Advertisement

Down Syndrome, Ageing and Epigenetics

  • Noémie Gensous
  • Claudio Franceschi
  • Stefano Salvioli
  • Paolo GaragnaniEmail author
  • Maria Giulia Bacalini
Chapter
Part of the Subcellular Biochemistry book series (SCBI, volume 91)

Abstract

During the past decades, life expectancy of subjects with Down syndrome (DS) has greatly improved, but age-specific mortality rates are still important and DS subjects are characterized by an acceleration of the ageing process, which affects particularly the immune and central nervous systems. In this chapter, we will first review the characteristics of the ageing phenomenon in brain and in immune system in DS and we will then discuss the biological hallmarks of ageing in this specific population. Finally, we will also consider in detail the knowledge on epigenetics in DS, particularly DNA methylation.

Keywords

Down syndrome Ageing Epigenetics Epigenetic clock 

Notes

Acknowledgements

This work was supported by the European Union’s H2020 Project (grant number 634821, PROPAG-AGEING); by JPco-fuND (ADAGE). This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 675003 (http://www.birmingham.ac.uk/panini).

References

  1. Adorno M, Sikandar S, Mitra SS, Kuo A, Nicolis Di Robilant B, Haro-Acosta V, Ouadah Y, Quarta M, Rodriguez J, Qian D, Reddy VM, Cheshier S, Garner CC, Clarke MF (2013) Usp16 contributes to somatic stem-cell defects in Down’s syndrome. Nature 501:380–384.  https://doi.org/10.1038/nature12530 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Aivazidis S, Coughlan CM, Rauniyar AK, Jiang H, Liggett LA, Maclean KN, Roede JR (2017) The burden of trisomy 21 disrupts the proteostasis network in Down syndrome. PloS One 12:e0176307.  https://doi.org/10.1371/journal.pone.0176307 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Annus T, Wilson LR, Acosta-Cabronero J, Cardenas-Blanco A, Hong YT, Fryer TD, Coles JP, Menon DK, Zaman SH, Holland AJ, Nestor PJ (2017) The Down syndrome brain in the presence and absence of fibrillar β-amyloidosis. Neurobiol Ageing 53:11–19.  https://doi.org/10.1016/j.neurobiolageing.2017.01.009 CrossRefGoogle Scholar
  4. Arbuzova S (1998) Why it is necessary to study the role of mitochondrial genome in trisomy 21 pathogenesis. Syndr Res Pract 5:126–130.  https://doi.org/10.3104/reports.88 CrossRefGoogle Scholar
  5. Arbuzova S, Hutchin T, Cuckle H (2002) Mitochondrial dysfunction and Down’s syndrome. BioEssays News Rev Mol Cell Dev Biol 24:681–684.  https://doi.org/10.1002/bies.10138 CrossRefGoogle Scholar
  6. Bacalini MG, Boattini A, Gentilini D, Giampieri E, Pirazzini C, Giuliani C, Fontanesi E, Remondini D, Capri M, Del Rio A, Luiselli D, Vitale G, Mari D, Castellani G, Di Blasio AM, Salvioli S, Franceschi C, Garagnani P (2015a) A meta-analysis on age-associated changes in blood DNA methylation: results from an original analysis pipeline for Infinium 450k data. Ageing 7:97–109.  https://doi.org/10.18632/ageing.100718 CrossRefGoogle Scholar
  7. Bacalini MG, Gentilini D, Boattini A, Giampieri E, Pirazzini C, Giuliani C, Fontanesi E, Scurti M, Remondini D, Capri M, Cocchi G, Ghezzo A, Del Rio A, Luiselli D, Vitale G, Mari D, Castellani G, Fraga M, Di Blasio AM, Salvioli S, Franceschi C, Garagnani P (2015b) Identification of a DNA methylation signature in blood cells from persons with Down syndrome. Ageing 7:82–96.  https://doi.org/10.18632/ageing.100715 CrossRefGoogle Scholar
  8. Bahn S, Mimmack M, Ryan M, Caldwell MA, Jauniaux E, Starkey M, Svendsen CN, Emson P (2002) Neuronal target genes of the neuron-restrictive silencer factor in neurospheres derived from fetuses with Down’s syndrome: a gene expression study. Lancet Lond Engl 359:310–315.  https://doi.org/10.1016/S0140-6736(02)07497-4 CrossRefGoogle Scholar
  9. Ballard C, Mobley W, Hardy J, Williams G, Corbett A (2016) Dementia in Down’s syndrome. Lancet Neurol 15:622–636.  https://doi.org/10.1016/S1474-4422(16)00063-6 CrossRefPubMedGoogle Scholar
  10. Baptista F, Varela A, Sardinha LB (2005) Bone mineral mass in males and females with and without Down syndrome. Osteoporos Int 16:380–388.  https://doi.org/10.1007/s00198-004-1687-1 CrossRefPubMedGoogle Scholar
  11. Barone E, Arena A, Head E, Butterfield DA, Perluigi M (2017) Disturbance of redox homeostasis in Down syndrome: role of iron dysmetabolism. Free Radic Biol Med 114:84–93.  https://doi.org/10.1016/j.freeradbiomed.2017.07.009 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Barrena MJ, Echaniz P, Garcia-Serrano C, Cuadrado E (1993) Imbalance of the CD4+ subpopulations expressing CD45RA and CD29 antigens in the peripheral blood of adults and children with Down syndrome. Scand J Immunol 38:323–326CrossRefGoogle Scholar
  13. Beacher F, Daly E, Simmons A, Prasher V, Morris R, Robinson C, Lovestone S, Murphy K, Murphy DGM (2010) Brain anatomy and ageing in non-demented adults with Down’s syndrome: an in vivo MRI study. Psychol Med 40:611–619.  https://doi.org/10.1017/S0033291709990985 CrossRefPubMedGoogle Scholar
  14. Bhaumik P, Bhattacharya M, Ghosh P, Ghosh S, Kumar Dey S (2017) Telomere length analysis in Down syndrome birth. Mech Ageing Dev 164:20–26.  https://doi.org/10.1016/j.mad.2017.03.006 CrossRefPubMedGoogle Scholar
  15. Bittles AH, Glasson EJ (2004) Clinical, social, and ethical implications of changing life expectancy in Down syndrome. Dev Med Child Neurol 46:282–286CrossRefGoogle Scholar
  16. Blackburn EH, Epel ES, Lin J (2015) Human telomere biology: a contributory and interactive factor in ageing, disease risks, and protection. Science 350:1193–1198.  https://doi.org/10.1126/science.aab3389 CrossRefPubMedGoogle Scholar
  17. Bloemers BLP, van Bleek GM, Kimpen JLL, Bont L (2010) Distinct abnormalities in the innate immune system of children with Down syndrome. J Pediatr 156:804–809., 809.e1–809.e5.  https://doi.org/10.1016/j.jpeds.2009.12.006 CrossRefPubMedGoogle Scholar
  18. Borelli V, Vanhooren V, Lonardi E, Reiding KR, Capri M, Libert C, Garagnani P, Salvioli S, Franceschi C, Wuhrer M (2015) Plasma N-glycome signature of Down syndrome. J Proteome Res 14:4232–4245.  https://doi.org/10.1021/acs.jproteome.5b00356 CrossRefPubMedGoogle Scholar
  19. Bruwier A, Chantrain CF (2012) Hematological disorders and leukemia in children with Down syndrome. Eur J Pediatr 171:1301–1307.  https://doi.org/10.1007/s00431-011-1624-1 CrossRefPubMedGoogle Scholar
  20. Burgio GR, Lanzavecchia A, Maccario R, Vitiello A, Plebani A, Ugazio AG (1978) Immunodeficiency in Down’s syndrome: T-lymphocyte subset imbalance in trisomic children. Clin Exp Immunol 33:298–301PubMedPubMedCentralGoogle Scholar
  21. Buscarlet M, Tessier A, Provost S, Mollica L, Busque L (2016) Human blood cell levels of 5-hydroxymethylcytosine (5hmC) decline with age, partly related to acquired mutations in TET2. Exp Hematol 44:1072–1084.  https://doi.org/10.1016/j.exphem.2016.07.009 CrossRefPubMedGoogle Scholar
  22. Busciglio J, Yankner BA (1995) Apoptosis and increased generation of reactive oxygen species in Down’s syndrome neurons in vitro. Nature 378:776–779.  https://doi.org/10.1038/378776a0 CrossRefGoogle Scholar
  23. Busciglio J, Pelsman A, Wong C, Pigino G, Yuan M, Mori H, Yankner BA (2002) Altered metabolism of the amyloid beta precursor protein is associated with mitochondrial dysfunction in Down’s syndrome. Neuron 33:677–688CrossRefGoogle Scholar
  24. Cabelof DC, Patel HV, Chen Q, van Remmen H, Matherly LH, Ge Y, Taub JW (2009) Mutational spectrum at GATA1 provides insights into mutagenesis and leukemogenesis in Down syndrome. Blood 114:2753–2763.  https://doi.org/10.1182/blood-2008-11-190330 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Cairney CJ, Sanguinetti G, Ranghini E, Chantry AD, Nostro MC, Bhattacharyya A, Svendsen CN, Keith WN, Bellantuono I (2009) A systems biology approach to Down syndrome: identification of Notch/Wnt dysregulation in a model of stem cells ageing. Biochim Biophys Acta 1792:353–363.  https://doi.org/10.1016/j.bbadis.2009.01.015 CrossRefPubMedGoogle Scholar
  26. Carfì A, Antocicco M, Brandi V, Cipriani C, Fiore F, Mascia D, Settanni S, Vetrano DL, Bernabei R, Onder G (2014) Characteristics of adults with down syndrome: prevalence of age-related conditions. Front Med 1:51.  https://doi.org/10.3389/fmed.2014.00051 CrossRefGoogle Scholar
  27. Carsetti R, Valentini D, Marcellini V, Scarsella M, Marasco E, Giustini F, Bartuli A, Villani A, Ugazio AG (2015) Reduced numbers of switched memory B cells with high terminal differentiation potential in Down syndrome. Eur J Immunol 45:903–914.  https://doi.org/10.1002/eji.201445049 CrossRefPubMedGoogle Scholar
  28. Carta MG, Serra P, Ghiani A, Manca E, Hardoy MC, Del Giacco GS, Diaz G, Carpiniello B, Manconi PE (2002) Chemokines and pro-inflammatory cytokines in Down’s syndrome: an early marker for Alzheimer-type dementia? Psychother Psychosom 71:233–236.  https://doi.org/10.1159/000063649 CrossRefPubMedGoogle Scholar
  29. Cenini G, Dowling ALS, Beckett TL, Barone E, Mancuso C, Murphy MP, Levine H, Lott IT, Schmitt FA, Butterfield DA, Head E (2012) Association between frontal cortex oxidative damage and beta-amyloid as a function of age in Down syndrome. Biochim Biophys Acta 1822:130–138.  https://doi.org/10.1016/j.bbadis.2011.10.001 CrossRefPubMedGoogle Scholar
  30. Cetiner S, Demirhan O, Inal TC, Tastemir D, Sertdemir Y (2010) Analysis of peripheral blood T-cell subsets, natural killer cells and serum levels of cytokines in children with Down syndrome. Int J Immunogenet 37:233–237.  https://doi.org/10.1111/j.1744-313X.2010.00914.x CrossRefPubMedGoogle Scholar
  31. Chadefaux B, Rethoré MO, Raoul O, Ceballos I, Poissonnier M, Gilgenkranz S, Allard D (1985) Cystathionine beta synthase: gene dosage effect in trisomy 21. Biochem Biophys Res Commun 128:40–44CrossRefGoogle Scholar
  32. Chango A, Abdennebi-Najar L, Tessier F, Ferré S, Do S, Guéant J-L, Nicolas JP, Willequet F (2006) Quantitative methylation-sensitive arbitrarily primed PCR method to determine differential genomic DNA methylation in Down syndrome. Biochem Biophys Res Commun 349:492–496.  https://doi.org/10.1016/j.bbrc.2006.08.038 CrossRefPubMedGoogle Scholar
  33. Ciccarone F, Valentini E, Malavolta M, Zampieri M, Bacalini MG, Calabrese R, Guastafierro T, Reale A, Franceschi C, Capri M, Breusing N, Grune T, Moreno-Villanueva M, Bürkle A, Caiafa P (2017) DNA hydroxymethylation levels are altered in blood cells from Down syndrome persons enrolled in the MARK-AGE project. J Gerontol A Biol Sci Med Sci 73:737–744.  https://doi.org/10.1093/gerona/glx198 CrossRefPubMedCentralGoogle Scholar
  34. Cocchi G, Mastrocola M, Capelli M, Bastelli A, Vitali F, Corvaglia L (2007) Immunological patterns in young children with Down syndrome: is there a temporal trend? Acta Paediatr Oslo Nor 1992(96):1479–1482.  https://doi.org/10.1111/j.1651-2227.2007.00459.x CrossRefGoogle Scholar
  35. Cole JH, Annus T, Wilson LR, Remtulla R, Hong YT, Fryer TD, Acosta-Cabronero J, Cardenas-Blanco A, Smith R, Menon DK, Zaman SH, Nestor PJ, Holland AJ (2017) Brain-predicted age in Down syndrome is associated with beta amyloid deposition and cognitive decline. Neurobiol Ageing 56:41–49.  https://doi.org/10.1016/j.neurobiolageing.2017.04.006 CrossRefGoogle Scholar
  36. Coppus AMW (2013) People with intellectual disability: what do we know about adulthood and life expectancy? Dev Disabil Res Rev 18:6–16.  https://doi.org/10.1002/ddrr.1123 CrossRefPubMedGoogle Scholar
  37. Coppus A, Evenhuis H, Verberne G-J, Visser F, van Gool P, Eikelenboom P, van Duijin C (2006) Dementia and mortality in persons with Down’s syndrome. J Intellect Disabil Res JIDR 50:768–777.  https://doi.org/10.1111/j.1365-2788.2006.00842.x CrossRefPubMedGoogle Scholar
  38. Coskun PE, Wyrembak J, Derbereva O, Melkonian G, Doran E, Lott IT, Head E, Cotman CW, Wallace DC (2010) Systemic mitochondrial dysfunction and the etiology of Alzheimer’s disease and down syndrome dementia. J Alzheimers Dis JAD 20(Suppl 2):S293–S310.  https://doi.org/10.3233/JAD-2010-100351 CrossRefPubMedGoogle Scholar
  39. Cossarizza A, Monti D, Montagnani G, Ortolani C, Masi M, Zannotti M, Franceschi C (1990) Precocious ageing of the immune system in Down syndrome: alteration of B lymphocytes, T-lymphocyte subsets, and cells with natural killer markers. Am J Med Genet Suppl 7:213–218PubMedGoogle Scholar
  40. Cossarizza A, Ortolani C, Forti E, Montagnani G, Paganelli R, Zannotti M, Marini M, Monti D, Franceschi C (1991) Age-related expansion of functionally inefficient cells with markers of natural killer activity in Down’s syndrome. Blood 77:1263–1270PubMedGoogle Scholar
  41. Cuadrado E, Barrena MJ (1996) Immune dysfunction in Down’s syndrome: primary immune deficiency or early senescence of the immune system? Clin Immunol Immunopathol 78:209–214CrossRefGoogle Scholar
  42. Dall’Olio F, Vanhooren V, Chen CC, Slagboom PE, Wuhrer M, Franceschi C (2013) N-glycomic biomarkers of biological ageing and longevity: a link with inflammageing. Ageing Res Rev 12:685–698.  https://doi.org/10.1016/j.arr.2012.02.002 CrossRefPubMedGoogle Scholar
  43. Dashinimaev EB, Artyuhov AS, Bolshakov AP, Vorotelyak EA, Vasiliev AV (2017) Neurons derived from induced pluripotent stem cells of patients with Down syndrome reproduce early stages of Alzheimer’s disease type pathology in vitro. J Alzheimers Dis JAD 56:835–847.  https://doi.org/10.3233/JAD-160945 CrossRefPubMedGoogle Scholar
  44. Day JJ, Sweatt JD (2011) Cognitive neuroepigenetics: a role for epigenetic mechanisms in learning and memory. Neurobiol Learn Mem 96:2–12.  https://doi.org/10.1016/j.nlm.2010.12.008 CrossRefPubMedGoogle Scholar
  45. de Hingh YCM, van der Vossen PW, Gemen EFA, Mulder AB, Hop WCJ, Brus F, de Vries E (2005) Intrinsic abnormalities of lymphocyte counts in children with down syndrome. J Pediatr 147:744–747.  https://doi.org/10.1016/j.jpeds.2005.07.022 CrossRefPubMedGoogle Scholar
  46. De la Torre R, De Sola S, Pons M, Duchon A, de Lagran MM, Farré M, Fitó M, Benejam B, Langohr K, Rodriguez J, Pujadas M, Bizot JC, Cuenca A, Janel N, Catuara S, Covas MI, Blehaut H, Herault Y, Delabar JM, Dierssen M (2014) Epigallocatechin-3-gallate, a DYRK1A inhibitor, rescues cognitive deficits in Down syndrome mouse models and in humans. Mol Nutr Food Res 58:278–288.  https://doi.org/10.1002/mnfr.201300325 CrossRefPubMedGoogle Scholar
  47. Deb S, Braganza J, Norton N, Williams H, Kehoe PG, Williams J, Owen MJ (2000) APOE epsilon 4 influences the manifestation of Alzheimer’s disease in adults with Down’s syndrome. Br J Psychiatry J Ment Sci 176:468–472CrossRefGoogle Scholar
  48. Dekker AD, Strydom A, Coppus AMW, Nizetic D, Vermeiren Y, Naudé PJW, Van Dam D, Potier M-C, Fortea J, De Deyn PP (2015) Behavioural and psychological symptoms of dementia in Down syndrome: early indicators of clinical Alzheimer’s disease? Cortex J Devoted Study Nerv Syst Behav 73:36–61.  https://doi.org/10.1016/j.cortex.2015.07.032 CrossRefGoogle Scholar
  49. Della Ragione F, Gagliardi M, D’Esposito M, Matarazzo MR (2014) Non-coding RNAs in chromatin disease involving neurological defects. Front Cell Neurosci 8:54.  https://doi.org/10.3389/fncel.2014.00054 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Di Domenico F, Coccia R, Cocciolo A, Murphy MP, Cenini G, Head E, Butterfield DA, Giorgi A, Schinina ME, Mancuso C, Cini C, Perluigi M (2013) Impairment of proteostasis network in Down syndrome prior to the development of Alzheimer’s disease neuropathology: redox proteomics analysis of human brain. Biochim Biophys Acta 1832:1249–1259.  https://doi.org/10.1016/j.bbadis.2013.04.013 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Di Domenico F, Tramutola A, Foppoli C, Head E, Perluigi M, Butterfield DA (2017) mTOR in Down syndrome: role in Aß and tau neuropathology and transition to Alzheimer disease-like dementia. Free Radic Biol Med 114:94–101.  https://doi.org/10.1016/j.freeradbiomed.2017.08.009 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Druzhyna N, Nair RG, LeDoux SP, Wilson GL (1998) Defective repair of oxidative damage in mitochondrial DNA in Down’s syndrome. Mutat Res 409:81–89CrossRefGoogle Scholar
  53. Duchon A, Herault Y (2016) DYRK1A, a dosage-sensitive gene involved in neurodevelopmental disorders, is a target for drug development in Down syndrome. Front Behav Neurosci 10:104.  https://doi.org/10.3389/fnbeh.2016.00104 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Eckmann-Scholz C, Bens S, Kolarova J, Schneppenheim S, Caliebe A, Heidemann S, von Kaisenberg C, Kautza M, Jonat W, Siebert R, Ammerpohl O (2012) DNA-methylation profiling of fetal tissues reveals marked epigenetic differences between chorionic and amniotic samples. PloS One 7:e39014.  https://doi.org/10.1371/journal.pone.0039014 CrossRefPubMedPubMedCentralGoogle Scholar
  55. El Hajj N, Dittrich M, Böck J, Kraus TFJ, Nanda I, Müller T, Seidmann L, Tralau T, Galetzka D, Schneider E, Haaf T (2016) Epigenetic dysregulation in the developing Down syndrome cortex. Epigenetics 11:563–578.  https://doi.org/10.1080/15592294.2016.1192736 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Esbensen AJ (2010) Health conditions associated with ageing and end of life of adults with Down syndrome. Int Rev Res Ment Retard 39:107–126.  https://doi.org/10.1016/S0074-7750(10)39004-5 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Fabris N, Mocchegiani E, Amadio L, Zannotti M, Licastro F, Franceschi C (1984) Thymic hormone deficiency in normal ageing and Down’s syndrome: is there a primary failure of the thymus? Lancet Lond Engl 1:983–986CrossRefGoogle Scholar
  58. Franceschi C, Licastro F, Chiricolo M, Bonetti F, Zannotti M, Fabris N, Mocchegiani E, Fantini MP, Paolucci P, Masi M (1981) Deficiency of autologous mixed lymphocyte reactions and serum thymic factor level in Down’s syndrome. J Immunol Baltim Md 1950(126):2161–2164Google Scholar
  59. Franceschi M, Comola M, Piattoni F, Gualandri W, Canal N (1990) Prevalence of dementia in adult patients with trisomy 21. Am J Med Genet Suppl 7:306–308PubMedGoogle Scholar
  60. Franceschi C, Monti D, Scarfí MR, Zeni O, Temperani P, Emilia G, Sansoni P, Lioi MB, Troiano L, Agnesini C (1992) Genomic instability and ageing. Studies in centenarians (successful ageing) and in patients with Down’s syndrome (accelerated ageing). Ann N Y Acad Sci 663:4–16CrossRefGoogle Scholar
  61. Franceschi C, Bonafè M, Valensin S, Olivieri F, De Luca M, Ottaviani E, De Benedictis G (2000) Inflamm-ageing. An evolutionary perspective on immunosenescence. Ann N Y Acad Sci 908:244–254CrossRefGoogle Scholar
  62. Garlet TR, Parisotto EB, de Medeiros G d S, Pereira LCR, Moreira EADM, Dalmarco EM, Dalmarco JB, Wilhelm Filho D (2013) Systemic oxidative stress in children and teenagers with Down syndrome. Life Sci 93:558–563.  https://doi.org/10.1016/j.lfs.2013.08.017 CrossRefPubMedGoogle Scholar
  63. Ghezzo A, Salvioli S, Solimando MC, Palmieri A, Chiostergi C, Scurti M, Lomartire L, Bedetti F, Cocchi G, Follo D, Pipitone E, Rovatti P, Zamberletti J, Gomiero T, Castellani G, Franceschi C (2014) Age-related changes of adaptive and neuropsychological features in persons with Down syndrome. PloS One 9:e113111.  https://doi.org/10.1371/journal.pone.0113111 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Gimeno A, García-Giménez JL, Audí L, Toran N, Andaluz P, Dasí F, Viña J, Pallardó FV (2014) Decreased cell proliferation and higher oxidative stress in fibroblasts from Down syndrome fetuses. Preliminary study. Biochim Biophys Acta 1842:116–125.  https://doi.org/10.1016/j.bbadis.2013.10.014 CrossRefPubMedGoogle Scholar
  65. Glasson EJ, Sullivan SG, Hussain R, Petterson BA, Montgomery PD, Bittles AH (2002) The changing survival profile of people with Down’s syndrome: implications for genetic counselling. Clin Genet 62:390–393CrossRefGoogle Scholar
  66. Glasson EJ, Jacques A, Wong K, Bourke J, Leonard H (2016) Improved survival in Down syndrome over the last 60 years and the impact of perinatal factors in recent decades. J Pediatr 169:214–220.e1.  https://doi.org/10.1016/j.jpeds.2015.10.083 CrossRefPubMedGoogle Scholar
  67. Goldacre MJ, Wotton CJ, Seagroatt V, Yeates D (2004) Cancers and immune related diseases associated with Down’s syndrome: a record linkage study. Arch Dis Child 89:1014–1017.  https://doi.org/10.1136/adc.2003.046219 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Gräff J, Tsai L-H (2013) Histone acetylation: molecular mnemonics on the chromatin. Nat Rev Neurosci 14:97–111.  https://doi.org/10.1038/nrn3427 CrossRefPubMedGoogle Scholar
  69. Gruszecka A, Kopczyński P, Cudziło D, Lipińska N, Romaniuk A, Barczak W, Rozwadowska N, Totoń E, Rubiś B (2015) Telomere shortening in Down syndrome patients – when does it start? DNA Cell Biol 34:412–417.  https://doi.org/10.1089/dna.2014.2746 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Guaraldi F, Rossetto Giaccherino R, Lanfranco F, Motta G, Gori D, Arvat E, Ghigo E, Giordano R (2017) Endocrine autoimmunity in Down’s syndrome. Front Horm Res 48:133–146.  https://doi.org/10.1159/000452912 CrossRefPubMedGoogle Scholar
  71. Guazzarotti L, Trabattoni D, Castelletti E, Boldrighini B, Piacentini L, Duca P, Beretta S, Pacei M, Caprio C, Vigan Ago A, di Natale B, Zuccotti GV, Clerici M (2009) T lymphocyte maturation is impaired in healthy young individuals carrying trisomy 21 (Down syndrome). Am J Intellect Dev Disabil 114:100–109.  https://doi.org/10.1352/2009.114.100-109 CrossRefPubMedGoogle Scholar
  72. Hannum G, Guinney J, Zhao L, Zhang L, Hughes G, Sadda S, Klotzle B, Bibikova M, Fan J-B, Gao Y, Deconde R, Chen M, Rajapakse I, Friend S, Ideker T, Zhang K (2013) Genome-wide methylation profiles reveal quantitative views of human ageing rates. Mol Cell 49:359–367.  https://doi.org/10.1016/j.molcel.2012.10.016 CrossRefPubMedGoogle Scholar
  73. Hartley SL, Handen BL, Devenny D, Mihaila I, Hardison R, Lao PJ, Klunk WE, Bulova P, Johnson SC, Christian BT (2017) Cognitive decline and brain amyloid-β accumulation across 3 years in adults with Down syndrome. Neurobiol Ageing 58:68–76.  https://doi.org/10.1016/j.neurobiolageing.2017.05.019 CrossRefGoogle Scholar
  74. Hatt L, Aagaard MM, Graakjaer J, Bach C, Sommer S, Agerholm IE, Kølvraa S, Bojesen A (2015) Microarray-based analysis of methylation status of CpGs in placental DNA and maternal blood DNA – potential new epigenetic biomarkers for cell free fetal DNA-based diagnosis. PloS One 10:e0128918.  https://doi.org/10.1371/journal.pone.0128918 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Hatt L, Aagaard MM, Bach C, Graakjaer J, Sommer S, Agerholm IE, Kølvraa S, Bojesen A (2016) Microarray-based analysis of methylation of 1st trimester trisomic placentas from Down syndrome, Edwards syndrome and Patau syndrome. PloS One 11:e0160319.  https://doi.org/10.1371/journal.pone.0160319 CrossRefPubMedPubMedCentralGoogle Scholar
  76. Helguera P, Seiglie J, Rodriguez J, Hanna M, Helguera G, Busciglio J (2013) Adaptive downregulation of mitochondrial function in down syndrome. Cell Metab 17:132–140.  https://doi.org/10.1016/j.cmet.2012.12.005 CrossRefPubMedPubMedCentralGoogle Scholar
  77. Holland AJ, Hon J, Huppert FA, Stevens F, Watson P (1998) Population-based study of the prevalence and presentation of dementia in adults with Down’s syndrome. Br J Psychiatry J Ment Sci 172:493–498CrossRefGoogle Scholar
  78. Holland AJ, Hon J, Huppert FA, Stevens F (2000) Incidence and course of dementia in people with Down’s syndrome: findings from a population-based study. J Intellect Disabil Res JIDR 44. (Pt 2:138–146CrossRefGoogle Scholar
  79. Holmes DK, Bates N, Murray M, Ladusans EJ, Morabito A, Bolton-Maggs PHB, Johnston TA, Walkenshaw S, Wynn RF, Bellantuono I (2006) Hematopoietic progenitor cell deficiency in fetuses and children affected by Down’s syndrome. Exp Hematol 34:1611–1615.  https://doi.org/10.1016/j.exphem.2006.10.013 CrossRefPubMedGoogle Scholar
  80. Horvath S (2013) DNA methylation age of human tissues and cell types. Genome Biol 14:R115.  https://doi.org/10.1186/gb-2013-14-10-r115 CrossRefPubMedPubMedCentralGoogle Scholar
  81. Horvath S, Garagnani P, Bacalini MG, Pirazzini C, Salvioli S, Gentilini D, Di Blasio AM, Giuliani C, Tung S, Vinters HV, Franceschi C (2015) Accelerated epigenetic ageing in Down syndrome. Ageing Cell 14:491–495.  https://doi.org/10.1111/acel.12325 CrossRefGoogle Scholar
  82. Iacono T, Torr J, Wong HY (2010) Relationships amongst age, language and related skills in adults with Down syndrome. Res Dev Disabil 31:568–576.  https://doi.org/10.1016/j.ridd.2009.12.009 CrossRefPubMedGoogle Scholar
  83. Jenkins EC, Velinov MT, Ye L, Gu H, Li S, Jenkins EC, Brooks SS, Pang D, Devenny DA, Zigman WB, Schupf N, Silverman WP (2006) Telomere shortening in T lymphocytes of older individuals with Down syndrome and dementia. Neurobiol Ageing 27:941–945.  https://doi.org/10.1016/j.neurobiolageing.2005.05.021 CrossRefGoogle Scholar
  84. Jenkins EC, Ye L, Gu H, Ni SA, Duncan CJ, Velinov M, Pang D, Krinsky-McHale SJ, Zigman WB, Schupf N, Silverman WP (2008) Increased “absence” of telomeres may indicate Alzheimer’s disease/dementia status in older individuals with Down syndrome. Neurosci Lett 440:340–343.  https://doi.org/10.1016/j.neulet.2008.05.098 CrossRefPubMedPubMedCentralGoogle Scholar
  85. Jenkins EC, Ye L, Gu H, Ni SA, Velinov M, Pang D, Krinsky-McHale SJ, Zigman WB, Schupf N, Silverman WP (2010) Shorter telomeres may indicate dementia status in older individuals with Down syndrome. Neurobiol Ageing 31:765–771.  https://doi.org/10.1016/j.neurobiolageing.2008.06.001 CrossRefGoogle Scholar
  86. Jenkins EC, Ye L, Velinov M, Krinsky-McHale SJ, Zigman WB, Schupf N, Silverman WP (2012) Mild cognitive impairment identified in older individuals with Down syndrome by reduced telomere signal numbers and shorter telomeres measured in microns. Am J Med Genet Part B Neuropsychiatr Genet Off Publ Int Soc Psychiatr Genet 159B:598–604.  https://doi.org/10.1002/ajmg.b.32066 CrossRefGoogle Scholar
  87. Jenkins EC, Ye L, Krinsky-McHale SJ, Zigman WB, Schupf N, Silverman WP (2016) Telomere longitudinal shortening as a biomarker for dementia status of adults with Down syndrome. Am J Med Genet Part B Neuropsychiatr Genet Off Publ Int Soc Psychiatr Genet 171B:169–174.  https://doi.org/10.1002/ajmg.b.32389 CrossRefGoogle Scholar
  88. Jenkins EC, Marchi EJ, Velinov MT, Ye L, Krinsky-McHale SJ, Zigman WB, Schupf N, Silverman WP (2017) Longitudinal telomere shortening and early Alzheimer’s disease progression in adults with down syndrome. Am J Med Genet Part B Neuropsychiatr Genet Off Publ Int Soc Psychiatr Genet 174:772–778.  https://doi.org/10.1002/ajmg.b.32575 CrossRefGoogle Scholar
  89. Jin S, Lee YK, Lim YC, Zheng Z, Lin XM, Ng DPY, Holbrook JD, Law HY, Kwek KYC, Yeo GSH, Ding C (2013) Global DNA hypermethylation in down syndrome placenta. PLoS Genet 9:e1003515.  https://doi.org/10.1371/journal.pgen.1003515 CrossRefPubMedPubMedCentralGoogle Scholar
  90. Jones EL, Mok K, Hanney M, Harold D, Sims R, Williams J, Ballard C (2013a) Evidence that PICALM affects age at onset of Alzheimer’s dementia in Down syndrome. Neurobiol Ageing 34(2441):e1–e5.  https://doi.org/10.1016/j.neurobiolageing.2013.03.018 CrossRefGoogle Scholar
  91. Jones MJ, Farré P, McEwen LM, Macisaac JL, Watt K, Neumann SM, Emberly E, Cynader MS, Virji-Babul N, Kobor MS (2013b) Distinct DNA methylation patterns of cognitive impairment and trisomy 21 in Down syndrome. BMC Med Genomics 6:58.  https://doi.org/10.1186/1755-8794-6-58 CrossRefGoogle Scholar
  92. Joshi AY, Abraham RS, Snyder MR, Boyce TG (2011) Immune evaluation and vaccine responses in Down syndrome: evidence of immunodeficiency? Vaccine 29:5040–5046.  https://doi.org/10.1016/j.vaccine.2011.04.060 CrossRefPubMedPubMedCentralGoogle Scholar
  93. Jovanovic SV, Clements D, MacLeod K (1998) Biomarkers of oxidative stress are significantly elevated in Down syndrome. Free Radic Biol Med 25:1044–1048CrossRefGoogle Scholar
  94. Jung HJ, Suh Y (2014) Circulating miRNAs in ageing and ageing-related diseases. J Genet Genomics Yi Chuan Xue Bao 41:465–472.  https://doi.org/10.1016/j.jgg.2014.07.003 CrossRefPubMedGoogle Scholar
  95. Jylhävä J, Pedersen NL, Hägg S (2017) Biological age predictors. EBioMedicine 21:29–36.  https://doi.org/10.1016/j.ebiom.2017.03.046 CrossRefPubMedPubMedCentralGoogle Scholar
  96. Karlsson B, Gustafsson J, Hedov G, Ivarsson SA, Annerén G (1998) Thyroid dysfunction in Down’s syndrome: relation to age and thyroid autoimmunity. Arch Dis Child 79:242–245CrossRefGoogle Scholar
  97. Karttunen R, Nurmi T, Ilonen J, Surcel HM (1984) Cell-mediated immunodeficiency in Down’s syndrome: normal IL-2 production but inverted ratio of T cell subsets. Clin Exp Immunol 55:257–263PubMedPubMedCentralGoogle Scholar
  98. Kennedy BK, Berger SL, Brunet A, Campisi J, Cuervo AM, Epel ES, Franceschi C, Lithgow GJ, Morimoto RI, Pessin JE, Rando TA, Richardson A, Schadt EE, Wyss-Coray T, Sierra F (2014) Geroscience: linking ageing to chronic disease. Cell 159:709–713.  https://doi.org/10.1016/j.cell.2014.10.039 CrossRefPubMedPubMedCentralGoogle Scholar
  99. Kerkel K, Schupf N, Hatta K, Pang D, Salas M, Kratz A, Minden M, Murty V, Zigman WB, Mayeux RP, Jenkins EC, Torkamani A, Schork NJ, Silverman W, Croy BA, Tycko B (2010) Altered DNA methylation in leukocytes with trisomy 21. PLoS Genet 6:e1001212.  https://doi.org/10.1371/journal.pgen.1001212 CrossRefPubMedPubMedCentralGoogle Scholar
  100. Kimura M, Cao X, Skurnick J, Cody M, Soteropoulos P, Aviv A (2005) Proliferation dynamics in cultured skin fibroblasts from Down syndrome subjects. Free Radic Biol Med 39:374–380.  https://doi.org/10.1016/j.freeradbiomed.2005.03.023 CrossRefPubMedGoogle Scholar
  101. Kittler P, Krinsky-McHale SJ, Devenny DA (2006) Verbal intrusions precede memory decline in adults with Down syndrome. J Intellect Disabil Res JIDR 50:1–10.  https://doi.org/10.1111/j.1365-2788.2005.00715.x CrossRefPubMedGoogle Scholar
  102. Klusmann J-H, Li Z, Böhmer K, Maroz A, Koch ML, Emmrich S, Godinho FJ, Orkin SH, Reinhardt D (2010) miR-125b-2 is a potential oncomiR on human chromosome 21 in megakaryoblastic leukemia. Genes Dev 24:478–490.  https://doi.org/10.1101/gad.1856210 CrossRefPubMedPubMedCentralGoogle Scholar
  103. Koran MEI, Hohman TJ, Edwards CM, Vega JN, Pryweller JR, Slosky LE, Crockett G, Villa de Rey L, Meda SA, Dankner N, Avery SN, Blackford JU, Dykens EM, Thornton-Wells TA (2014) Differences in age-related effects on brain volume in Down syndrome as compared to Williams syndrome and typical development. J Neurodev Disord 6:8.  https://doi.org/10.1186/1866-1955-6-8 CrossRefPubMedPubMedCentralGoogle Scholar
  104. Krasuski JS, Alexander GE, Horwitz B, Rapoport SI, Schapiro MB (2002) Relation of medial temporal lobe volumes to age and memory function in nondemented adults with Down’s syndrome: implications for the prodromal phase of Alzheimer’s disease. Am J Psychiatry 159:74–81.  https://doi.org/10.1176/appi.ajp.159.1.74 CrossRefPubMedGoogle Scholar
  105. Kraus TFJ, Guibourt V, Kretzschmar HA (2015) 5-Hydroxymethylcytosine, the “Sixth Base”, during brain development and ageing. J Neural Transm Vienna Austria 1996 122:1035–1043.  https://doi.org/10.1007/s00702-014-1346-4 CrossRefGoogle Scholar
  106. Kusters MAA, Verstegen RHJ, Gemen EFA, de Vries E (2009) Intrinsic defect of the immune system in children with Down syndrome: a review. Clin Exp Immunol 156:189–193.  https://doi.org/10.1111/j.1365-2249.2009.03890.x CrossRefPubMedPubMedCentralGoogle Scholar
  107. Kusters MAA, Gemen EFA, Verstegen RHJ, Wever PC, de Vries E (2010) Both normal memory counts and decreased naive cells favor intrinsic defect over early senescence of Down syndrome T lymphocytes. Pediatr Res 67:557–562.  https://doi.org/10.1203/PDR.0b013e3181d4eca3 CrossRefPubMedGoogle Scholar
  108. Kusters MA, Jol-Van Der Zijde ECM, Gijsbers RHJM, de Vries E (2011) Decreased response after conjugated meningococcal serogroup C vaccination in children with Down syndrome. Pediatr Infect Dis J 30:818–819.  https://doi.org/10.1097/INF.0b013e31822233f9 CrossRefPubMedGoogle Scholar
  109. Lai F, Williams RS (1989) A prospective study of Alzheimer disease in Down syndrome. Arch Neurol 46:849–853CrossRefGoogle Scholar
  110. Lai F, Kammann E, Rebeck GW, Anderson A, Chen Y, Nixon RA (1999) APOE genotype and gender effects on Alzheimer disease in 100 adults with Down syndrome. Neurology 53:331–336CrossRefGoogle Scholar
  111. Larocca LM, Piantelli M, Valitutti S, Castellino F, Maggiano N, Musiani P (1988) Alterations in thymocyte subpopulations in Down’s syndrome (trisomy 21). Clin Immunol Immunopathol 49:175–186CrossRefGoogle Scholar
  112. Leclerc E, Sturchler E, Vetter SW (2010) The S100B/RAGE axis in Alzheimer’s disease. Cardiovasc Psychiatry Neurol 2010:539581.  https://doi.org/10.1155/2010/539581 CrossRefPubMedPubMedCentralGoogle Scholar
  113. Lee JH, Chulikavit M, Pang D, Zigman WB, Silverman W, Schupf N (2007) Association between genetic variants in sortilin-related receptor 1 (SORL1) and Alzheimer’s disease in adults with Down syndrome. Neurosci Lett 425:105–109.  https://doi.org/10.1016/j.neulet.2007.08.042 CrossRefPubMedPubMedCentralGoogle Scholar
  114. Lee JH, Gurney S, Pang D, Temkin A, Park N, Janicki SC, Zigman WB, Silverman W, Tycko B, Schupf N (2012) Polymorphisms in HSD17B1: early onset and increased risk of Alzheimer’s disease in women with Down syndrome. Curr Gerontol Geriatr Res 2012:361218.  https://doi.org/10.1155/2012/361218 CrossRefPubMedPubMedCentralGoogle Scholar
  115. Lee DE, Lim JH, Kim MH, Park SY, Ryu HM (2016) Novel epigenetic markers on chromosome 21 for noninvasive prenatal testing of fetal trisomy 21. J Mol Diagn JMD 18:378–387.  https://doi.org/10.1016/j.jmoldx.2015.12.002 CrossRefPubMedGoogle Scholar
  116. Lee JH, Lee AJ, Dang L-H, Pang D, Kisselev S, Krinsky-McHale SJ, Zigman WB, Luchsinger JA, Silverman W, Tycko B, Clark LN, Schupf N (2017) Candidate gene analysis for Alzheimer’s disease in adults with Down syndrome. Neurobiol Ageing 56:150–158.  https://doi.org/10.1016/j.neurobiolageing.2017.04.018 CrossRefGoogle Scholar
  117. Lemere CA, Blusztajn JK, Yamaguchi H, Wisniewski T, Saido TC, Selkoe DJ (1996) Sequence of deposition of heterogeneous amyloid beta-peptides and APO E in Down syndrome: implications for initial events in amyloid plaque formation. Neurobiol Dis 3:16–32.  https://doi.org/10.1006/nbdi.1996.0003 CrossRefPubMedGoogle Scholar
  118. Leonard S, Bower C, Petterson B, Leonard H (2000) Survival of infants born with Down’s syndrome: 1980–96. Paediatr Perinat Epidemiol 14:163–171CrossRefGoogle Scholar
  119. Leverenz JB, Raskind MA (1998) Early amyloid deposition in the medial temporal lobe of young Down syndrome patients: a regional quantitative analysis. Exp Neurol 150:296–304.  https://doi.org/10.1006/exnr.1997.6777 CrossRefPubMedGoogle Scholar
  120. Li YY, Alexandrov PN, Pogue AI, Zhao Y, Bhattacharjee S, Lukiw WJ (2012) miRNA-155 upregulation and complement factor H deficits in Down’s syndrome. Neuroreport 23:168–173.  https://doi.org/10.1097/WNR.0b013e32834f4eb4 CrossRefPubMedPubMedCentralGoogle Scholar
  121. Lim JH, Kim SY, Park SY, Lee SY, Kim MJ, Han YJ, Lee SW, Chung JH, Kim MY, Yang JH, Ryu HM (2011) Non-invasive epigenetic detection of fetal trisomy 21 in first trimester maternal plasma. PloS One 6:e27709.  https://doi.org/10.1371/journal.pone.0027709 CrossRefPubMedPubMedCentralGoogle Scholar
  122. Lim JH, Kim DJ, Lee DE, Han JY, Chung JH, Ahn HK, Lee SW, Lim DH, Lee YS, Park SY, Ryu HM (2015) Genome-wide microRNA expression profiling in placentas of fetuses with Down syndrome. Placenta 36:322–328.  https://doi.org/10.1016/j.placenta.2014.12.020 CrossRefPubMedGoogle Scholar
  123. Lima FA, Moreira-Filho CA, Ramos PL, Brentani H, Lima L d A, Arrais M, Bento-de-Souza LC, Bento-de-Souza L, Duarte MI, Coutinho A, Carneiro-Sampaio M (2011) Decreased AIRE expression and global thymic hypofunction in Down syndrome. J Immunol Baltim Md 1950(187):3422–3430.  https://doi.org/10.4049/jimmunol.1003053 CrossRefGoogle Scholar
  124. Liu L, Rando TA (2011) Manifestations and mechanisms of stem cell ageing. J Cell Biol 193:257–266.  https://doi.org/10.1083/jcb.201010131 CrossRefPubMedPubMedCentralGoogle Scholar
  125. Liu C-C, Liu C-C, Kanekiyo T, Xu H, Bu G (2013) Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nat Rev Neurol 9:106–118.  https://doi.org/10.1038/nrneurol.2012.263 CrossRefPubMedPubMedCentralGoogle Scholar
  126. Liu Y, Borel C, Li L, Müller T, Williams EG, Germain P-L, Buljan M, Sajic T, Boersema PJ, Shao W, Faini M, Testa G, Beyer A, Antonarakis SE, Aebersold R (2017) Systematic proteome and proteostasis profiling in human trisomy 21 fibroblast cells. Nat Commun 8:1212.  https://doi.org/10.1038/s41467-017-01422-6 CrossRefPubMedPubMedCentralGoogle Scholar
  127. Lockitch G, Singh VK, Puterman ML, Godolphin WJ, Sheps S, Tingle AJ, Wong F, Quigley G (1987) Age-related changes in humoral and cell-mediated immunity in Down syndrome children living at home. Pediatr Res 22:536–540.  https://doi.org/10.1203/00006450-198711000-00013 CrossRefPubMedGoogle Scholar
  128. López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013) The hallmarks of ageing. Cell 153:1194–1217.  https://doi.org/10.1016/j.cell.2013.05.039 CrossRefPubMedPubMedCentralGoogle Scholar
  129. Lott IT (2012) Neurological phenotypes for Down syndrome across the life span. Prog Brain Res 197:101–121.  https://doi.org/10.1016/B978-0-444-54299-1.00006-6 CrossRefPubMedPubMedCentralGoogle Scholar
  130. Lott IT, Dierssen M (2010) Cognitive deficits and associated neurological complications in individuals with Down’s syndrome. Lancet Neurol 9:623–633.  https://doi.org/10.1016/S1474-4422(10)70112-5 CrossRefPubMedGoogle Scholar
  131. Lu H-E, Yang Y-C, Chen S-M, Su H-L, Huang P-C, Tsai M-S, Wang T-H, Tseng C-P, Hwang S-M (2013) Modeling neurogenesis impairment in Down syndrome with induced pluripotent stem cells from Trisomy 21 amniotic fluid cells. Exp Cell Res 319:498–505.  https://doi.org/10.1016/j.yexcr.2012.09.017 CrossRefPubMedGoogle Scholar
  132. Lu J, Mccarter M, Lian G, Esposito G, Capoccia E, Delli-Bovi LC, Hecht J, Sheen V (2016) Global hypermethylation in fetal cortex of Down syndrome due to DNMT3L overexpression. Hum Mol Genet 25:1714–1727.  https://doi.org/10.1093/hmg/ddw043 CrossRefPubMedPubMedCentralGoogle Scholar
  133. Lukiw WJ, Surjyadipta B, Dua P, Alexandrov PN (2012) Common micro RNAs (miRNAs) target complement factor H (CFH) regulation in Alzheimer’s disease (AD) and in age-related macular degeneration (AMD). Int J Biochem Mol Biol 3:105–116PubMedPubMedCentralGoogle Scholar
  134. Malinge S, Chlon T, Doré LC, Ketterling RP, Tallman MS, Paietta E, Gamis AS, Taub JW, Chou ST, Weiss MJ, Crispino JD, Figueroa ME (2013) Development of acute megakaryoblastic leukemia in Down syndrome is associated with sequential epigenetic changes. Blood 122:e33–e43.  https://doi.org/10.1182/blood-2013-05-503011 CrossRefPubMedPubMedCentralGoogle Scholar
  135. Maluf SW, Erdtmann B (2001) Genomic instability in Down syndrome and Fanconi anemia assessed by micronucleus analysis and single-cell gel electrophoresis. Cancer Genet Cytogenet 124:71–75CrossRefGoogle Scholar
  136. Mao R, Zielke CL, Zielke HR, Pevsner J (2003) Global up-regulation of chromosome 21 gene expression in the developing Down syndrome brain. Genomics 81:457–467CrossRefGoogle Scholar
  137. Margallo-Lana M, Morris CM, Gibson AM, Tan AL, Kay DWK, Tyrer SP, Moore BP, Ballard CG (2004) Influence of the amyloid precursor protein locus on dementia in Down syndrome. Neurology 62:1996–1998CrossRefGoogle Scholar
  138. Margallo-Lana ML, Moore PB, Kay DWK, Perry RH, Reid BE, Berney TP, Tyrer SP (2007) Fifteen-year follow-up of 92 hospitalized adults with Down’s syndrome: incidence of cognitive decline, its relationship to age and neuropathology. J Intellect Disabil Res JIDR 51:463–477.  https://doi.org/10.1111/j.1365-2788.2006.00902.x CrossRefPubMedGoogle Scholar
  139. Martin GM (1982) Syndromes of accelerated ageing. Natl Cancer Inst Monogr 60:241–247PubMedGoogle Scholar
  140. McCarron M, McCallion P, Reilly E, Mulryan N (2014) A prospective 14-year longitudinal follow-up of dementia in persons with Down syndrome. J Intellect Disabil Res JIDR 58:61–70.  https://doi.org/10.1111/jir.12074 CrossRefPubMedGoogle Scholar
  141. McCarron M, McCallion P, Reilly E, Dunne P, Carroll R, Mulryan N (2017) A prospective 20-year longitudinal follow-up of dementia in persons with Down syndrome. J Intellect Disabil Res JIDR 61:843–852.  https://doi.org/10.1111/jir.12390 CrossRefPubMedGoogle Scholar
  142. McKelvey KD, Fowler TW, Akel NS, Kelsay JA, Gaddy D, Wenger GR, Suva LJ (2013) Low bone turnover and low bone density in a cohort of adults with Down syndrome. Osteoporos Int J Establ Result Coop Eur Found Osteoporos Natl Osteoporos Found USA 24:1333–1338.  https://doi.org/10.1007/s00198-012-2109-4 CrossRefGoogle Scholar
  143. Meguid NA, Dardir AA, El-Sayed EM, Ahmed HH, Hashish AF, Ezzat A (2010) Homocysteine and oxidative stress in Egyptian children with Down syndrome. Clin Biochem 43:963–967.  https://doi.org/10.1016/j.clinbiochem.2010.04.058 CrossRefPubMedGoogle Scholar
  144. Mendioroz M, Do C, Jiang X, Liu C, Darbary HK, Lang CF, Lin J, Thomas A, Abu-Amero S, Stanier P, Temkin A, Yale A, Liu M-M, Li Y, Salas M, Kerkel K, Capone G, Silverman W, Yu YE, Moore G, Wegiel J, Tycko B (2015) Trans effects of chromosome aneuploidies on DNA methylation patterns in human Down syndrome and mouse models. Genome Biol 16:263.  https://doi.org/10.1186/s13059-015-0827-6 CrossRefPubMedPubMedCentralGoogle Scholar
  145. Mok KY, Jones EL, Hanney M, Harold D, Sims R, Williams J, Ballard C, Hardy J (2014) Polymorphisms in BACE2 may affect the age of onset Alzheimer’s dementia in Down syndrome. Neurobiol Ageing 35(1513):e1–e5.  https://doi.org/10.1016/j.neurobiolageing.2013.12.022 CrossRefGoogle Scholar
  146. Morawiec Z, Janik K, Kowalski M, Stetkiewicz T, Szaflik J, Morawiec-Bajda A, Sobczuk A, Blasiak J (2008) DNA damage and repair in children with Down’s syndrome. Mutat Res 637:118–123.  https://doi.org/10.1016/j.mrfmmm.2007.07.010 CrossRefPubMedGoogle Scholar
  147. Morimoto RI, Cuervo AM (2014) Proteostasis and the ageing proteome in health and disease. J Gerontol A Biol Sci Med Sci 69(Suppl 1):S33–S38.  https://doi.org/10.1093/gerona/glu049 CrossRefPubMedPubMedCentralGoogle Scholar
  148. Mullins D, Daly E, Simmons A, Beacher F, Foy CM, Lovestone S, Hallahan B, Murphy KC, Murphy DG (2013) Dementia in Down’s syndrome: an MRI comparison with Alzheimer’s disease in the general population. J Neurodev Disord 5:19.  https://doi.org/10.1186/1866-1955-5-19 CrossRefPubMedPubMedCentralGoogle Scholar
  149. Murakami K, Murata N, Noda Y, Tahara S, Kaneko T, Kinoshita N, Hatsuta H, Murayama S, Barnham KJ, Irie K, Shirasawa T, Shimizu T (2011) SOD1 (copper/zinc superoxide dismutase) deficiency drives amyloid β protein oligomerization and memory loss in mouse model of Alzheimer disease. J Biol Chem 286:44557–44568.  https://doi.org/10.1074/jbc.M111.279208 CrossRefPubMedPubMedCentralGoogle Scholar
  150. Murphy M, Epstein LB (1990) Down syndrome (trisomy 21) thymuses have a decreased proportion of cells expressing high levels of TCR alpha, beta and CD3. A possible mechanism for diminished T cell function in Down syndrome. Clin Immunol Immunopathol 55:453–467CrossRefGoogle Scholar
  151. Murphy M, Epstein LB (1992) Down syndrome (DS) peripheral blood contains phenotypically mature CD3+TCR alpha, beta+ cells but abnormal proportions of TCR alpha, beta+, TCR gamma, delta+, and CD4+ CD45RA+ cells: evidence for an inefficient release of mature T cells by the DS thymus. Clin Immunol Immunopathol 62:245–251CrossRefGoogle Scholar
  152. Murphy M, Lempert MJ, Epstein LB (1990) Decreased level of T cell receptor expression by Down syndrome (trisomy 21) thymocytes. Am J Med Genet Suppl 7:234–237PubMedGoogle Scholar
  153. Musiani P, Valitutti S, Castellino F, Larocca LM, Maggiano N, Piantelli M (1990) Intrathymic deficient expansion of T cell precursors in Down syndrome. Am J Med Genet Suppl 7:219–224PubMedGoogle Scholar
  154. Nakamura E, Tanaka S (1998) Biological ages of adult men and women with Down’s syndrome and its changes with ageing. Mech Ageing Dev 105:89–103CrossRefGoogle Scholar
  155. Nakamura K-I, Ishikawa N, Izumiyama N, Aida J, Kuroiwa M, Hiraishi N, Fujiwara M, Nakao A, Kawakami T, Poon SSS, Matsuura M, Sawabe M, Arai T, Takubo K (2014) Telomere lengths at birth in trisomies 18 and 21 measured by Q-FISH. Gene 533:199–207.  https://doi.org/10.1016/j.gene.2013.09.086 CrossRefPubMedGoogle Scholar
  156. Nateghi Rostami M, Douraghi M, Miramin Mohammadi A, Nikmanesh B (2012) Altered serum pro-inflammatory cytokines in children with Down’s syndrome. Eur Cytokine Netw 23:64–67.  https://doi.org/10.1684/ecn.2012.0307 CrossRefPubMedGoogle Scholar
  157. Necchi D, Pinto A, Tillhon M, Dutto I, Serafini MM, Lanni C, Govoni S, Racchi M, Prosperi E (2015) Defective DNA repair and increased chromatin binding of DNA repair factors in Down syndrome fibroblasts. Mutat Res 780:15–23.  https://doi.org/10.1016/j.mrfmmm.2015.07.009 CrossRefPubMedGoogle Scholar
  158. Obeid R, Hartmuth K, Herrmann W, Gortner L, Rohrer TR, Geisel J, Reed MC, Nijhout HF (2012) Blood biomarkers of methylation in Down syndrome and metabolic simulations using a mathematical model. Mol Nutr Food Res 56:1582–1589.  https://doi.org/10.1002/mnfr.201200162 CrossRefPubMedGoogle Scholar
  159. Obeid R, Hübner U, Bodis M, Geisel J (2016) Plasma amyloid beta 1-42 and DNA methylation pattern predict accelerated ageing in young subjects with Down syndrome. Neuromolecular Med 18:593–601.  https://doi.org/10.1007/s12017-016-8413-y CrossRefPubMedGoogle Scholar
  160. Obermann-Borst SA, van Driel LMJW, Helbing WA, de Jonge R, Wildhagen MF, Steegers EAP, Steegers-Theunissen RPM (2011) Congenital heart defects and biomarkers of methylation in children: a case-control study. Eur J Clin Invest 41:143–150.  https://doi.org/10.1111/j.1365-2362.2010.02388.x CrossRefPubMedGoogle Scholar
  161. Odetti P, Angelini G, Dapino D, Zaccheo D, Garibaldi S, Dagna-Bricarelli F, Piombo G, Perry G, Smith M, Traverso N, Tabaton M (1998) Early glycoxidation damage in brains from Down’s syndrome. Biochem Biophys Res Commun 243:849–851.  https://doi.org/10.1006/bbrc.1998.8186 CrossRefPubMedGoogle Scholar
  162. Oliver C, Crayton L, Holland A, Hall S, Bradbury J (1998) A four year prospective study of age-related cognitive change in adults with Down’s syndrome. Psychol Med 28:1365–1377CrossRefGoogle Scholar
  163. Papadopoulos N, Simopoulos C, Venizelos J, Kotini A, Skaphida P, Tamiolakis D (2003) Fetal thymic medulla functional alterations in Down’s syndrome. Minerva Med 94:181–185PubMedGoogle Scholar
  164. Papageorgiou EA, Fiegler H, Rakyan V, Beck S, Hulten M, Lamnissou K, Carter NP, Patsalis PC (2009) Sites of differential DNA methylation between placenta and peripheral blood: molecular markers for noninvasive prenatal diagnosis of aneuploidies. Am J Pathol 174:1609–1618.  https://doi.org/10.2353/ajpath.2009.081038 CrossRefPubMedPubMedCentralGoogle Scholar
  165. Papageorgiou EA, Karagrigoriou A, Tsaliki E, Velissariou V, Carter NP, Patsalis PC (2011) Fetal-specific DNA methylation ratio permits noninvasive prenatal diagnosis of trisomy 21. Nat Med 17:510–513.  https://doi.org/10.1038/nm.2312 CrossRefPubMedPubMedCentralGoogle Scholar
  166. Park E, Alberti J, Mehta P, Dalton A, Sersen E, Schuller-Levis G (2000) Partial impairment of immune functions in peripheral blood leukocytes from aged men with Down’s syndrome. Clin Immunol Orlando Fla 95:62–69.  https://doi.org/10.1006/clim.2000.4834 CrossRefGoogle Scholar
  167. Patel A, Rees SD, Kelly MA, Bain SC, Barnett AH, Prasher A, Arshad H, Prasher VP (2014) Genetic variants conferring susceptibility to Alzheimer’s disease in the general population; do they also predispose to dementia in Down’s syndrome. BMC Res Notes 7:42.  https://doi.org/10.1186/1756-0500-7-42 CrossRefPubMedPubMedCentralGoogle Scholar
  168. Patterson D, Cabelof DC (2012) Down syndrome as a model of DNA polymerase beta haploinsufficiency and accelerated ageing. Mech Ageing Dev 133:133–137.  https://doi.org/10.1016/j.mad.2011.10.001 CrossRefPubMedGoogle Scholar
  169. Pellegrini FP, Marinoni M, Frangione V, Tedeschi A, Gandini V, Ciglia F, Mortara L, Accolla RS, Nespoli L (2012) Down syndrome, autoimmunity and T regulatory cells. Clin Exp Immunol 169:238–243.  https://doi.org/10.1111/j.1365-2249.2012.04610.x CrossRefPubMedPubMedCentralGoogle Scholar
  170. Picciotti PM, Carfì A, Anzivino R, Paludetti G, Conti G, Brandi V, Bernabei R, Onder G (2017) Audiologic assessment in adults with Down syndrome. Am J Intellect Dev Disabil 122:333–341.  https://doi.org/10.1352/1944-7558-122.4.333 CrossRefPubMedGoogle Scholar
  171. Pinter JD, Eliez S, Schmitt JE, Capone GT, Reiss AL (2001) Neuroanatomy of Down’s syndrome: a high-resolution MRI study. Am J Psychiatry 158:1659–1665.  https://doi.org/10.1176/appi.ajp.158.10.1659 CrossRefPubMedGoogle Scholar
  172. Pogribna M, Melnyk S, Pogribny I, Chango A, Yi P, James SJ (2001) Homocysteine metabolism in children with Down syndrome: in vitro modulation. Am J Hum Genet 69:88–95.  https://doi.org/10.1086/321262 CrossRefPubMedPubMedCentralGoogle Scholar
  173. Prasher VP, Sajith SG, Rees SD, Patel A, Tewari S, Schupf N, Zigman WB (2008) Significant effect of APOE epsilon 4 genotype on the risk of dementia in Alzheimer’s disease and mortality in persons with Down syndrome. Int J Geriatr Psychiatry 23:1134–1140.  https://doi.org/10.1002/gps.2039 CrossRefPubMedPubMedCentralGoogle Scholar
  174. Qiu J-J, Liu Y-N, Ren Z-R, Yan J-B (2017) Dysfunctions of mitochondria in close association with strong perturbation of long noncoding RNAs expression in down syndrome. Int J Biochem Cell Biol 92:115–120.  https://doi.org/10.1016/j.biocel.2017.09.017 CrossRefPubMedGoogle Scholar
  175. Qureshi IA, Mattick JS, Mehler MF (2010) Long non-coding RNAs in nervous system function and disease. Brain Res 1338:20–35.  https://doi.org/10.1016/j.brainres.2010.03.110 CrossRefPubMedGoogle Scholar
  176. Raji NS, Rao KS (1998) Trisomy 21 and accelerated ageing: DNA-repair parameters in peripheral lymphocytes of Down’s syndrome patients. Mech Ageing Dev 100:85–101CrossRefGoogle Scholar
  177. Reynolds GP, Cutts AJ (1993) Free radical damage in Down’s syndrome brain. Biochem Soc Trans 21:221SCrossRefGoogle Scholar
  178. Roat E, Prada N, Lugli E, Nasi M, Ferraresi R, Troiano L, Giovenzana C, Pinti M, Biagioni O, Mariotti M, Di Iorio A, Consolo U, Balli F, Cossarizza A (2008) Homeostatic cytokines and expansion of regulatory T cells accompany thymic impairment in children with Down syndrome. Rejuvenation Res 11:573–583.  https://doi.org/10.1089/rej.2007.0648 CrossRefPubMedGoogle Scholar
  179. Rohn TT, McCarty KL, Love JE, Head E (2014) Is apolipoprotein E4 an important risk factor for dementia in persons with Down syndrome? J Park Dis Alzheimers Dis 1(1):pii: 7Google Scholar
  180. Romano A, Cornia R, Moraschi M, Bozzao A, Chiacchiararelli L, Coppola V, Iani C, Stella G, Albertini G, Pierallini A (2016) Age-related cortical thickness reduction in non-demented Down’s syndrome subjects. J Neuroimaging Off J Am Soc Neuroimaging 26:95–102.  https://doi.org/10.1111/jon.12259 CrossRefGoogle Scholar
  181. Saab BJ, Mansuy IM (2014) Neuroepigenetics of memory formation and impairment: the role of microRNAs. Neuropharmacology 80:61–69.  https://doi.org/10.1016/j.neuropharm.2014.01.026 CrossRefPubMedGoogle Scholar
  182. Sabbagh MN, Chen K, Rogers J, Fleisher AS, Liebsack C, Bandy D, Belden C, Protas H, Thiyyagura P, Liu X, Roontiva A, Luo J, Jacobson S, Malek-Ahmadi M, Powell J, Reiman EM (2015) Florbetapir PET, FDG PET, and MRI in Down syndrome individuals with and without Alzheimer’s dementia. Alzheimers Dement J Alzheimers Assoc 11:994–1004.  https://doi.org/10.1016/j.jalz.2015.01.006 CrossRefGoogle Scholar
  183. Sailani MR, Santoni FA, Letourneau A, Borel C, Makrythanasis P, Hibaoui Y, Popadin K, Bonilla X, Guipponi M, Gehrig C, Vannier A, Carre-Pigeon F, Feki A, Nizetic D, Antonarakis SE (2015) DNA-methylation patterns in trisomy 21 using cells from monozygotic twins. PloS One 10:e0135555.  https://doi.org/10.1371/journal.pone.0135555 CrossRefPubMedPubMedCentralGoogle Scholar
  184. Sanchez-Mut JV, Heyn H, Vidal E, Moran S, Sayols S, Delgado-Morales R, Schultz MD, Ansoleaga B, Garcia-Esparcia P, Pons-Espinal M, de Lagran MM, Dopazo J, Rabano A, Avila J, Dierssen M, Lott I, Ferrer I, Ecker JR, Esteller M (2016) Human DNA methylomes of neurodegenerative diseases show common epigenomic patterns. Transl Psychiatry 6:e718.  https://doi.org/10.1038/tp.2015.214 CrossRefPubMedPubMedCentralGoogle Scholar
  185. Sanders JL, Newman AB (2013) Telomere length in epidemiology: a biomarker of ageing, age-related disease, both, or neither? Epidemiol Rev 35:112–131.  https://doi.org/10.1093/epirev/mxs008 CrossRefPubMedPubMedCentralGoogle Scholar
  186. Schoch J, Rohrer TR, Kaestner M, Abdul-Khaliq H, Gortner L, Sester U, Sester M, Schmidt T (2017) Quantitative, phenotypical, and functional characterization of cellular immunity in children and adolescents with down syndrome. J Infect Dis 215:1619–1628.  https://doi.org/10.1093/infdis/jix168 CrossRefPubMedGoogle Scholar
  187. Schupf N, Lee A, Park N, Dang L-H, Pang D, Yale A, Oh DK-T, Krinsky-McHale SJ, Jenkins EC, Luchsinger JA, Zigman WB, Silverman W, Tycko B, Kisselev S, Clark L, Lee JH (2015) Candidate genes for Alzheimer’s disease are associated with individual differences in plasma levels of beta amyloid peptides in adults with Down syndrome. Neurobiol Ageing 36:2907.e1-10.  https://doi.org/10.1016/j.neurobiolageing.2015.06.020 CrossRefGoogle Scholar
  188. Sekijima Y, Ikeda S, Tokuda T, Satoh S, Hidaka H, Hidaka E, Ishikawa M, Yanagisawa N (1998) Prevalence of dementia of Alzheimer type and apolipoprotein E phenotypes in aged patients with Down’s syndrome. Eur Neurol 39:234–237CrossRefGoogle Scholar
  189. Sethupathy P, Borel C, Gagnebin M, Grant GR, Deutsch S, Elton TS, Hatzigeorgiou AG, Antonarakis SE (2007) Human microRNA-155 on chromosome 21 differentially interacts with its polymorphic target in the AGTR1 3′ untranslated region: a mechanism for functional single-nucleotide polymorphisms related to phenotypes. Am J Hum Genet 81:405–413.  https://doi.org/10.1086/519979 CrossRefPubMedPubMedCentralGoogle Scholar
  190. Shooshtari S, Martens PJ, Burchill CA, Dik N, Naghipur S (2011) Prevalence of depression and dementia among adults with developmental disabilities in manitoba, Canada. Int J Fam Med 2011:319574.  https://doi.org/10.1155/2011/319574 CrossRefGoogle Scholar
  191. Siew W-H, Tan K-L, Babaei MA, Cheah P-S, Ling K-H (2013) MicroRNAs and intellectual disability (ID) in Down syndrome, X-linked ID, and Fragile X syndrome. Front Cell Neurosci 7:41.  https://doi.org/10.3389/fncel.2013.00041 CrossRefPubMedPubMedCentralGoogle Scholar
  192. Sifakis S, Papantoniou N, Kappou D, Antsaklis A (2012) Noninvasive prenatal diagnosis of Down syndrome: current knowledge and novel insights. J Perinat Med 40:319–327.  https://doi.org/10.1515/jpm-2011-0282 CrossRefPubMedGoogle Scholar
  193. Song C, He J, Chen J, Liu Y, Xiong F, Wang Y, Li T (2015) Effect of the one-carbon unit cycle on overall DNA methylation in children with Down’s syndrome. Mol Med Rep 12:8209–8214.  https://doi.org/10.3892/mmr.2015.4439 CrossRefPubMedGoogle Scholar
  194. Stancliffe RJ, Lakin KC, Larson SA, Engler J, Taub S, Fortune J, Bershadsky J (2012) Demographic characteristics, health conditions, and residential service use in adults with Down syndrome in 25 U.S. states. Intellect Dev Disabil 50:92–108.  https://doi.org/10.1352/1934-9556-50.2.92 CrossRefPubMedGoogle Scholar
  195. Storm W (1990) Prevalence and diagnostic significance of gliadin antibodies in children with Down syndrome. Eur J Pediatr 149:833–834CrossRefGoogle Scholar
  196. Strauss D, Eyman RK (1996) Mortality of people with mental retardation in California with and without Down syndrome, 1986–1991. Am J Ment Retard AJMR 100:643–653PubMedGoogle Scholar
  197. Strydom A, Livingston G, King M, Hassiotis A (2007) Prevalence of dementia in intellectual disability using different diagnostic criteria. Br J Psychiatry J Ment Sci 191:150–157.  https://doi.org/10.1192/bjp.bp.106.028845 CrossRefGoogle Scholar
  198. Sukenik-Halevy R, Biron-Shental T, Sharony R, Fejgin MD, Amiel A (2011) Telomeres in trisomy 21 amniocytes. Cytogenet Genome Res 135:12–18.  https://doi.org/10.1159/000329714 CrossRefPubMedGoogle Scholar
  199. Svobodová I, Korabečná M, Calda P, Břešťák M, Pazourková E, Pospíšilová Š, Krkavcová M, Novotná M, Hořínek A (2016) Differentially expressed miRNAs in trisomy 21 placentas. Prenat Diagn 36:775–784.  https://doi.org/10.1002/pd.4861 CrossRefPubMedGoogle Scholar
  200. Tan L, Yu J-T, Hu N, Tan L (2013) Non-coding RNAs in Alzheimer’s disease. Mol Neurobiol 47:382–393.  https://doi.org/10.1007/s12035-012-8359-5 CrossRefPubMedGoogle Scholar
  201. Teipel SJ, Alexander GE, Schapiro MB, Möller H-J, Rapoport SI, Hampel H (2004) Age-related cortical grey matter reductions in non-demented Down’s syndrome adults determined by MRI with voxel-based morphometry. Brain J Neurol 127:811–824.  https://doi.org/10.1093/brain/awh101 CrossRefGoogle Scholar
  202. Teller JK, Russo C, DeBusk LM, Angelini G, Zaccheo D, Dagna-Bricarelli F, Scartezzini P, Bertolini S, Mann DM, Tabaton M, Gambetti P (1996) Presence of soluble amyloid beta-peptide precedes amyloid plaque formation in Down’s syndrome. Nat Med 2:93–95CrossRefGoogle Scholar
  203. Tiano L, Littarru GP, Principi F, Orlandi M, Santoro L, Carnevali P, Gabrielli O (2005) Assessment of DNA damage in Down Syndrome patients by means of a new, optimised single cell gel electrophoresis technique. Biofactors Oxf Engl 25:187–195CrossRefGoogle Scholar
  204. Trotta MB, Serro Azul JB, Wajngarten M, Fonseca SG, Goldberg AC, Kalil JE (2011) Inflammatory and immunological parameters in adults with Down syndrome. Immun Ageing A 8:4.  https://doi.org/10.1186/1742-4933-8-4 CrossRefGoogle Scholar
  205. Tyrrell J, Cosgrave M, McCarron M, McPherson J, Calvert J, Kelly A, McLaughlin M, Gill M, Lawlor BA (2001) Dementia in people with Down’s syndrome. Int J Geriatr Psychiatry 16:1168–1174CrossRefGoogle Scholar
  206. Valenti D, Manente GA, Moro L, Marra E, Vacca RA (2011) Deficit of complex I activity in human skin fibroblasts with chromosome 21 trisomy and overproduction of reactive oxygen species by mitochondria: involvement of the cAMP/PKA signalling pathway. Biochem J 435:679–688.  https://doi.org/10.1042/BJ20101908 CrossRefPubMedGoogle Scholar
  207. Valentini D, Marcellini V, Bianchi S, Villani A, Facchini M, Donatelli I, Castrucci MR, Marasco E, Farroni C, Carsetti R (2015) Generation of switched memory B cells in response to vaccination in Down syndrome children and their siblings. Vaccine 33:6689–6696.  https://doi.org/10.1016/j.vaccine.2015.10.083 CrossRefPubMedGoogle Scholar
  208. Valentini E, Zampieri M, Malavolta M, Bacalini MG, Calabrese R, Guastafierro T, Reale A, Franceschi C, Hervonen A, Koller B, Bernhardt J, Slagboom PE, Toussaint O, Sikora E, Gonos ES, Breusing N, Grune T, Jansen E, Dollé MET, Moreno-Villanueva M, Sindlinger T, Bürkle A, Ciccarone F, Caiafa P (2016) Analysis of the machinery and intermediates of the 5hmC-mediated DNA demethylation pathway in ageing on samples from the MARK-AGE Study. Ageing 8:1896–1922.  https://doi.org/10.18632/ageing.101022 CrossRefGoogle Scholar
  209. Vaziri H, Schächter F, Uchida I, Wei L, Zhu X, Effros R, Cohen D, Harley CB (1993) Loss of telomeric DNA during ageing of normal and trisomy 21 human lymphocytes. Am J Hum Genet 52:661–667PubMedPubMedCentralGoogle Scholar
  210. Verstegen RHJ, Kusters MAA, Gemen EFA, DE Vries E (2010) Down syndrome B-lymphocyte subpopulations, intrinsic defect or decreased T-lymphocyte help. Pediatr Res 67:563–569.  https://doi.org/10.1203/PDR.0b013e3181d4ecc1 CrossRefPubMedGoogle Scholar
  211. Verstegen RHJ, Driessen GJ, Bartol SJW, van Noesel CJM, Boon L, van der Burg M, van Dongen JJM, de Vries E, van Zelm MC (2014) Defective B-cell memory in patients with Down syndrome. J Allergy Clin Immunol 134:1346–1353.e9.  https://doi.org/10.1016/j.jaci.2014.07.015 CrossRefPubMedGoogle Scholar
  212. Visser FE, Aldenkamp AP, van Huffelen AC, Kuilman M, Overweg J, van Wijk J (1997) Prospective study of the prevalence of Alzheimer-type dementia in institutionalized individuals with Down syndrome. Am J Ment Retard AJMR 101:400–412PubMedGoogle Scholar
  213. Weidner CI, Lin Q, Koch CM, Eisele L, Beier F, Ziegler P, Bauerschlag DO, Jöckel K-H, Erbel R, Mühleisen TW, Zenke M, Brümmendorf TH, Wagner W (2014) Ageing of blood can be tracked by DNA methylation changes at just three CpG sites. Genome Biol 15:R24.  https://doi.org/10.1186/gb-2014-15-2-r24 CrossRefPubMedPubMedCentralGoogle Scholar
  214. Wenger SL, Hansroth J, Shackelford AL (2014) Decreased telomere length in metaphase and interphase cells from newborns with trisomy 21. Gene 542:87.  https://doi.org/10.1016/j.gene.2014.03.019 CrossRefPubMedGoogle Scholar
  215. WHO|Dementia: a public health priority [WWW Document], 2012 WHO. http://www.who.int/mental_health/publications/dementia_report_2012/en/. Accessed 15 Nov 2017
  216. Wilcock DM (2012) Neuroinflammation in the ageing down syndrome brain; lessons from Alzheimer’s disease. Curr Gerontol Geriatr Res 2012:170276.  https://doi.org/10.1155/2012/170276 CrossRefPubMedPubMedCentralGoogle Scholar
  217. Wilcock DM, Hurban J, Helman AM, Sudduth TL, McCarty KL, Beckett TL, Ferrell JC, Murphy MP, Abner EL, Schmitt FA, Head E (2015) Down syndrome individuals with Alzheimer’s disease have a distinct neuroinflammatory phenotype compared to sporadic Alzheimer’s disease. Neurobiol Ageing 36:2468–2474.  https://doi.org/10.1016/j.neurobiolageing.2015.05.016 CrossRefGoogle Scholar
  218. Xu Y, Li W, Liu X, Ma H, Tu Z, Dai Y (2013) Analysis of microRNA expression profile by small RNA sequencing in Down syndrome fetuses. Int J Mol Med 32:1115–1125.  https://doi.org/10.3892/ijmm.2013.1499 CrossRefPubMedGoogle Scholar
  219. Yang Q, Rasmussen SA, Friedman JM (2002) Mortality associated with Down’s syndrome in the USA from 1983 to 1997: a population-based study. Lancet Lond Engl 359:1019–1025CrossRefGoogle Scholar
  220. Yin Y-Z, She Q, Zhang J, Zhang P-Z, Zhang Y, Lin J-W, Ye Y-C (2014) Placental methylation markers in normal and trisomy 21 tissues. Prenat Diagn 34:63–70.  https://doi.org/10.1002/pd.4256 CrossRefPubMedGoogle Scholar
  221. Yu X, Wang Y, Kristic J, Dong J, Chu X, Ge S, Wang H, Fang H, Gao Q, Liu D, Zhao Z, Peng H, Pucic Bakovic M, Wu L, Song M, Rudan I, Campbell H, Lauc G, Wang W (2016) Profiling IgG N-glycans as potential biomarker of chronological and biological ages: a community-based study in a Han Chinese population. Medicine (Baltimore) 95:e4112.  https://doi.org/10.1097/MD.0000000000004112 CrossRefGoogle Scholar
  222. Zana M, Szécsényi A, Czibula A, Bjelik A, Juhász A, Rimanóczy A, Szabó K, Vetró A, Szucs P, Várkonyi A, Pákáski M, Boda K, Raskó I, Janka Z, Kálmán J (2006) Age-dependent oxidative stress-induced DNA damage in Down’s lymphocytes. Biochem Biophys Res Commun 345:726–733.  https://doi.org/10.1016/j.bbrc.2006.04.167 CrossRefPubMedGoogle Scholar
  223. Zhang Y, Che M, Yuan J, Yu Y, Cao C, Qin X-Y, Cheng Y (2017) Aberrations in circulating inflammatory cytokine levels in patients with Down syndrome: a meta-analysis. Oncotarget 8:84489–84496.  https://doi.org/10.18632/oncotarget.21060 CrossRefPubMedPubMedCentralGoogle Scholar
  224. Zhao Q, Lee JH, Pang D, Temkin A, Park N, Janicki SC, Zigman WB, Silverman W, Tycko B, Schupf N (2011) Estrogen receptor-Beta variants are associated with increased risk of Alzheimer’s disease in women with down syndrome. Dement Geriatr Cogn Disord 32:241–249.  https://doi.org/10.1159/000334522 CrossRefPubMedPubMedCentralGoogle Scholar
  225. Zhao Y, Pogue AI, Lukiw WJ (2015) MicroRNA (miRNA) signaling in the human CNS in sporadic Alzheimer’s disease (AD)-novel and unique pathological features. Int J Mol Sci 16:30105–30116.  https://doi.org/10.3390/ijms161226223 CrossRefPubMedPubMedCentralGoogle Scholar
  226. Zigman WB (2013) Atypical ageing in Down syndrome. Dev Disabil Res Rev 18:51–67.  https://doi.org/10.1002/ddrr.1128 CrossRefPubMedGoogle Scholar
  227. Zigman WB, Lott IT (2007) Alzheimer’s disease in Down syndrome: neurobiology and risk. Ment Retard Dev Disabil Res Rev 13:237–246.  https://doi.org/10.1002/mrdd.20163 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Noémie Gensous
    • 1
  • Claudio Franceschi
    • 1
    • 2
    • 3
  • Stefano Salvioli
    • 1
    • 2
  • Paolo Garagnani
    • 1
    • 2
    • 4
    • 5
    • 6
    • 7
    • 8
    Email author
  • Maria Giulia Bacalini
    • 3
  1. 1.DIMES- Department of Experimental, Diagnostic and Specialty MedicineAlma Mater StudiorumBolognaItaly
  2. 2.CIG, Interdepartmental Center ‘L. Galvani’Alma Mater StudiorumBolognaItaly
  3. 3.IRCCS Istituto delle Scienze Neurologiche di BolognaBolognaItaly
  4. 4.Department of Laboratory MedicineKarolinska InstitutetStockholmSweden
  5. 5.CNR IAC “Mauro Picone”RomaItaly
  6. 6.Applied Biomedical Research CenterS. Orsola-Malpighi PolyclinicBolognaItaly
  7. 7.Institute of Molecular Genetics (IGM)-CNRUnit of BolognaBolognaItaly
  8. 8.Laboratory of Musculoskeletal Cell BiologyRizzoli Orthopaedic InstituteBolognaItaly

Personalised recommendations