Advertisement

The Immune System and Its Dysregulation with Aging

Chapter
Part of the Subcellular Biochemistry book series (SCBI, volume 91)

Abstract

Aging leads to numerous changes that affect all physiological systems of the body including the immune system, causing greater susceptibility to infectious disease and contributing to the cardiovascular, metabolic, autoimmune, and neurodegenerative diseases of aging. The immune system is itself also influenced by age-associated changes occurring in such physiological systems as the endocrine, nervous, digestive, cardio-vascular and muscle-skeletal systems. This chapter describes the multidimensional effects of aging on the most important components of the immune system. It considers the age-related changes in immune cells and molecules of innate and adaptive immunity and consequent impairments in their ability to communicate with each other and with their aged environment. The contribution of age-related dysregulation of hematopoiesis, required for continuous replenishment of immune cells throughout life, is discussed in this context, as is the developmentally-programmed phenomenon of thymic involution that limits the output of naïve T cells and markedly contributes to differences between younger and older people in the distribution of peripheral blood T-cell types. How all these changes may contribute to low-grade inflammation, sometimes dubbed “inflammaging”, is considered. Due to findings implicating elevated inflammatory immuno-mediators in age-associated chronic autoimmune and neurodegenerative processes, evidence for their possible contribution to neuroinflammation is reviewed.

Keywords

Immune system Immunosenescence Thymic involution Impaired hematopoiesis Cytomegalovirus T-cell diversity Inflammaging Neuroinflammation 

References

  1. Accardi G, Caruso C (2018) Immune-inflammatory responses in the elderly: an update. Immun Ageing 15:11.  https://doi.org/10.1186/s12979-018-0117-8 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Adema GJ (2009) Dendritic cells from bench to bedside and back. Immunol Lett 122(2):128–130.  https://doi.org/10.1016/j.imlet.2008.11.017 CrossRefPubMedGoogle Scholar
  3. Ademokun A, Wu YC, Dunn-Walters D (2010) The ageing B cell population: composition and function. Biogerontology 11(2):125–137.  https://doi.org/10.1007/s10522-009-9256-9 CrossRefPubMedGoogle Scholar
  4. Alam I, Goldeck D, Larbi A, Pawelec G (2013) Aging affects the proportions of T and B cells in a group of elderly men in a developing country – a pilot study from Pakistan. Age (Dordr) 35(5):1521–1530.  https://doi.org/10.1007/s11357-012-9455-1 CrossRefGoogle Scholar
  5. Alboni S, Maggi L (2015) Editorial: cytokines as players of neuronal plasticity and sensitivity to environment in healthy and pathological brain. Front Cell Neurosci 9:508.  https://doi.org/10.3389/fncel.2015.00508 CrossRefPubMedGoogle Scholar
  6. Appay V, Sauce D, Prelog M (2010) The role of the thymus in immunosenescence: lessons from the study of thymectomized individuals. Aging 2(2):78–81CrossRefGoogle Scholar
  7. Aspinall R, Pitts D, Lapenna A, Mitchell W (2010) Immunity in the elderly: the role of the thymus. J Comp Pathol 142(Suppl 1):S111–S115.  https://doi.org/10.1016/j.jcpa.2009.10.022 CrossRefPubMedGoogle Scholar
  8. Barrientos RM, Frank MG, Watkins LR, Maier SF (2012) Aging-related changes in neuroimmune-endocrine function: implications for hippocampal-dependent cognition. Horm Behav 62(3):219–227.  https://doi.org/10.1016/j.yhbeh.2012.02.010 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Barrientos RM, Kitt MM, Watkins LR, Maier SF (2015) Neuroinflammation in the normal aging hippocampus. Neuroscience 309:84–99.  https://doi.org/10.1016/j.neuroscience.2015.03.007 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Beerman I, Bhattacharya D, Zandi S, Sigvardsson M, Weissman IL, Bryder D, Rossi DJ (2010) Functionally distinct hematopoietic stem cells modulate hematopoietic lineage potential during aging by a mechanism of clonal expansion. Proc Natl Acad Sci U S A 107(12):5465–5470.  https://doi.org/10.1073/pnas.1000834107 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Bektas A, Schurman SH, Sen R, Ferrucci L (2017) Human T cell immunosenescence and inflammation in aging. J Leukoc Biol 102(4):977–988.  https://doi.org/10.1189/jlb.3RI0716-335R CrossRefPubMedPubMedCentralGoogle Scholar
  12. Bonilla FA, Oettgen HC (2010) Adaptive immunity. J Allergy Clin Immunol 125(2 Suppl 2):S33–S40.  https://doi.org/10.1016/j.jaci.2009.09.017 CrossRefPubMedGoogle Scholar
  13. Britt W (2008) Manifestations of human cytomegalovirus infection: proposed mechanisms of acute and chronic disease. Curr Top Microbiol Immunol 325:417–470PubMedGoogle Scholar
  14. Calvanese V, Lara E, Kahn A, Fraga MF (2009) The role of epigenetics in aging and age-related diseases. Ageing Res Rev 8(4):268–276.  https://doi.org/10.1016/j.arr.2009.03.004 CrossRefPubMedGoogle Scholar
  15. Coder B, Wang W, Wang L, Wu Z, Zhuge Q, Su DM (2017) Friend or foe: the dichotomous impact of T cells on neuro-de/re-generation during aging. Oncotarget 8(4):7116–7137.  https://doi.org/10.18632/oncotarget.12572 CrossRefPubMedGoogle Scholar
  16. Colonna-Romano G, Bulati M, Aquino A, Vitello S, Lio D, Candore G, Caruso C (2008) B cell immunosenescence in the elderly and in centenarians. Rejuvenation Res 11(2):433–439.  https://doi.org/10.1089/rej.2008.0664 CrossRefPubMedGoogle Scholar
  17. Compston JE (2002) Bone marrow and bone: a functional unit. J Endocrinol 173(3):387–394; doi: JOE04756 [pii]CrossRefGoogle Scholar
  18. Cooper MD (2010) 99th Dahlem conference on infection, inflammation and chronic inflammatory disorders: evolution of adaptive immunity in vertebrates. Clin Exp Immunol 160(1):58–61.  https://doi.org/10.1111/j.1365-2249.2010.04126.x CrossRefPubMedPubMedCentralGoogle Scholar
  19. De la Fuente M, Cruces J, Hernandez O, Ortega E (2011) Strategies to improve the functions and redox state of the immune system in aged subjects. Curr Pharm Des 17(36):3966–3993CrossRefGoogle Scholar
  20. Del Giudice G, Goronzy JJ, Grubeck-Loebenstein B, Lambert PH, Mrkvan T, Stoddard JJ, Doherty TM (2018) Fighting against a protean enemy: immunosenescence, vaccines, and healthy aging. NPJ Aging Mech Dis 4:1.  https://doi.org/10.1038/s41514-017-0020-0 CrossRefPubMedGoogle Scholar
  21. Deleidi M, Jaggle M, Rubino G (2015) Immune aging, dysmetabolism, and inflammation in neurological diseases. Front Neurosci 9:172.  https://doi.org/10.3389/fnins.2015.00172 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Della Bella S, Bierti L, Presicce P, Arienti R, Valenti M, Saresella M, Vergani C, Villa ML (2007) Peripheral blood dendritic cells and monocytes are differently regulated in the elderly. Clin Immunol 122(2):220–228.  https://doi.org/10.1016/j.clim.2006.09.012 CrossRefPubMedGoogle Scholar
  23. Derhovanessian E, Solana R, Larbi A, Pawelec G (2008) Immunity, ageing and cancer. Immun Ageing 5:11.  https://doi.org/10.1186/1742-4933-5-11 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Dewan SK, Zheng SB, Xia SJ, Bill K (2012) Senescent remodeling of the immune system and its contribution to the predisposition of the elderly to infections. Chin Med J 125(18):3325–3331PubMedGoogle Scholar
  25. Di Benedetto S, Muller L, Wenger E, Duzel S, Pawelec G (2017) Contribution of neuroinflammation and immunity to brain aging and the mitigating effects of physical and cognitive interventions. Neurosci Biobehav Rev 75:114–128.  https://doi.org/10.1016/j.neubiorev.2017.01.044 CrossRefPubMedGoogle Scholar
  26. Doran KS, Banerjee A, Disson O, Lecuit M (2013) Concepts and mechanisms: crossing host barriers. Cold Spring Harb Perspect Med 3(7):a010090.  https://doi.org/10.1101/cshperspect.a010090 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Doty KR, Guillot-Sestier MV, Town T (2015) The role of the immune system in neurodegenerative disorders: adaptive or maladaptive? Brain Res 1617:155–173.  https://doi.org/10.1016/j.brainres.2014.09.008 CrossRefPubMedGoogle Scholar
  28. Dowd JB, Aiello AE, Alley DE (2009) Socioeconomic disparities in the seroprevalence of cytomegalovirus infection in the US population: NHANES III. Epidemiol Infect 137(1):58–65.  https://doi.org/10.1017/S0950268808000551 CrossRefPubMedGoogle Scholar
  29. Dykstra B, de Haan G (2008) Hematopoietic stem cell aging and self-renewal. Cell Tissue Res 331(1):91–101.  https://doi.org/10.1007/s00441-007-0529-9 CrossRefPubMedGoogle Scholar
  30. Fagnoni FF, Vescovini R, Passeri G, Bologna G, Pedrazzoni M, Lavagetto G, Casti A, Franceschi C, Passeri M, Sansoni P (2000) Shortage of circulating naive CD8(+) T cells provides new insights on immunodeficiency in aging. Blood 95(9):2860–2868PubMedGoogle Scholar
  31. Fernandez-Morera JL, Calvanese V, Rodriguez-Rodero S, Menendez-Torre E, Fraga MF (2010) Epigenetic regulation of the immune system in health and disease. Tissue Antigens 76(6):431–439.  https://doi.org/10.1111/j.1399-0039.2010.01587.x CrossRefPubMedGoogle Scholar
  32. Ferrando-Martinez S, Ruiz-Mateos E, Hernandez A, Gutierrez E, Rodriguez-Mendez Mdel M, Ordonez A, Leal M (2011) Age-related deregulation of naive T cell homeostasis in elderly humans. Age 33(2):197–207.  https://doi.org/10.1007/s11357-010-9170-8 CrossRefPubMedGoogle Scholar
  33. Franceschi C, Bonafe M, Valensin S, Olivieri F, De Luca M, Ottaviani E, De Benedictis G (2000) Inflamm-aging. An evolutionary perspective on immunosenescence. Ann N Y Acad Sci 908:244–254CrossRefGoogle Scholar
  34. Franceschi C, Capri M, Monti D, Giunta S, Olivieri F, Sevini F, Panourgia MP, Invidia L, Celani L, Scurti M, Cevenini E, Castellani GC, Salvioli S (2007) Inflammaging and anti-inflammaging: a systemic perspective on aging and longevity emerged from studies in humans. Mech Ageing Dev 128(1):92–105.  https://doi.org/10.1016/j.mad.2006.11.016 CrossRefPubMedGoogle Scholar
  35. Franceschi C, Garagnani P, Vitale G, Capri M, Salvioli S (2017a) Inflammaging and ‘Garb-aging’. Trends Endocrinol Metab 28(3):199–212.  https://doi.org/10.1016/j.tem.2016.09.005 CrossRefPubMedGoogle Scholar
  36. Franceschi C, Salvioli S, Garagnani P, de Eguileor M, Monti D, Capri M (2017b) Immunobiography and the heterogeneity of immune responses in the elderly: a focus on Inflammaging and trained immunity. Front Immunol 8:982.  https://doi.org/10.3389/fimmu.2017.00982 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Fulop T, Larbi A, Douziech N, Fortin C, Guerard KP, Lesur O, Khalil A, Dupuis G (2004) Signal transduction and functional changes in neutrophils with aging. Aging Cell 3(4):217–226.  https://doi.org/10.1111/j.1474-9728.2004.00110.x CrossRefPubMedGoogle Scholar
  38. Fulop T, Larbi A, Dupuis G, Le Page A, Frost EH, Cohen AA, Witkowski JM, Franceschi C (2017) Immunosenescence and Inflamm-aging as two sides of the same coin: friends or foes? Front Immunol 8:1960.  https://doi.org/10.3389/fimmu.2017.01960 CrossRefPubMedGoogle Scholar
  39. Geiger H, de Haan G, Florian MC (2013) The ageing haematopoietic stem cell compartment. Nat Rev Immunol 13(5):376–389.  https://doi.org/10.1038/nri3433 CrossRefPubMedGoogle Scholar
  40. Gemechu JM, Bentivoglio M (2012) T cell recruitment in the brain during normal aging. Front Cell Neurosci 6:38.  https://doi.org/10.3389/fncel.2012.00038 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Giunta B, Fernandez F, Nikolic WV, Obregon D, Rrapo E, Town T, Tan J (2008) Inflammaging as a prodrome to Alzheimer’s disease. J Neuroinflammation 5:51.  https://doi.org/10.1186/1742-2094-5-51 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Goldeck D, Witkowski JM, Fulop T, Pawelec G (2016) Peripheral immune signatures in Alzheimer disease. Curr Alzheimer Res 13(7):739–749CrossRefGoogle Scholar
  43. Gonzalo S (2010) Epigenetic alterations in aging. J Appl Physiol 109(2):586–597.  https://doi.org/10.1152/japplphysiol.00238.2010 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Grabowska W, Sikora E, Bielak-Zmijewska A (2017) Sirtuins, a promising target in slowing down the ageing process. Biogerontology 18(4):447–476.  https://doi.org/10.1007/s10522-017-9685-9 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Gruver AL, Hudson LL, Sempowski GD (2007) Immunosenescence of ageing. J Pathol 211(2):144–156.  https://doi.org/10.1002/path.2104 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Gui J, Mustachio LM, Su DM, Craig RW (2012) Thymus size and age-related thymic involution: early programming, sexual dimorphism, progenitors and stroma. Aging Dis 3(3):280–290PubMedPubMedCentralGoogle Scholar
  47. Hansel A, Hong S, Camara RJ, von Kanel R (2010) Inflammation as a psychophysiological biomarker in chronic psychosocial stress. Neurosci Biobehav Rev 35(1):115–121.  https://doi.org/10.1016/j.neubiorev.2009.12.012 CrossRefPubMedGoogle Scholar
  48. Harrison NA (2016) Brain structures implicated in inflammation-associated depression. Curr Top Behav Neurosci 31:221–248.  https://doi.org/10.1007/7854_2016_30 CrossRefGoogle Scholar
  49. Hawkley LC, Cacioppo JT (2004) Stress and the aging immune system. Brain Behav Immun 18(2):114–119CrossRefGoogle Scholar
  50. Hearps AC, Martin GE, Angelovich TA, Cheng WJ, Maisa A, Landay AL, Jaworowski A, Crowe SM (2012) Aging is associated with chronic innate immune activation and dysregulation of monocyte phenotype and function. Aging Cell 11(5):867–875.  https://doi.org/10.1111/j.1474-9726.2012.00851.x CrossRefPubMedGoogle Scholar
  51. Heffner KL (2011) Neuroendocrine effects of stress on immunity in the elderly: implications for inflammatory disease. Immunol Allergy Clin N Am 31(1):95–108.  https://doi.org/10.1016/j.iac.2010.09.005 CrossRefGoogle Scholar
  52. Holder A, Mella S, Palmer DB, Aspinall R, Catchpole B (2016) An age-associated decline in thymic output differs in dog breeds according to their longevity. PLoS One 11(11):e0165968.  https://doi.org/10.1371/journal.pone.0165968 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Jackson SE, Redeker A, Arens R, van Baarle D, van den Berg SPH, Benedict CA, Cicin-Sain L, Hill AB, Wills MR (2017) CMV immune evasion and manipulation of the immune system with aging. GeroScience 39(3):273–291.  https://doi.org/10.1007/s11357-017-9986-6 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Jenny NS (2012) Inflammation in aging: cause, effect, or both? Discov Med 13(73):451–460PubMedGoogle Scholar
  55. Karrer U, Sierro S, Wagner M, Oxenius A, Hengel H, Koszinowski UH, Phillips RE, Klenerman P (2003) Memory inflation: continuous accumulation of antiviral CD8+ T cells over time. J Immunol 170(4):2022–2029CrossRefGoogle Scholar
  56. Keller R (1993) The macrophage response to infectious agents: mechanisms of macrophage activation and tumour cell killing. Res Immunol 144(4):271–273; discussion 294–278CrossRefGoogle Scholar
  57. Kim J, Kim AR, Shin EC (2015) Cytomegalovirus infection and memory T cell inflation. Immune Netw 15(4):186–190.  https://doi.org/10.4110/in.2015.15.4.186 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Lanier LL, Sun JC (2009) Do the terms innate and adaptive immunity create conceptual barriers? Nat Rev Immunol 9(5):302–303.  https://doi.org/10.1038/nri2547 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Larbi A, Franceschi C, Mazzatti D, Solana R, Wikby A, Pawelec G (2008) Aging of the immune system as a prognostic factor for human longevity. Physiology 23:64–74.  https://doi.org/10.1152/physiol.00040.2007 CrossRefPubMedGoogle Scholar
  60. Larbi A, Pawelec G, Wong SC, Goldeck D, Tai JJ, Fulop T (2011) Impact of age on T cell signaling: a general defect or specific alterations? Ageing Res Rev 10(3):370–378.  https://doi.org/10.1016/j.arr.2010.09.008 CrossRefPubMedGoogle Scholar
  61. Liang Z, Zhao Y, Ruan L, Zhu L, Jin K, Zhuge Q, Su DM, Zhao Y (2017) Impact of aging immune system on neurodegeneration and potential immunotherapies. Prog Neurobiol 157:2–28.  https://doi.org/10.1016/j.pneurobio.2017.07.006 CrossRefPubMedGoogle Scholar
  62. Litman GW, Rast JP, Fugmann SD (2010) The origins of vertebrate adaptive immunity. Nat Rev Immunol 10(8):543–553.  https://doi.org/10.1038/nri2807 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Liu K, Catalfamo M, Li Y, Henkart PA, Weng NP (2002) IL-15 mimics T cell receptor crosslinking in the induction of cellular proliferation, gene expression, and cytotoxicity in CD8+ memory T cells. Proc Natl Acad Sci U S A 99(9):6192–6197.  https://doi.org/10.1073/pnas.092675799 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Lynch HE, Goldberg GL, Chidgey A, Van den Brink MR, Boyd R, Sempowski GD (2009) Thymic involution and immune reconstitution. Trends Immunol 30(7):366–373.  https://doi.org/10.1016/j.it.2009.04.003 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Masters AR, Haynes L, Su DM, Palmer DB (2017) Immune senescence: significance of the stromal microenvironment. Clin Exp Immunol 187(1):6–15.  https://doi.org/10.1111/cei.12851 CrossRefPubMedGoogle Scholar
  66. Medzhitov R, Janeway C Jr (2000) Innate immunity. N Engl J Med 343(5):338–344.  https://doi.org/10.1056/NEJM200008033430506 CrossRefPubMedGoogle Scholar
  67. Menza M, Dobkin RD, Marin H, Mark MH, Gara M, Bienfait K, Dicke A, Kusnekov A (2010) The role of inflammatory cytokines in cognition and other non-motor symptoms of Parkinson’s disease. Psychosomatics 51(6):474–479.  https://doi.org/10.1176/appi.psy.51.6.474 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Michaud M, Balardy L, Moulis G, Gaudin C, Peyrot C, Vellas B, Cesari M, Nourhashemi F (2013) Proinflammatory cytokines, aging, and age-related diseases. J Am Med Dir Assoc 14(12):877–882.  https://doi.org/10.1016/j.jamda.2013.05.009 CrossRefPubMedGoogle Scholar
  69. Moro-Garcia MA, Alonso-Arias R, Lopez-Vazquez A, Suarez-Garcia FM, Solano-Jaurrieta JJ, Baltar J, Lopez-Larrea C (2012) Relationship between functional ability in older people, immune system status, and intensity of response to CMV. Age (Dordr) 34(2):479–495.  https://doi.org/10.1007/s11357-011-9240-6 CrossRefGoogle Scholar
  70. Müller L, Pawelec G (2014) Aging and immunity – impact of behavioral intervention. Brain Behav Immun 39:8–22.  https://doi.org/10.1016/j.bbi.2013.11.015 CrossRefPubMedGoogle Scholar
  71. Müller L, Pawelec G (2015) As we age: does slippage of quality control in the immune system lead to collateral damage? Ageing Res Rev 23(Pt A):116–123.  https://doi.org/10.1016/j.arr.2015.01.005 CrossRefPubMedGoogle Scholar
  72. Müller L, Fülop T, Pawelec G (2013a) Immunosenescence in vertebrates and invertebrates. Immun Ageing 10(1):12.  https://doi.org/10.1186/1742-4933-10-12 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Müller L, Pawelec G, Derhovanessian E (2013b) The immune system during aging. In: Calder P, Yaqoob P (eds) Diet, immunity and inflammation. Woodhead Publishing, Oxford, pp 631–651CrossRefGoogle Scholar
  74. Müller L, Hamprecht K, Pawelec G (2017) The role of CMV in “immunosenescence”. In: Bueno V, Lord JM, Jackson TA (eds) The ageing immune system and health. Springer, Cham, pp 53–68.  https://doi.org/10.1007/978-3-319-43365-3_4 CrossRefGoogle Scholar
  75. Naylor K, Li G, Vallejo AN, Lee WW, Koetz K, Bryl E, Witkowski J, Fulbright J, Weyand CM, Goronzy JJ (2005) The influence of age on T cell generation and TCR diversity. J Immunol 174(11):7446–7452CrossRefGoogle Scholar
  76. Nikolich-Zugich J (2018) The twilight of immunity: emerging concepts in aging of the immune system. Nat Immunol 19(1):10–19.  https://doi.org/10.1038/s41590-017-0006-x CrossRefPubMedGoogle Scholar
  77. Nikolich-Zugich J, van Lier RAW (2017) Cytomegalovirus (CMV) research in immune senescence comes of age: overview of the 6th International Workshop on CMV and Immunosenescence. GeroScience 39(3):245–249.  https://doi.org/10.1007/s11357-017-9984-8 CrossRefPubMedPubMedCentralGoogle Scholar
  78. Nikolich-Zugich J, Goodrum F, Knox K, Smithey MJ (2017) Known unknowns: how might the persistent herpesvirome shape immunity and aging? Curr Opin Immunol 48:23–30.  https://doi.org/10.1016/j.coi.2017.07.011 CrossRefPubMedPubMedCentralGoogle Scholar
  79. Norden DM, Muccigrosso MM, Godbout JP (2015) Microglial priming and enhanced reactivity to secondary insult in aging, and traumatic CNS injury, and neurodegenerative disease. Neuropharmacology 96(Pt A):29–41.  https://doi.org/10.1016/j.neuropharm.2014.10.028 CrossRefPubMedGoogle Scholar
  80. Oishi Y, Manabe I (2016) Macrophages in age-related chronic inflammatory diseases. NPJ Aging Mech Dis 2:16018.  https://doi.org/10.1038/npjamd.2016.18 CrossRefPubMedPubMedCentralGoogle Scholar
  81. Ouyang Q, Wagner WM, Voehringer D, Wikby A, Klatt T, Walter S, Muller CA, Pircher H, Pawelec G (2003) Age-associated accumulation of CMV-specific CD8+ T cells expressing the inhibitory killer cell lectin-like receptor G1 (KLRG1). Exp Gerontol 38(8):911–920CrossRefGoogle Scholar
  82. Ownby RL (2010) Neuroinflammation and cognitive aging. Curr Psychiatry Rep 12(1):39–45.  https://doi.org/10.1007/s11920-009-0082-1 CrossRefPubMedGoogle Scholar
  83. Pangrazzi L, Meryk A, Naismith E, Koziel R, Lair J, Krismer M, Trieb K, Grubeck-Loebenstein B (2017) “Inflamm-aging” influences immune cell survival factors in human bone marrow. Eur J Immunol 47(3):481–492.  https://doi.org/10.1002/eji.201646570 CrossRefPubMedPubMedCentralGoogle Scholar
  84. Pawelec G (2012) Hallmarks of human “immunosenescence”: adaptation or dysregulation? Immun Ageing 9(1):15.  https://doi.org/10.1186/1742-4933-9-15 CrossRefPubMedPubMedCentralGoogle Scholar
  85. Pawelec G (2017a) Age and immunity: what is “immunosenescence”? Exp Gerontol 105:4–9.  https://doi.org/10.1016/j.exger.2017.10.024 CrossRefPubMedGoogle Scholar
  86. Pawelec G (2017b) Does the human immune system ever really become “senescent”? F1000Research 6:1323.  https://doi.org/10.12688/f1000research.11297.1 CrossRefGoogle Scholar
  87. Pawelec G, Derhovanessian E (2011) Role of CMV in immune senescence. Virus Res 157(2):175–179.  https://doi.org/10.1016/j.virusres.2010.09.010 CrossRefPubMedGoogle Scholar
  88. Pawelec G, Derhovanessian E, Larbi A, Strindhall J, Wikby A (2009) Cytomegalovirus and human immunosenescence. Rev Med Virol 19(1):47–56.  https://doi.org/10.1002/rmv.598 CrossRefPubMedGoogle Scholar
  89. Pawelec G, McElhaney JE, Aiello AE, Derhovanessian E (2012) The impact of CMV infection on survival in older humans. Curr Opin Immunol 24(4):507–511.  https://doi.org/10.1016/j.coi.2012.04.002 CrossRefPubMedGoogle Scholar
  90. Pereira BI, Akbar AN (2016) Convergence of innate and adaptive immunity during human aging. Front Immunol 7:445.  https://doi.org/10.3389/fimmu.2016.00445 CrossRefPubMedPubMedCentralGoogle Scholar
  91. Pizza V, Agresta A, D’Acunto CW, Festa M, Capasso A (2011) Neuroinflammation and ageing: current theories and an overview of the data. Rev Recent Clin Trials 6(3):189–203CrossRefGoogle Scholar
  92. Rymkiewicz PD, Heng YX, Vasudev A, Larbi A (2012) The immune system in the aging human. Immunol Res 53(1–3):235–250.  https://doi.org/10.1007/s12026-012-8289-3 CrossRefPubMedGoogle Scholar
  93. Sauce D, Appay V (2011) Altered thymic activity in early life: how does it affect the immune system in young adults? Curr Opin Immunol 23(4):543–548.  https://doi.org/10.1016/j.coi.2011.05.001 CrossRefPubMedGoogle Scholar
  94. Savva GM, Pachnio A, Kaul B, Morgan K, Huppert FA, Brayne C, Moss PA, Medical Research Council Cognitive F, Ageing S (2013) Cytomegalovirus infection is associated with increased mortality in the older population. Aging Cell 12(3):381–387.  https://doi.org/10.1111/acel.12059 CrossRefPubMedGoogle Scholar
  95. Scheinert RB, Asokan A, Rani A, Kumar A, Foster TC, Ormerod BK (2015) Some hormone, cytokine and chemokine levels that change across lifespan vary by cognitive status in male Fischer 344 rats. Brain Behav Immun 49:216–232.  https://doi.org/10.1016/j.bbi.2015.06.005 CrossRefPubMedPubMedCentralGoogle Scholar
  96. Sempowski GD, Hale LP, Sundy JS, Massey JM, Koup RA, Douek DC, Patel DD, Haynes BF (2000) Leukemia inhibitory factor, oncostatin M, IL-6, and stem cell factor mRNA expression in human thymus increases with age and is associated with thymic atrophy. J Immunol 164(4):2180–2187CrossRefGoogle Scholar
  97. Shanley DP, Aw D, Manley NR, Palmer DB (2009) An evolutionary perspective on the mechanisms of immunosenescence. Trends Immunol 30(7):374–381.  https://doi.org/10.1016/j.it.2009.05.001 CrossRefPubMedGoogle Scholar
  98. Shaw AC, Joshi S, Greenwood H, Panda A, Lord JM (2010) Aging of the innate immune system. Curr Opin Immunol 22(4):507–513.  https://doi.org/10.1016/j.coi.2010.05.003 CrossRefPubMedPubMedCentralGoogle Scholar
  99. Smith LK, White CW 3rd, Villeda SA (2018) The systemic environment: at the interface of aging and adult neurogenesis. Cell Tissue Res 371(1):105–113.  https://doi.org/10.1007/s00441-017-2715-8 CrossRefPubMedGoogle Scholar
  100. Solana R, Pawelec G, Tarazona R (2006) Aging and innate immunity. Immunity 24(5):491–494.  https://doi.org/10.1016/j.immuni.2006.05.003 CrossRefPubMedGoogle Scholar
  101. Soysal P, Stubbs B, Lucato P, Luchini C, Solmi M, Peluso R, Sergi G, Isik AT, Manzato E, Maggi S, Maggio M, Prina AM, Cosco TD, Wu YT, Veronese N (2016) Inflammation and frailty in the elderly: a systematic review and meta-analysis. Ageing Res Rev 31:1–8.  https://doi.org/10.1016/j.arr.2016.08.006 CrossRefPubMedGoogle Scholar
  102. Spyridopoulos I, Martin-Ruiz C, Hilkens C, Yadegarfar ME, Isaacs J, Jagger C, Kirkwood T, von Zglinicki T (2015) CMV seropositivity and T-cell senescence predict increased cardiovascular mortality in octogenarians: results from the Newcastle 85+ study. Aging Cell.  https://doi.org/10.1111/acel.12430
  103. Stowe RP, Kozlova EV, Yetman DL, Walling DM, Goodwin JS, Glaser R (2007) Chronic herpesvirus reactivation occurs in aging. Exp Gerontol 42(6):563–570.  https://doi.org/10.1016/j.exger.2007.01.005 CrossRefPubMedPubMedCentralGoogle Scholar
  104. Vallejo AN (2007) Immune remodeling: lessons from repertoire alterations during chronological aging and in immune-mediated disease. Trends Mol Med 13(3):94–102.  https://doi.org/10.1016/j.molmed.2007.01.005 CrossRefPubMedGoogle Scholar
  105. von Bernhardi R, Tichauer JE, Eugenin J (2010) Aging-dependent changes of microglial cells and their relevance for neurodegenerative disorders. J Neurochem 112(5):1099–1114.  https://doi.org/10.1111/j.1471-4159.2009.06537.x CrossRefGoogle Scholar
  106. Warren LA, Rossi DJ (2009) Stem cells and aging in the hematopoietic system. Mech Ageing Dev 130(1–2):46–53. doi: S0047-6374(08)00091-2 [pii].  https://doi.org/10.71016/j.mad.2008.03.010 CrossRefPubMedGoogle Scholar
  107. Weiskopf D, Weinberger B, Grubeck-Loebenstein B (2009) The aging of the immune system. Transpl Int 22(11):1041–1050.  https://doi.org/10.1111/j.1432-2277.2009.00927.x CrossRefPubMedGoogle Scholar
  108. Weltevrede M, Eilers R, de Melker HE, van Baarle D (2016) Cytomegalovirus persistence and T-cell immunosenescence in people aged fifty and older: a systematic review. Exp Gerontol 77:87–95.  https://doi.org/10.1016/j.exger.2016.02.005 CrossRefPubMedGoogle Scholar
  109. Wikby A, Ferguson F, Forsey R, Thompson J, Strindhall J, Lofgren S, Nilsson BO, Ernerudh J, Pawelec G, Johansson B (2005) An immune risk phenotype, cognitive impairment, and survival in very late life: impact of allostatic load in Swedish octogenarian and nonagenarian humans. J Gerontol A Biol Sci Med Sci 60(5):556–565CrossRefGoogle Scholar
  110. Xu W, Larbi A (2017) Immunity and inflammation: from Jekyll to Hyde. Exp Gerontol 107:98–101.  https://doi.org/10.1016/j.exger.2017.11.018 CrossRefPubMedGoogle Scholar
  111. Ye SM, Johnson RW (1999) Increased interleukin-6 expression by microglia from brain of aged mice. J Neuroimmunol 93(1–2):139–148CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Max Planck Institute for Human DevelopmentBerlinGermany
  2. 2.Center for Medical ResearchUniversity of TübingenTübingenGermany
  3. 3.Health Sciences North Research InstituteSudburyCanada

Personalised recommendations