Pohlmann RA, Ryan US, Whitesides GM (2012) A paper-based multiplexed transaminase test for low-cost, point-of-care liver function testing. Sci Transl Med 4(152):152ra129CrossRefPubMedPubMedCentralGoogle Scholar
  53. Posthuma-Trumpie GA, Korf J, van Amerongen A (2009) Lateral flow (immuno)assay: its strengths, weaknesses, opportunities and threats: a literature survey. Anal Bioanal Chem 393:569–582CrossRefPubMedPubMedCentralGoogle Scholar
  54. Renault C, Li X, Fosdick SE, Crooks RM (2013) Hollow-channel paper analytical devices. Anal Chem 85:7976–7979CrossRefPubMedPubMedCentralGoogle Scholar
  55. Rezk AR, Qi A, Friend JR, Li WH, Yeo LY (2012) Uniform mixing in paper-based microfluidic systems using surface acoustic waves. Lab Chip 12:773–779CrossRefPubMedPubMedCentralGoogle Scholar
  56. Rohrman BA, Richards-Kortum RR (2012) A paper and plastic device for performing recombinase polymerase amplification of HIV DNA. Lab Chip 12:3082–3088CrossRefPubMedPubMedCentralGoogle Scholar
  57. Rompalo AM, Hsieh YH, Hogan T, Barnes M, Jett-Goheen M, Huppert JS, Gaydos CA (2013) Point-of-care tests for sexually transmissible infections: what do ‘end users’ want? Sex Health 10:541–545CrossRefPubMedPubMedCentralGoogle Scholar
  58. Sajid M, Kawde A-N, Daud M (2014) Designs, formats and applications of lateral flow assay: a literature review. J Saudi Chem Soc 19(6):689–705CrossRefGoogle Scholar
  59. Sangeetha P, Vimala JA (2014) Simulation and analysis of micro cantilever sensor for enhanced biosensing of disease causing pathogens. Conference proceeding (NCETSE-2014), Int J Eng Dev Res (IJEDRCP 1403027), pp 131–136Google Scholar
  60. Santhiago M, Kubota LT (2013) A new approach for paper-based analytical devices with electrochemical detection based on graphite pencil electrodes. Sensors Actuators B Chem 177:224–230CrossRefGoogle Scholar
  61. Saranya R, Saranya K, Ceemati D, Chandra DK, Meenakshi SN (2013) Design of MEMS based micro cantilever for tuberculosis detection. COMSOL conference, BangaloreGoogle Scholar
  62. Sechi D, Greer B, Johnson J, Hashemi N (2013) Three-dimensional paper-based microfluidic device for assays of protein and glucose in urine. Anal Chem 85:10733–10737CrossRefPubMedPubMedCentralGoogle Scholar
  63. Su M, Ge L, Ge S, Li N, Yu J, Yan M, Huang J (2014) Paper-based electrochemical cyto-device for sensitive detection of cancer cells and in situ anticancer drug screening. Anal Chim Acta 847:1–9CrossRefPubMedPubMedCentralGoogle Scholar
  64. Su M, Ge L, Kong Q, Zheng X, Ge S, Li N, Yu J, Yan M (2015) Cyto-sensing in electrochemical lab-on-paper cyto-device for in-situ evaluation of multi-glycan expressions on cancer cells. Biosens Bioelectron 63:232–239CrossRefPubMedPubMedCentralGoogle Scholar
  65. Sun JY, Cheng CM, Liao YC (2015) Screen printed paper-based diagnostic devices with polymeric inks. Anal Sci 31(3):145–151CrossRefPubMedPubMedCentralGoogle Scholar
  66. Terai T, Nagano T (2013) Small-molecule fluorophores and fluorescentprobes for bioimaging. Pflugers Arch 465(3):347–359CrossRefPubMedPubMedCentralGoogle Scholar
  67. Thuo MM, Martinez RV, Lan W-J, Liu X, Barber J, Atkinson MBJ, Bandarage D, Bloch J-F, Whitesides GM (2014) Fabrication of low cost paper based microfluidic devices by embossing or cut-and-stack methods. Chem Mater 26(14):4230–4237CrossRefGoogle Scholar
  68. Tsai TT, Shen SW, Cheng CM, Chen CF (2013) Paper-based tuberculosis diagnostic devices with colorimetric gold nanoparticles. Sci Technol Adv Mater 14:044404CrossRefPubMedPubMedCentralGoogle Scholar
  69. Vignali DA (2000) A multiplexed particle-based flow cytometric assays. J Immunol Methods 243:243–255CrossRefPubMedPubMedCentralGoogle Scholar
  70. Von Lode P (2005) Point-of-care immunotesting: approaching the analytical performance of central laboratory methods. Clin Biochem 38:591–606CrossRefGoogle Scholar
  71. Wang S, Ge L, Song X, Yu J, Ge S, Huang J, Zeng F (2012) Paper-based chemiluminescence ELISA: lab-on-paper based on chitosan modified paper device and waxscreen-printing. Biosens Bioelectron 31(1):212–218CrossRefPubMedPubMedCentralGoogle Scholar
  72. Wang Y, Ge L, Wang P, Yan M, Ge S, Li N, Yu J, Huang J (2013) Photoelectrochemical lab-on-paper device equipped with a porous Au-paper electrode and fluidic delay-switch for sensitive detection of DNA hybridization. Lab Chip 13:3945–3955CrossRefPubMedPubMedCentralGoogle Scholar
  73. Weaver AA, Reiser H, Barstis T, Benvenuti M, Ghosh D, Hunckler M, Joy B, Koenig L, Raddell K, Lieberman M (2013) Paper analytical devices for fast field screening of beta lactam antibiotics and antituberculosis pharmaceuticals. Anal Chem 85:6453–6460CrossRefPubMedPubMedCentralGoogle Scholar
  74. Whitesides GM, Martinez AW, Phillips ST (2010) Diagnostics for the developing world : microfluidic paper-based analytical devices. Anal Chem 82(1):3–10CrossRefPubMedPubMedCentralGoogle Scholar
  75. Yamada K, Takaki S, Suzuki K (2013) Microfluidic paper-based analytical device for fluorescence detection of lactoferrin in tear fluid. In: Chemical and biological microsystems society. 17th international conference on miniaturized systems for chemistry and life sciences (MicroTAS 2013). Chemical and Biological Microsystems Society, Freiburg, GermanyGoogle Scholar
  76. Yan J, Yan M, Ge L, Yu J, Ge S, Huang J (2013) A microfluidic origami electrochemiluminescence aptamer-device based on a porous au-paper electrode and a phenyleneethynylene derivative. Chem Commun 49:1383–1385CrossRefGoogle Scholar
  77. Yang H, Kong Q, Wang S, Xu J, Bian Z, Zheng X, Ma C, Ge S, Yu J (2014) Hand-drawn & written pen-on-paper electrochemiluminescence immunodevice powered by rechargeable battery for low-cost point-of-care testing. Biosens Bioelectron 61:21–27CrossRefPubMedPubMedCentralGoogle Scholar
  78. Yetisen AK, Martinez-Hurtado JL, Garcia-Melendrez A, da Cruz Vasconcellos F, Lowe CR (2014) A smartphone algorithm with inter-phone repeatability for the analysis of colorimetric tests. Sensors Actuators B Chem 196:156–160CrossRefGoogle Scholar
  79. Yong H, Wu Y, Fu J-Z, Wu W-B (2015) Fabrication of paper-based microfluidic analysis devices: a review. RSC Adv 5:78109–78127CrossRefGoogle Scholar
  80. Yu J, Wang S, Ge L, Ge S (2011) A novel chemiluminescence paper microfluidic biosensor based on enzymatic reaction for uric acid determination. Biosens Bioelectron 26(7):3284–3289CrossRefPubMedPubMedCentralGoogle Scholar
  81. Yuan YR, Yuan R, Chai YQ, Zhuo Y, Miao XM (2009) Electrochemical amperometric immunoassay for carcinoembryonic antigen based on bi-layer nano-au and nickel hexacyanoferrates nanoparticles modified glassy carbon electrode. Electroanal Chem 626:6–13CrossRefGoogle Scholar
  82. Zhang X, Li J, Chen C, Lou B, Zhang L, Wang E (2013) A self-powered microfluidic origami electrochemiluminescence biosensing platform. Chem Commun 49:3866–3868CrossRefGoogle Scholar
  83. Zhou M, Yang M, Zhou F (2014) Paper based colorimetric biosensing platform utilizing cross-linked siloxane as probe. Biosens Bioelectron 55:39–43CrossRefPubMedPubMedCentralGoogle Scholar
  84. Zhu W-J, Feng D-Q, Chen M, Chen Z-D, Zhu R, Fang H-L, Wang W (2014) Bienzyme colorimetric detection of glucose with self-calibration based on tree-shaped paper strip. Sensors Actuators B Chem 190:414–418CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Mohd Aurif Shergujri
    • 1
  • Rabeuj Jaman
    • 1
  • Arup Jyoti Baruah
    • 2
  • Mrityunjoy Mahato
    • 3
  • Davidson Pyngrope
    • 1
  • L. Robindro Singh
    • 1
  • Manashjit Gogoi
    • 4
  1. 1.Department of NanotechnologyNorth-Eastern Hill UniversityShillongIndia
  2. 2.Department of General SurgeryNorth Eastern Indira Gandhi Regional Institute of Health and Medical SciencesShillongIndia
  3. 3.Physics Division, Department of Basic Sciences and Social SciencesNorth-Eastern Hill UniversityShillongIndia
  4. 4.Department of Biomedical EngineeringNorth-Eastern Hill UniversityShillongIndia

Personalised recommendations