Biomedical Instrumentation: Focus Toward Point-of-Care Devices

  • Sandeep Choudhary
  • Gaurav Pandey
  • Rupsha Mukherjee
  • Abhijeet JoshiEmail author


Biomedical instrumentation (BMI) deals with the measuring, recording, and transmitting biological signals from and to the human body to enable development of new algorithms and instruments to solve health-related problems. Development of BMI involves interdisciplinary understanding in different fields such as engineering technologies, materials science, and medical science which finally aim to improve human health by timely diagnosis and suitable therapeutic measures. These have immense importance in medical procedures for data collection and their analysis to aid decision-making and planning of treatment regimen. Typical BMI assemblies consist of sensors to detect bioelectrical, biophysical, and biochemical parameters with a safe interface which couples the biological surface with arrangements to control different influencing parameters. Additionally, some of the BMI may have an actuator, which can deliver external agents via direct or indirect contact to help the therapeutic aspects of devices. Electronic interfaces are calibrated using computational units with different electrical characteristics like signal-to-noise ratio, efficiency, bandwidth, and safety. Other necessary components include the power supply, output unit which provides the display and storage of data. This review summarizes different technological interventions pertaining to the BMI, their classification, and applications in various diagnostic and therapeutic domains.


Biomedical instrumentation (BMI) Point-of-care testing (POCT) Monitoring and diagnosis instruments Therapeutic instruments Biosafety and electrical hazard 


  1. Abdullah A, Ismael A, Rashid A, Abou-ElNour A, Tarique M (2015) Real time wireless health monitoring application using mobile devices. Int J Comput Netw Commun IJCNC 7(3):13–30CrossRefGoogle Scholar
  2. Alpert B (1996) Validation of CAS model 9010 automated blood pressure monitor: children/adult and neonatal studies. Blood Press Monit 1(1):69–73PubMedGoogle Scholar
  3. Åmark M, Bergens T (2008) Auto-injector. U.S. Patent 7,442,185, issued October 28, 2008Google Scholar
  4. Anandanatarajan R (2011) Biomedical instrumentation and measurements. PHI Learning Pvt. Ltd, DelhiGoogle Scholar
  5. Antonescu-Turcu A, Parthasarathy S (2010) CPAP and bi-level PAP therapy: new and established roles. Respir Care 55(9):1216–1229PubMedPubMedCentralGoogle Scholar
  6. Anwar YA, Tendler BE, McCabe EJ, Mansoor GA, White WB (1997) Evaluation of the datascope accutorr plus according to the recommendations of the association for the advancement of medical instrumentation. Blood Press Monit 2(2):105–110PubMedGoogle Scholar
  7. Aungsakul S, Phinyomark A, Phukpattaranont P, Limsakul C (2012) Evaluating feature extraction methods of Electrooculography (EOG) signal for human-computer interface. Procedia Eng 32:246–252CrossRefGoogle Scholar
  8. Bai J, Lin J (1999) A pacemaker working status telemonitoring algorithm. EEE Trans Inf Technol Biomed 3(3):197–204CrossRefGoogle Scholar
  9. Bansal A, Joshi R (2018) Portable out-of-hospital electrocardiography: a review of current technologies. J Arrhythm 34(2):129–138CrossRefPubMedPubMedCentralGoogle Scholar
  10. Basholli A, Lagkas T, Bath PA, Eleftherakis G (2018) Healthcare professionals’ attitudes towards remote patient monitoring through sensor networks. Paper presented at the 2018 IEEE 20th international conference on e-health networking, applications and services (Healthcom)Google Scholar
  11. Boonlert W, Lolekha PH, Kost GJ, Lolekha S (2003) Comparison of the performance of point-of-care and device analyzers to hospital laboratory instruments. Point Care 2(3):172–178Google Scholar
  12. Bortolotto LA, Henry O, Hanon O, Sikias P, Mourad J-J, Girerd X (1999) Validation of two devices for self-measurement of blood pressure by elderly patients according to the revised British Hypertension Society protocol: the Omron HEM-722C and HEM-735C. Blood Press Monit 4(1):21–25CrossRefGoogle Scholar
  13. Bronzino JD (1999) Biomedical engineering handbook, vol 2. CRC Press, Boca RatonGoogle Scholar
  14. Burrin J, Alberti (1990) What is blood glucose: can it be measured? Diabet Med 7(3):199–206CrossRefGoogle Scholar
  15. Butler SA, Khanlian SA, Cole LA (2001) Detection of early pregnancy forms of human chorionic gonadotropin by home pregnancy test devices. Clin Chem 47(12):2131–2136PubMedGoogle Scholar
  16. Cai, X., Winarta, H., Vo, A., & Young, C. C. (2005). USPTOGoogle Scholar
  17. Chan M, Estève D, Fourniols J-Y, Escriba C, Campo E (2012) Smart wearable systems: current status and future challenges. Artif Intell Med 56(3):137–156CrossRefGoogle Scholar
  18. Chandran S, Singh R (2007) Comparison of various international guidelines for analytical method validation. Die Pharmazie-An Int J Pharm Sci 62(1):4–14Google Scholar
  19. Chaudhari RD, Joshi AB, Srivastava R (2012) Uric acid biosensor based on chemiluminescence detection using a nano-micro hybrid matrix. Sensors Actuators B Chem 173:882–889CrossRefGoogle Scholar
  20. Chaudhari RD, Joshi AB, Pandya K, Srivastava R (2016) pH Based Urea Biosensing Using Fluorescein Isothiocyanate (FITC)-Dextran Encapsulated Micro-Carriers of Calcium Alginate. Sens Lett 14(5):451–459CrossRefGoogle Scholar
  21. Chaudhari R, Joshi A, Srivastava R (2017) PH and urea estimation in urine samples using single fluorophore and ratiometric fluorescent biosensors. Sci Rep 7(1):5840CrossRefPubMedPubMedCentralGoogle Scholar
  22. Cheng M (2003) Medical device regulations: global overview and guiding principles. World Health Organization, GenevaGoogle Scholar
  23. Coyle S, Lau K-T, Moyna N, O’Gorman D, Diamond D, Di Francesco F et al (2010) BIOTEX—Biosensing textiles for personalised healthcare management. IEEE Trans Inf Technol Biomed 14(2):364–370CrossRefGoogle Scholar
  24. Curone D, Dudnik G, Loriga G, Luprano J, Magenes G, Paradiso R … Bonfiglio A (2007) Smart garments for safety improvement of emergency/disaster operators. Paper presented at the engineering in medicine and biology society, 2007. EMBS 2007. 29th annual international conference of the IEEEGoogle Scholar
  25. Curone D, Secco EL, Tognetti A, Loriga G, Dudnik G, Risatti M et al (2010) Smart garments for emergency operators: the Proe TEX project. IEEE Trans Inf Technol Biomed 14(3):694–701CrossRefGoogle Scholar
  26. DiFrancesco D (1993) Pacemaker mechanisms in cardiac tissue. Annu Rev Physiol 55(1):455–472CrossRefGoogle Scholar
  27. Drake D, Jennings DI, Cooper SD, Barrow-Williams TD, Corrigan JP, Lee RT, Whitaker D (2010) Auto injector: Google PatentsGoogle Scholar
  28. Dym CL, Agogino AM, Eris O, Frey DD, Leifer LJ (2005) Engineering design thinking, teaching, and learning. J Eng Educ 94(1):103–120CrossRefGoogle Scholar
  29. Geller DE (2005) Comparing clinical features of the nebulizer, metered-dose inhaler, and dry powder inhaler. Respir Care 50(10):1313–1322PubMedGoogle Scholar
  30. Gupta J, Prausnitz MR (2009) Recovery of skin barrier properties after sonication in human subjects. Ultrasound Med Biol 35(8):1405–1408CrossRefPubMedPubMedCentralGoogle Scholar
  31. Haghi M, Thurow K, Stoll R (2017) Wearable devices in medical internet of things: scientific research and commercially available devices. Healthcare Inf Res 23(1):4–15CrossRefGoogle Scholar
  32. Harris LF, Castro-López V, Killard AJ (2013) Coagulation monitoring devices: past, present, and future at the point of care. TrAC Trends Anal Chem 50:85–95CrossRefGoogle Scholar
  33. Hendee WR, Chien S, Maynard CD, Dean DJ (2002) The National Institute of Biomedical Imaging and Bioengineering: history, status, and potential impact. Ann Biomed Eng 30(1):2–10CrossRefGoogle Scholar
  34. Ho KM, Wong K (2006) A comparison of continuous and bi-level positive airway pressure non-invasive ventilation in patients with acute cardiogenic pulmonary oedema: a meta-analysis. Crit Care 10(2):R49CrossRefPubMedPubMedCentralGoogle Scholar
  35. Holmes W (1915) Blood pressure—its clinical significance. J Natl Med Assoc 7(1):30PubMedPubMedCentralGoogle Scholar
  36. Hörmann C, Baum M, Putensen C, Mutz N, Benzer H (1994) Biphasic positive airway pressure (BIPAP)--a new mode of ventilatory support. Eur J Anaesthesiol 11(1):37–42PubMedGoogle Scholar
  37. Hu J, Wang S, Wang L, Li F, Pingguan-Murphy B, Lu TJ, Xu F (2014) Advances in paper-based point-of-care diagnostics. Biosens Bioelectron 54:585–597CrossRefGoogle Scholar
  38. Imai Y, Nihei M, Abe K, Sasaki S, Minami N, Munakata M et al (1987) A finger volume-oscillometric device for monitoring ambulatory blood pressure: laboratory and clinical evaluations. Clin Exp Hyperten Part A Theory Pract 9(12):2001–2025CrossRefGoogle Scholar
  39. Jian, Cui, Gao Shumei, Song Yilin (2013) Development of simultaneous monitoring system for non-invasive blood pressure and blood oxygen saturation. In 2013 IEEE 11th International Conference on Electronic Measurement & Instruments, Vol 2, pp 968–973. IEEE, 2013Google Scholar
  40. Joshi AK, Tomar A, Tomar M (2014) A review paper on analysis of electrocardiograph (ECG) signal for the detection of arrhythmia abnormalities. Int J Adv Res Electr Electron Instrum Eng 3(10):12466–12475Google Scholar
  41. Khandpur RS (2005) Biomedical instrumentation: technology and applications. Mcgraw-hill, New YorkGoogle Scholar
  42. Kiechle FL, Main RI (2000) Blood glucose: measurement in the point-of-care setting. Lab Med 31(5):276–282CrossRefGoogle Scholar
  43. King D (2014) Marketing wearable home baby monitors: real peace of mind? BMJ 349:g6639CrossRefGoogle Scholar
  44. Kramer DB, Mitchell SL, Brock DW (2012) Deactivation of pacemakers and implantable cardioverter-defibrillators. Prog Cardiovasc Dis 55(3):290–299CrossRefPubMedPubMedCentralGoogle Scholar
  45. Kristensen GB, Nerhus K, Thue G, Sandberg S (2004) Standardized evaluation of instruments for self-monitoring of blood glucose by patients and a technologist. Clin Chem 50(6):1068–1071CrossRefGoogle Scholar
  46. Le Brun P, De Boer A, Frijlink H, Heijerman H (2000) A review of the technical aspects of drug nebulization. Pharm World Sci 22(3):75–81CrossRefGoogle Scholar
  47. Lecomte MM, Atkinson KR, Kay DP, Simons JL, Ingram JR (2013) A modified method using the SonoPrep® ultrasonic skin permeation system for sampling human interstitial fluid is compatible with proteomic techniques. Skin Res Technol 19(1):27–34CrossRefGoogle Scholar
  48. Lee BE, Plitt S, Fenton J, Preiksaitis JK, Singh AE (2011) Rapid HIV tests in acute care settings in an area of low HIV prevalence in Canada. J Virol Methods 172(1–2):66–71CrossRefGoogle Scholar
  49. Lemelson JH (1998) Patient monitoring system: Google PatentsGoogle Scholar
  50. Limmroth V, Reischl J, Mann B, Morosov X, Kokoschka A, Weller I, Schreiner T (2017) Autoinjector preference among patients with multiple sclerosis: results from a national survey. Patient Prefer Adherence 11:1325CrossRefPubMedPubMedCentralGoogle Scholar
  51. Lobodzinski SS, Laks MM (2012) New devices for very long-term ECG monitoring. Cardiol J 19(2):210–214CrossRefGoogle Scholar
  52. Mahfouz MR, Gary To, Kuhn MJ (2012) Smart instruments: wireless technology invades the operating room. In 2012 IEEE Topical Conference on Biomedical Wireless Technologies, Networks, and Sensing Systems (BioWireleSS), pp 33–36. IEEE, 2012Google Scholar
  53. Malik M, Bigger JT, Camm AJ, Kleiger RE, Malliani A, Moss AJ, Schwartz PJ (1996) Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. Eur Heart J 17(3):354–381CrossRefGoogle Scholar
  54. Master AM, Dublin LI, Marks HH (1950) The normal blood pressure range and its clinical implications. J Am Med Assoc 143(17):1464–1470CrossRefGoogle Scholar
  55. Mills K (2005) The basics of electromyography. J Neurol Neurosurg Psychiatry 76(suppl 2):ii32–ii35PubMedPubMedCentralGoogle Scholar
  56. Mitragotri S (2013) Devices for overcoming biological barriers: the use of physical forces to disrupt the barriers. Adv Drug Deliv Rev 65(1):100–103CrossRefGoogle Scholar
  57. Monge-Pereira E, Molina-Rueda F, Rivas-Montero F, Ibáñez J, Serrano J, Alguacil-Diego I, Miangolarra-Page J (2017) Electroencephalography as a post-stroke assessment method: an updated review. Neurologia 32(1):40–49CrossRefGoogle Scholar
  58. Munckton K, Ho K, Dobb G, Das-Gupta M, Webb S (2007) The pressure effects of facemasks during noninvasive ventilation: a volunteer study. Anaesthesia 62(11):1126–1131CrossRefGoogle Scholar
  59. Murphy D, Pak Y, Cleary JP (2016) Pulse oximetry overestimates oxyhemoglobin in neonates with critical congenital heart disease. Neonatology 109(3):213–218CrossRefGoogle Scholar
  60. Newman JD, Turner AP (2005) Home blood glucose biosensors: a commercial perspective. Biosens Bioelectron 20(12):2435–2453CrossRefGoogle Scholar
  61. O’Brien, E., Petrie, J., Littler, W., de Swiet, M., Padfield, P. L., Altman, D., … Atkins, N. (1993). The British Hypertension Society protocol for the evaluation of blood pressure measuring devices. J Hypertens, 11(Suppl 2), S43-S62Google Scholar
  62. O’brien E, Waeber B, Parati G, Staessen J, Myers MG (2001) Blood pressure measuring devices: recommendations of the European society of hypertension. BMJ 322(7285):531CrossRefPubMedPubMedCentralGoogle Scholar
  63. Ogura M, Paliwal S, Mitragotri S (2008) Low-frequency sonophoresis: current status and future prospects. Adv Drug Deliv Rev 60(10):1218–1223CrossRefGoogle Scholar
  64. Oliver N, Toumazou C, Cass A, Johnston D (2009) Glucose sensors: a review of current and emerging technology. Diabet Med 26(3):197–210CrossRefGoogle Scholar
  65. Olson WH (1998) Basic concepts of medical instrumentation. In: Medical Instrumentation Application and Design, pp 1–55Google Scholar
  66. Panel BBR (2012) Guidelines for safe work practices in human and animal medical diagnostic laboratories. Morb Mortal Wkly Rep 61:1–102Google Scholar
  67. Parati G (2005) Blood pressure variability: its measurement and significance in hypertension. J Hypertens 23:S19–S25CrossRefGoogle Scholar
  68. Perloff D, Grim C, Flack J, Frohlich ED, Hill M, McDonald M, Morgenstern BZ (1993) Human blood pressure determination by sphygmomanometry. Circulation 88(5):2460–2470CrossRefGoogle Scholar
  69. Pickering TG, Hall JE, Appel LJ, Falkner BE, Graves J, Hill MN et al (2005) Recommendations for blood pressure measurement in humans and experimental animals: part 1: blood pressure measurement in humans: a statement for professionals from the subcommittee of professional and public education of the American Heart Association Council on High Blood Pressure Research. Circulation 111(5):697–716CrossRefGoogle Scholar
  70. Plebani M (2002) Charting the course of medical laboratories in a changing environment. Clin Chim Acta 319(2):87–100CrossRefGoogle Scholar
  71. Powell-Cope G, Nelson AL, Patterson ES (2008) Patient care technology and safety. In: Patient safety and quality: an evidence-based handbook for nurses. Agency for Healthcare Research and Quality (US)Google Scholar
  72. Powsner RA, Powsner ER (2008) Essential nuclear medicine physics. Wiley, New YorkGoogle Scholar
  73. Prasad J, Joshi A, Jayant RD, Srivastava R (2011) Cholesterol biosensors based on oxygen sensing alginate-silica microspheres. Biotechnol Bioeng 108(9):2011–2021CrossRefGoogle Scholar
  74. Pretto JJ, Roebuck T, Beckert L, Hamilton G (2014) Clinical use of pulse oximetry: Official guidelines from the Thoracic Society of Australia and New Zealand. Respirology 19(1):38–46CrossRefGoogle Scholar
  75. Price CP, John AS, Hicks JM (2004) Point-of-care testing. AACC Press, Washington, DCGoogle Scholar
  76. Radder A, Hermans J (1990) The significance of body temperature, sedimentation, C-reactive protein, leukocyte count and differential for the diagnosis of infections in an internal medicine emergency department. Ned Tijdschr Geneeskd 134(52):2536–2540PubMedGoogle Scholar
  77. Reeves-Hoche MK, Meck R, Zwillich CW (1994) Nasal CPAP: an objective evaluation of patient compliance. Am J Respir Crit Care Med 149(1):149–154CrossRefGoogle Scholar
  78. Ren Y, Werner R, Pazzi N, Boukerche A (2010) Monitoring patients via a secure and mobile healthcare system. IEEE Wirel Commun 17(1):59CrossRefGoogle Scholar
  79. Renumadhavi C, Kumar SM, Ananth A, Srinivasan N (2006) A new approach for evaluating SNR of ECG signals and its implementation. Paper presented at the Proceedings of the 6th WSEAS international conference on simulation, modelling and optimizationGoogle Scholar
  80. Riva G, Gorini A, Gaggioli A (2009) The Intrepid project-biosensor-enhanced virtual therapy for the treatment of generalized anxiety disorders. Stud Health Technol Inform 142(155):155Google Scholar
  81. Saquib N, Md Tarikul Islam Papon, Ahmad I, Rahman A (2015) Measurement of heart rate using photoplethysmography. In 2015 International Conference on Networking Systems and Security (NSysS), pp 1–6. IEEE, 2015Google Scholar
  82. Schmitt HJ, Schuetz WH, Proeschel PA, Jaklin C (1993) Accuracy of pulse oximetry in children with cyanotic congenital heart disease. J Cardiothorac Vasc Anesth 7(1):61–65CrossRefGoogle Scholar
  83. Shelley KH (2007) Photoplethysmography: beyond the calculation of arterial oxygen saturation and heart rate. Anesth Analg 105(6):S31–S36CrossRefGoogle Scholar
  84. Shephard MD (2011) Point-of-care testing and creatinine measurement. Clin Biochem Rev 32(2):109PubMedPubMedCentralGoogle Scholar
  85. Singh M (2014) Introduction to biomedical instrumentation. PHI Learning Pvt. Ltd, DelhiGoogle Scholar
  86. Stauffer VL, Sides R, Lanteri-Minet M, Kielbasa W, Jin Y, Selzler KJ, Tepper SJ (2018) Comparison between prefilled syringe and autoinjector devices on patient-reported experiences and pharmacokinetics in galcanezumab studies. Patient Prefer Adherence 12:1785CrossRefPubMedPubMedCentralGoogle Scholar
  87. Tusa JK, He H (2005) Critical care analyzer with fluorescent optical chemosensors for blood analytes. J Mater Chem 15(27–28):2640–2647CrossRefGoogle Scholar
  88. Usamentiaga R, Venegas P, Guerediaga J, Vega L, Molleda J, Bulnes F (2014) Infrared thermography for temperature measurement and non-destructive testing. Sensors 14(7):12305–12348CrossRefGoogle Scholar
  89. Vagott J, Parachuru R (2018) An overview of recent developments in the field of wearable smart textiles. J Text Sci Eng 8(368):2Google Scholar
  90. Vashist SK, Luppa PB, Yeo LY, Ozcan A, Luong JH (2015) Emerging technologies for next-generation point-of-care testing. Trends Biotechnol 33(11):692–705CrossRefGoogle Scholar
  91. Vetrone F, Naccache R, Zamarrón A, Juarranz de la Fuente A, Sanz-Rodríguez F, Martinez Maestro L et al (2010) Temperature sensing using fluorescent nanothermometers. ACS Nano 4(6):3254–3258CrossRefGoogle Scholar
  92. Webster JG (1997) Design of pulse oximeters. CRC Press, Boca Raton. ISBN 9780750304672Google Scholar
  93. Webster JG (2009) Medical instrumentation application and design. Wiley, HobokenGoogle Scholar
  94. Welling DR, McKay PL, Rasmussen TE, Rich NM (2012) A brief history of the tourniquet. J Vasc Surg 55(1):286–290CrossRefGoogle Scholar
  95. Wheeler LA (1998) Clinical laboratory instrumentation. In: Medical instrumentation: application and design, p 486Google Scholar
  96. Yoo E-H, Lee S-Y (2010) Glucose biosensors: an overview of use in clinical practice. Sensors 10(5):4558–4576CrossRefGoogle Scholar
  97. Zheng Q, Shi B, Fan F, Wang X, Yan L, Yuan W et al (2014) In vivo powering of pacemaker by breathing-driven implanted triboelectric nanogenerator. Adv Mater 26(33):5851–5856CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Sandeep Choudhary
    • 1
  • Gaurav Pandey
    • 1
  • Rupsha Mukherjee
    • 2
  • Abhijeet Joshi
    • 1
    Email author
  1. 1.Discipline of Biosciences and Biomedical EngineeringIndian Institute of Technology IndoreIndoreIndia
  2. 2.Discipline of Biological EngineeringIndian Institute of TechnologyGandhinagarIndia

Personalised recommendations