Advertisement

Skin Changes During Ageing

  • Frédéric Bonté
  • Dorothée Girard
  • Jean-Christophe Archambault
  • Alexis DesmoulièreEmail author
Chapter
Part of the Subcellular Biochemistry book series (SCBI, volume 91)

Abstract

The skin provides the primary protection for the body against external injuries and is essential in the maintenance of general homeostasis. During ageing, resident cells become senescent and the extracellular matrix, mainly in the dermis, is progressively damaged affecting the normal organization of the skin and its capacity for repair. In parallel, extrinsic factors such as ultraviolet irradiation, pollution, and intrinsic factors such as diabetes or vascular disease can further accelerate this phenomenon. Indeed, numerous mechanisms are involved in age-induced degradation of the skin and these also relate to non-healing or chronic wounds in the elderly. In particular, the generation of reactive oxygen species seems to play a major role in age-related skin modifications. Certainly, targeting both the hormonal status of the skin or its surface nutrition can slow down age-induced degradation of the skin and improve healing of skin damage in the elderly. Skin care regimens that prevent radiation and pollution damage, and reinforce the skin surface and its microbiota are among the different approaches able to minimize the effects of ageing on the skin.

Keywords

Wound healing Myofibroblast Extracellular matrix Oestrogen Reactive oxygen species Pollution Microbiota 

Abbreviations

ADSC

adipose tissue-derived stem cell

AGEs

advanced glycation end-products

AMPK

adenosine monophosphate-activated protein kinase

AP-1

activator protein-1

CR

caloric restriction

CTGF

connective tissue growth factor

DEJ

dermal-epidermal junction

ECM

extracellular matrix

HSD

hydroxysteroid dehydrogenase

IL

interleukin

IR

infrared radiation

MB

methylene blue

MMP

matrix metalloproteinase

MSC

mesenchymal stem cell

NT

neurotrophin

PDGF

platelet-derived growth factor

ROS

reactive oxygen species

SOD

superoxide dismutase

TGF-β1

transforming growth factor-β1

TIMPs

tissue inhibitors of metalloproteinases

TNF-α

tumour necrosis factor-α

UV

ultraviolet

References

  1. Aarabi S, Bhatt KA, Shi Y et al (2007) Mechanical load initiates hypertrophic scar formation through decreased cellular apoptosis. FASEB J 21(12):3250–3261PubMedCrossRefGoogle Scholar
  2. Alexander CM, Kasza I, Yen CL et al (2015) Dermal white adipose tissue: a new component of the thermogenic response. J Lipid Res 56(11):2061–2069PubMedPubMedCentralCrossRefGoogle Scholar
  3. Aunin E, Broadley D, Ahmed MI et al (2017) Exploring a role for regulatory miRNAs in wound healing during ageing: involvement of miR-200c in wound repair. Sci Rep 7(1):3257.  https://doi.org/10.1038/s41598-017-03331-6 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Belkaid Y, Segre JA (2014) Dialogue between skin microbiota and immunity. Science 346(6212):954–959PubMedCrossRefGoogle Scholar
  5. Bergler-Czop B, Miziotek B (2017) Aging-how do we know? Acta Dermatoveneol Croat 25(1):50–56Google Scholar
  6. Binic I, Lazarevic V, Ljubenovic M et al (2013) Skin ageing: natural weapons and strategies. Evid Based Complement Alternat Med 2013:1–10.  https://doi.org/10.1155/2013/827248 CrossRefGoogle Scholar
  7. Birch-Machin MA, Bowman A (2016) Oxidative stress and ageing. Br J Dermatol 175(Suppl 2):26–29PubMedCrossRefGoogle Scholar
  8. Blessing W, McAllen R, McKinley M (2016) Control of the cutaneous circulation by the central nervous system. Compr Physiol 6(3):1161–1197PubMedCrossRefGoogle Scholar
  9. Blume-Peytavi U, Kottner J, Sterry W et al (2016) Age-associated skin conditions and diseases: current perspectives and future options. Gerontologist 56(Suppl 2):S230–S242PubMedCrossRefGoogle Scholar
  10. Bonté F, Beauchef G (2013) Antioxidative phytochemicals and skin care. In: Kuang H-X (ed) Phytochemicals: occurrence, nature, health effects and antioxidant properties. Nova Science Publishers, Hauppauge, pp 189–217Google Scholar
  11. Bonté F, Simmler C, Lobstein A et al (2011) Action of an extract of Vanda coerulea on the senescence of skin fibroblasts. Ann Pharm Fr 69(3):177–181PubMedCrossRefGoogle Scholar
  12. Bosset S, Barré P, Chalon A et al (2002) Skin ageing: clinical and histopathologic study of permanent and reducible wrinkles. Eur J Dermatol 12(3):247–252PubMedGoogle Scholar
  13. Bosset S, Bonnet-Duquennoy M, Barre P et al (2003) Decreased expression of keratinocyte beta1 integrins in chronically sun-exposed skin in vivo. Br J Dermatol 148(4):770–778PubMedCrossRefGoogle Scholar
  14. Brunt EG, Burgess JG (2018) The promise of marine molecules as cosmetic active ingredients. Int J Cosmet Sci 40(1):1–165PubMedCrossRefGoogle Scholar
  15. Butzelaar L, Schooneman DP, Soykan EA et al (2016) Inhibited early immunologic response is associated with hypertrophic scarring. Exp Dermatol 25(10):797–804PubMedCrossRefGoogle Scholar
  16. Byrd AL, Belkaid Y, Segre JA (2018) The human skin microbiome. Nat Rev Microbiol 16(3):143–155PubMedCrossRefGoogle Scholar
  17. Callaghan DJ, Singh B, Reddy KK (2017) Skin aging in individuals with skin of color. In: Vashi NA, Maibach HI (eds) Dermatoanthropology of ethnic skin and hair. Springer, Basel, pp 389–403CrossRefGoogle Scholar
  18. Carver W, Goldsmith EC (2013) Regulation of tissue fibrosis by the biomechanical environment. Biomed Res Int 2013:101979.  https://doi.org/10.1155/2013/101979 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Chen YE, Fischbach MA, Belkaid Y (2018) Skin microbial-host interactions. Nature 553(7689):427–436PubMedPubMedCentralCrossRefGoogle Scholar
  20. Chien AL, Suh J, Cesar SSA et al (2016) Pigmentation in African American skin decreases with skin aging. J Am Acad Dermatol 75(4):782–787PubMedCrossRefGoogle Scholar
  21. Childs BG, Gluscevic M, Baker DJ et al (2017) Senescent cells: an emerging target for diseases of ageing. Nat Rev Drug Discov 16(10):718–735PubMedPubMedCentralCrossRefGoogle Scholar
  22. Chiquet M, Gelman L, Lutz R et al (2009) From mechanotransduction to extracellular matrix gene expression in fibroblasts. Biochim Biophys Acta 1793(5):911–920PubMedCrossRefGoogle Scholar
  23. Choi W, Yin L, Smuda C et al (2017) Molecular and histological characterization of age spots. Exp Dermatol 26(3):242–248PubMedPubMedCentralCrossRefGoogle Scholar
  24. Clayton K, Vallejo AF, Davies J et al (2017) Langerhans cells-programmed by the epidermis. Front Immunol 8:1676.  https://doi.org/10.3389/fimmu.2017.01676 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Corsetti G, Romano C, Pasini E et al (2017) Diet enrichment with a specific essential free amino acid mixture improves healing of undressed wounds in aged rats. Exp Gerontol 96:138–145PubMedCrossRefGoogle Scholar
  26. Cubison TCS, Pape SA, Parkhouse N (2006) Evidence for the link between healing time and the development of hypertrophic scars (HTS) in paediatric burns due to scald. Burns 32(8):992–999PubMedCrossRefGoogle Scholar
  27. Damodarasamy M, Johnson RS, Bentov I et al (2014) Hyaluronan enhances wound repair and increases collagen III in aged dermal wounds. Wound Rep Reg 22(4):521–526CrossRefGoogle Scholar
  28. Darby IA, Zakuan N, Billet F et al (2016) The myofibroblast, a key cell in normal and pathological tissue repair. Cell Mol Life Sci 73(6):1145–1157PubMedCrossRefGoogle Scholar
  29. Desmoulière A, Geinoz A, Gabbiani F et al (1993) Transforming growth factor-beta 1 induces alpha-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts. J Cell Biol 122(1):103–111PubMedCrossRefGoogle Scholar
  30. Desmoulière A, Redard M, Darby I et al (1995) Apoptosis mediates the decrease in cellularity during the transition between granulation tissue and scar. Am J Pathol 146(1):56–66PubMedPubMedCentralGoogle Scholar
  31. Dezest M, Le Bechec M, Chavatte L et al (2017) Oxidative damage and impairment of protein quality control system in keratinocytes exposed to a volatile organic compounds cocktail. Sci Rep 7(1):107707.  https://doi.org/10.1038/s41598-017-11088-1 CrossRefGoogle Scholar
  32. Ding A, Yang Y, Zhao Z et al (2017) Indoor PM2.5 exposure affects skin aging manifestation in a Chinese population. Sci Rep 7(1):15329.  https://doi.org/10.1038/s41598-017-15295-8 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Draelos ZD (ed) (2010) Cosmetic dermatology. Products and procedures. Wiley Blackwell, OxfordGoogle Scholar
  34. Dumas M, Langle S, Noblesse E et al (2005) Histological changes in the histology of Japanese skin with aging. Int J Cos Sci 27(1):47–50CrossRefGoogle Scholar
  35. Eckhart L, Lippens S, Tschachler E et al (2013) Cell death by cornification. Biochim Biophys Acta 1833(12):3471–3480PubMedCrossRefGoogle Scholar
  36. Elewa R, Makrantonaki E, Zouboulis CC (2013) Neuropeptides and skin aging. Horm Mol Biol Clin Investig 16(1):29–33PubMedGoogle Scholar
  37. Elliott HR, Tillin T, McArdle WL et al (2014) Differences in smoking associated DNA methylation patterns in South Asians and Europeans. Clin Epigenetics 6(1):4.  https://doi.org/10.1186/1868-7083-6-4 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Fahs F, Bi X, Yu FS et al (2015) New insights into microRNAs in skin wound healing. IUBMB Life 67(12):889–896PubMedCrossRefGoogle Scholar
  39. Falcone D, Richters RJH, Uzunbajakava NE et al (2017) Sensitive skin and the influence of female hormone fluctuations: results from a cross-sectional digital survey in the Dutch population. Eur J Dermatol 27(1):42–48PubMedGoogle Scholar
  40. Fisher G, Rittié L (2017) Restoration of the basement membrane after wounding: a hallmark of young human skin altered with aging. J Cell Commun Signal 12:401–411.  https://doi.org/10.1007/s12079-017-0417-3 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Flament F, Gautier B, Benize AM et al (2017) Seasonally-induced alterations of some facial signs in Caucasian women and their changes induced by a daily application of a photo-protective product. Int J Cosmet Sci 39(6):664–675PubMedCrossRefGoogle Scholar
  42. Fournet M, Bonté F, Desmoulière A (2018) Glycation damage: a possible hub for major pathophysiological disorders and aging. Aging Dis 9(5):880–900Google Scholar
  43. Froese AR, Shimbori C, Bellaye PS et al (2016) Stretch-induced activation of transforming growth factor-β1 in pulmonary fibrosis. Am J Respir Crit Care Med 194(1):84–96PubMedCrossRefGoogle Scholar
  44. Fujiwara T, Dohi T, Maan ZN et al (2017) Age-associated intracellular superoxide dismutase deficiency potentiates dermal fibroblast dysfunction during wound healing. Exp Dermatol 4.  https://doi.org/10.1111/exd.13404
  45. Ganceviciene R, Liakou AI, Theodoridis A et al (2012) Skin anti-aging strategies. Dermatoendocrinol 4(3):308–319PubMedPubMedCentralCrossRefGoogle Scholar
  46. Gosain A, DiPietro LA (2004) Aging and wound healing. World J Surg 28(3):321–326PubMedCrossRefGoogle Scholar
  47. Gouin O, L’Herondelle K, Lebonvallet N et al (2017) TRPV1 and TRPA1 in cutaneous neurogenic and chronic inflammation: pro-inflammatory response induced by their activation and their sensitization. Protein Cell 8(9):644–661PubMedPubMedCentralCrossRefGoogle Scholar
  48. Gould L, Abadir P, Brem H et al (2015) Chronic wound repair and healing in older adults: current status and future research. J Am Geriatr Soc 63(3):427–438PubMedPubMedCentralCrossRefGoogle Scholar
  49. Gragnani A, Mac Cornick S, Chominski V et al (2014) Review of major theories of skin aging. Adv Aging Res 3(4):265–284CrossRefGoogle Scholar
  50. Greaves AJ (2016) The effects of narrowbands of visible light upon some skin disorders: a review. Int J Cosmet Sci 38(4):325–345PubMedCrossRefGoogle Scholar
  51. Grice EA, Kong HH, Renaud G et al (2008) A diversity profile of the human skin microbiota. Genome Res 18(7):1043–1050PubMedPubMedCentralCrossRefGoogle Scholar
  52. Guéniche A, Philippe D, Bastien P et al (2009) Probiotics for photoprotection. Dermatoendocrinology 1(5):275–279CrossRefGoogle Scholar
  53. Guéniche A, Benyacoub J, Philippe D et al (2010) Lactobacillus paracasei CNCM I-2116 (ST11) inhibits substance P-induced skin inflammation and accelerates skin barrier function recovery in vitro. Eur J Dermatol 20(6):731–737PubMedGoogle Scholar
  54. Hamer MA, Pardo LM, Jacobs LC et al (2017) Lifestyle and physiological factors associated with facial wrinkling in men and women. J Invest Dermatol 137(8):1692–1699PubMedCrossRefGoogle Scholar
  55. Herman J, Rost-Roszkowska M, Skotnicka-Graca U (2013) Skin care during the menopause period: noninvasive procedures for beauty studies. Postepy Dermatol Alergol 30(6):388–395PubMedPubMedCentralCrossRefGoogle Scholar
  56. Heusèle C, Cantin H, Bonté F (2010) Lips and lipsticks. In: Draelos ZD (ed) Cosmetic dermatology: products and procedures. Wiley Blackwell, Oxford, pp 184–190CrossRefGoogle Scholar
  57. Jain M, Khadilkar N, De Sousa A (2017) Burn-related factors affecting anxiety, depression and self-esteem in burn patients: an exploratory study. Ann Burns Fire Disasters 30(1):30–34PubMedPubMedCentralGoogle Scholar
  58. Jamal BT, Bokhari A, Aljahdali B (2017) The effect of smoking in facial aging among females in Saudi Arabia. Clin Res Dermatol Open Access 4(2):1–4CrossRefGoogle Scholar
  59. Keyes BE, Liu S, Asare A et al (2016) Impaired epidermal to dendritic T cell signaling slows wound repair in aged skin. Cell 167(5):1323–1338PubMedPubMedCentralCrossRefGoogle Scholar
  60. Kiritsi D, Nyström A (2017) The role of TGFβ in wound healing pathologies. Mech Ageing and Dev 172:51–58.  https://doi.org/10.1016/j.mad.2017.11.004 CrossRefGoogle Scholar
  61. Klar AS, Zimoch J, Biedermann T (2017) Skin tissue engineering: application of adipose-derived stem cells. Biomed Res Int 2017:9747010–9747012.  https://doi.org/10.1155/2017/9747010 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Klein J, Permana PA, Owecki M et al (2007) What are subcutaneous adipocytes really good for? Exp Dermatol 16(1):45–70PubMedCrossRefGoogle Scholar
  63. Korać RR, Khambholja KM (2011) Potential of herbs in skin protection from ultraviolet radiation. Pharmacogn Rev 5(10):164–173PubMedPubMedCentralCrossRefGoogle Scholar
  64. Krutmann J, Bouloc A, Sore G et al (2017) The skin aging exposome. J Dermatol Sci 85(3):152–161PubMedCrossRefGoogle Scholar
  65. Kwon SH, Gurtner GC (2017) Is early inflammation good or bad? Linking early immune changes to hypertrophic scarring. Exp Dermatol 26(2):133–134PubMedCrossRefGoogle Scholar
  66. Langton AK, Halai P, Griffiths CE et al (2016) The impact of instrinsic ageing on the protein composition of the dermal-epidermal junction. Mech Ageing Dev 156:14–16PubMedCrossRefGoogle Scholar
  67. Law MH, Medland SE, Zhu G et al (2017) Genome-wide association shows that pigmentation genes play a role in skin aging. J Invest Dermatol 137(9):1887–1894PubMedCrossRefGoogle Scholar
  68. Le Varlet B, Chaudagne C, Saunois A et al (1998) Age-related functional and structural changes in human dermo-epidermal junction components. J Investig Dermatol Symp Proc 3(2):172–179PubMedCrossRefGoogle Scholar
  69. Lee E, Kim S, Lee J et al (2014) Ethnic differences in objective and subjective skin irritation response: an international study. Skin Res Technol 20(3):265–269PubMedCrossRefGoogle Scholar
  70. Longaker MT, Rohrich RJ, Greenberg L et al (2014) A randomized controlled trial of the embrace advanced scar therapy device to reduce incisional scar formation. Plast Reconstr Surg 134(3):536–546PubMedPubMedCentralCrossRefGoogle Scholar
  71. Luebberding S, Krueger N, Kerscher M (2014) Age-related changes in male skin: quantitative evaluation of one hundred and fifty male subjects. Skin Pharmacol Physiol 27(1):9–17PubMedCrossRefGoogle Scholar
  72. Lugo LM, Lei P, Andreadis ST (2011) Vascularization of the dermal support enhances wound re-epithelialization by in situ delivery of epidermal keratinocytes. Tissue Eng Part A 17(5–6):665–675PubMedCrossRefGoogle Scholar
  73. Maksimovic S, Nakatani M, Baba Y et al (2014) Epidermal Merkel cells are mechanosensory cells that tune mammalian touch receptors. Nature 509(7502):617–621PubMedPubMedCentralCrossRefGoogle Scholar
  74. Marconi A, Terracina M, Fila C et al (2003) Expression and function of neurotrophins and their receptors in cultured human keratinocytes. J Invest Dermatol 121(6):1515–1521PubMedCrossRefGoogle Scholar
  75. Martires KJ, Fu P, Polster AM et al (2009) Factors that affect skin aging: a cohort-based survey on twins. Arch Dermatol 145(12):1375–1379PubMedCrossRefGoogle Scholar
  76. Matsui MS, Pelle E, Dong K et al (2016) Biological rhythms in the skin. Int J Mol Sci 17(6).  https://doi.org/10.3390/ij.ms1700801
  77. Moor AN, Tummel E, Prather JL et al (2014) Consequences of age on ischemic wound healing in rats: altered antioxidant activity and delayed wound closure. Age (Dordr) 36(2):733–748CrossRefGoogle Scholar
  78. Mouret S, Baudouin C, Charveron M et al (2006) Cyclobutane pyrimidine dimers are predominant DNA lesions in whole human skin exposed to UVA radiation. Proc Natl Acad Sci U S A 103(37):13765–13770PubMedPubMedCentralCrossRefGoogle Scholar
  79. Naik S, Bouladoux N, Linehan JL et al (2015) Commensal-dendritic-cell interaction specifies a unique protective skin immune signature. Nature 520(7545):104–108PubMedPubMedCentralCrossRefGoogle Scholar
  80. Naik S, Larsen SB, Gomez NC et al (2017) Inflammatory memory sensitizes skin epithelial stem cells to tissue damage. Nature 550(7677):475–480PubMedPubMedCentralCrossRefGoogle Scholar
  81. Nakashima Y, Ohta S, Wolf A (2017) Blue light-induced oxidative stress in live skin. Free Radic Biol Med 108:300–310PubMedCrossRefGoogle Scholar
  82. Ngo JK, Davis KJ (2007) Importance of the lon protease in mitochondrial maintenance and the significance of declining lon in aging. Ann N Y Acad Sci 1119:78–87PubMedCrossRefGoogle Scholar
  83. Nishimura K, Blume P, Ohgi S et al (2007) Effect of different frequencies of tensile strain on human dermal fibroblast proliferation and survival. Wound Rep Reg 15(5):646–656CrossRefGoogle Scholar
  84. Noblesse E, Nizard C, Cario-André M et al (2006) Skin ultrastructure in senile lentigo. Skin Pharmacol Physiol 19(2):95–100PubMedCrossRefGoogle Scholar
  85. Pakshir P, Hinz B (2018) The big five in fibrosis: macrophages, myofibroblasts, matrix, mechanics, and miscommunication. Matrix Biol 68–69:81–93.  https://doi.org/10.1016/j.matbio.2018.01.019 CrossRefPubMedGoogle Scholar
  86. Petropoulos I, Friguet B (2006) Maintenance of proteins and aging: the role of oxidized protein repair. Free Radic Res 40(12):1269–1276PubMedCrossRefGoogle Scholar
  87. Piérard GE, Hermanns-Lê T, Gaspard U et al (2014) Asymmetric facial skin viscoelasticity during climacteric aging. Clin Cosmet Investig Dermatol 7:111–118PubMedPubMedCentralCrossRefGoogle Scholar
  88. Pilkington SM, Ogden S, Eaton LH et al (2018) Lower levels of interleukin-1β gene expression are associated with impaired Langerhans’ cell migration in aged human skin. Immunology 153(1):60–70PubMedCrossRefGoogle Scholar
  89. Pincelli C (2017) p75 Neurotrophin receptor in the skin: beyond its neurotrophic function. Front Med (Lausanne) 4:22.  https://doi.org/10.3389/fmed.2017.00022 CrossRefPubMedPubMedCentralGoogle Scholar
  90. Pincelli C, Bonté F (2004) The ‘beauty’ of skin neurobiology. J Cosmet Dermatol 2(3–4):195–198Google Scholar
  91. Prescott SL, Larcombe DL, Logan AC et al (2017) The skin microbiome: impact of modern environments on skin ecology, barrier integrity, and systemic immune programming. World Allergy Organ J 10(1):29.  https://doi.org/10.1186/s40413-017-0160-5 CrossRefPubMedPubMedCentralGoogle Scholar
  92. Puri P, Nandar SK, Kathuria S et al (2017) Effects of air pollution on the skin: a review. Indian J Dermatol Venereol Leprol 83(4):415–423PubMedCrossRefGoogle Scholar
  93. Quan T, Fisher GJ (2015) Role of age-associated alterations of the dermal extracellular matrix microenvironment in human skin aging: a mini-review. Gerontology 61(5):427–434PubMedPubMedCentralCrossRefGoogle Scholar
  94. Regazetti C, Sormani L, Debayle D et al (2018) Melanocytes sense blue light and regulate pigmentation through opsine3. J Invest Dermatol 138(1):171–178CrossRefGoogle Scholar
  95. Rezvani HR, Ali N, Serrano-Sanchez M et al (2011) Loss of epidermal hypoxia-inducible factor-1α accelerates epidermal aging and affects re-epithelialization in human and mouse. J Cell Sci 124(Pt24):4172–4183PubMedCrossRefGoogle Scholar
  96. Rinnerthaler M, Bischof J, Streubel MK et al (2015) Oxidative stress in aging human skin. Biomol Ther 5(2):545–589Google Scholar
  97. Ritschka B, Storer M, Mas A et al (2017) The senescence-associated secretory phenotype induces cellular plasticity and tissue regeneration. Genes Dev 31(2):172–183PubMedPubMedCentralCrossRefGoogle Scholar
  98. Rittié L, Farr EA, Orringer JS et al (2016) Reduced cell cohesiveness of outgrowths from eccrine sweat glands delays wound closure in elderly skin. Aging Cell 15:842–852PubMedPubMedCentralCrossRefGoogle Scholar
  99. Rocquet C, Bonté F (2002) Molecular aspects of skin aging: recent data. Acta Dermatoven APA 11(3):71–94Google Scholar
  100. Roosterman D, Goerge T, Schneider SW et al (2006) Neuronal control of skin function: the skin as a neuroimmunoendocrine organ. Physiol Rev 86(4):1309–1379PubMedCrossRefGoogle Scholar
  101. Sarkar R, Ranjan R, Garg S et al (2016) Periorbital hyperpigmentation: a comprehensive review. J Clin Aesthet Dermatol 9(1):49–55PubMedPubMedCentralGoogle Scholar
  102. Schneider H, Mühle C, Pacho F (2007) Biological function of laminin-5 and pathogenic impact of its deficiency. Eur J Cell Biol 86(11–12):701–717PubMedCrossRefGoogle Scholar
  103. Sgonc R, Gruber J (2013) Age-related aspects of cutaneous wound healing: a mini-review. Gerontology 59(2):159–164PubMedCrossRefGoogle Scholar
  104. Shibagaki N, Suda W, Clavaud C et al (2017) Aging-related changes in the diversity of women’s skin microbiomes associated with oral bacteria. Sci Rep 7(1):10567.  https://doi.org/10.1038/s41598-017-10834-9 CrossRefPubMedPubMedCentralGoogle Scholar
  105. Singh SK, Baker R, Sikkink SK et al (2017) E-cadherin mediates ultraviolet radiation- and calcium-induced melanin transfer in human skin cells. Exp Dermatol 26(11):1125–1133PubMedCrossRefGoogle Scholar
  106. Skandalis K, Spirova M, Gaitanis G et al (2011) Drug induces bullous pemphigoid in diabetes mellitus patients receiving dipeptidyl peptidase-IV inhibitors plus metformin. J Eur Acad Dermatol Venereol 26(2):249–253PubMedCrossRefGoogle Scholar
  107. Skoczyńska A, Budzisz E, Trznadel-Grodzka E et al (2017) Melanin and lipofuscin as hallmarks of skin aging. Postepy Dermatol Alergol 34(2):97–103PubMedPubMedCentralCrossRefGoogle Scholar
  108. Stahley SN, Bartle EI, Atkinson CE et al (2016) Molecular organization of the desmosome as revealed by direct stochastic optical reconstruction microscopy. J Cell Sci 129(15):2897–2904PubMedPubMedCentralCrossRefGoogle Scholar
  109. Thornton MJ (2013) Estrogens and aging skin. Dermatoendocrinology 5(2):264–270CrossRefGoogle Scholar
  110. Tiganescu A, Walker EA, Hardy RS et al (2011) Localization, age- and site-dependent expression, and regulation of 11β-hydroxysteroid dehydrogenase type 1 in skin. J Invest Dermatol 131(1):30–36PubMedCrossRefGoogle Scholar
  111. Tiganescu A, Tahrani AA, Morgan SA et al (2013) 11β-Hydroxysteroid dehydrogenase blockade prevents age-induced skin structure and function defects. J Clin Invest 123(7):3051–3060PubMedPubMedCentralCrossRefGoogle Scholar
  112. Tobin DJ (2017) Introduction to skin aging. J Tissue Viability 26(1):37–46PubMedCrossRefGoogle Scholar
  113. Tsuruta D, Hashimoto T, Hamill KJ et al (2011) Hemidesmosomes and focal contact proteins: functions and cross-talk in keratinocytes, bullous diseases and wound healing. J Dermatol Sci 62(1):1–7PubMedPubMedCentralGoogle Scholar
  114. Two AM, Nakatsuji T, Kotol PF et al (2016) The cutaneous microbiome and aspects of skin antimicrobial defense system resist acute treatment with topical skin cleansers. J Invest Dermatol 136(10):1950–1954PubMedCrossRefGoogle Scholar
  115. Vaiserman AM, Lushchak OV, Koliada AK (2016) Anti-aging pharmacology: promises and pitfalls. Ageing Res Rev 31:9–35PubMedCrossRefGoogle Scholar
  116. Vashi NA, de Castro Maymone MB, Kundu RV (2016) Aging differences in ethnic skin. J Clin Aesthet Dermatol 9(1):31–38PubMedPubMedCentralGoogle Scholar
  117. Verdier-Sévrain S, Bonté F (2007) Skin hydration: a review on its molecular mechanisms. J Cosmetic Dermatol 6(2):75–82CrossRefGoogle Scholar
  118. Verdier-Sévrain S, Bonté F, Gilchrest B (2006) Biology of estrogens in skin: implications for skin aging. Exp Dermatol 15(2):83–94PubMedCrossRefGoogle Scholar
  119. Vierkötter A, Schikowski T, Ranft U et al (2010) Airborne particle exposure and extrinsic skin aging. J Invest Dermatol 130(12):2719–2726PubMedCrossRefGoogle Scholar
  120. Voegeli R, Rawlings AV, Seroul P et al (2015) A novel continuous colour mapping approach for visualization of facial skin hydration and transepidermal water loss for four ethnic groups. Int J Cosmet Sci 37(6):595–605PubMedCrossRefGoogle Scholar
  121. Warrick E, Duval C, Nouveau S et al (2017) Morphological and molecular characterization of actinic lentigos reveals alterations of the dermal extracellular matrix. Br J Dermatol 177(6):1619–1632PubMedCrossRefGoogle Scholar
  122. Watt FM, Fujiwara H (2011) Cell-extracellular matrix interactions in normal and diseased skin. Cold Spring Harb Perspect Biol 3(4).  https://doi.org/10.1101/cshperspect.a005124
  123. Weiland D, Brachvogel B, Horning-Do HT et al (2018) Imbalance of mitochondrial respiratory chain complexes in the epidermis induces severe skin inflammation. J Invest Dermatol 138(1):132–140PubMedCrossRefGoogle Scholar
  124. Wilkinson HN, Hardman MJ (2017) The role of estrogen in cutaneous ageing and repair. Maturitas 103:60–64PubMedCrossRefGoogle Scholar
  125. Wong VW, Akaishi S, Longaker MT et al (2011a) Pushing back: wound mechanotransduction in repair and regeneration. J Invest Dermatol 131(11):2186–2196PubMedCrossRefGoogle Scholar
  126. Wong VW, Paterno J, Sorkin M et al (2011b) Mechanical force prolongs acute inflammation via T-cell-dependent pathways during scar formation. FASEB J 25(12):4498–4510PubMedCrossRefGoogle Scholar
  127. Wong VW, Rustad KC, Akaishi S et al (2011c) Focal adhesion kinase links mechanical force to skin fibrosis via inflammatory signaling. Nat Med 18(1):148–152PubMedPubMedCentralCrossRefGoogle Scholar
  128. Wong R, Geyer S, Weninger W et al (2016) The dynamic anatomy and patterning of skin. Exp Dermatol 25(2):92–98PubMedCrossRefGoogle Scholar
  129. Wu CX, Liu ZF (2018) Proteomic profiling of sweat exosome suggests its involvement in skin immunity. J Invest Dermatol 138(1):89–97PubMedCrossRefGoogle Scholar
  130. Yagmur C, Akaishi S, Ogawa R, Guneren E (2010) Mechanical receptor-related mechanisms in scar management: a review and hypothesis. Plast Reconstr Surg 126(2):426–434PubMedCrossRefGoogle Scholar
  131. Yannas IV, Tzeranis DS, So PTC (2017) Regeneration of injured skin and peripheral nerves requires control of wound contraction, not scar formation. Wound Repair Regen 25(2):177–191PubMedPubMedCentralCrossRefGoogle Scholar
  132. Zegarska B, Pietkun K, Giemza-Kucharska P et al (2017) Changes of Langerhans cells during skin ageing. Postepy Dermatol Alergol 34(3):260–267PubMedPubMedCentralCrossRefGoogle Scholar
  133. Zhang C, Zhen YZ, Lin YJ et al (2014) KNDC1 knockdown protects human umbilical vein endothelial cells from senescence. Mol Med Rep 10(1):82–88PubMedPubMedCentralCrossRefGoogle Scholar
  134. Zhang J, Hou W, Feng S et al (2017) Classification of facial wrinkles among Chinese women. J Biomed Res 31(2):108–115PubMedPubMedCentralGoogle Scholar
  135. Zhao P, Sui BD, Liu N et al (2017) Anti-aging pharmacology in cutaneous wound healing: effects of metformin, resveratrol, and rapamycin by local application. Aging Cell 16(5):1083–1093PubMedPubMedCentralCrossRefGoogle Scholar
  136. Zimmerman A, Bai L, Ginty DD (2014) The gentle touch receptors of mammalian skin. Science 346(6212):950–954PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Frédéric Bonté
    • 1
  • Dorothée Girard
    • 2
    • 3
  • Jean-Christophe Archambault
    • 1
  • Alexis Desmoulière
    • 2
    Email author
  1. 1.LVMH RechercheSaint Jean de BrayeFrance
  2. 2.Faculties of Medicine and Pharmacy, Department of PhysiologyUniversity of Limoges, Myelin Maintenance and Peripheral Neuropathies (EA 6309)LimogesFrance
  3. 3.Institut de Recherche Biomédicale des Armées, INSERM UMRS-MD 1197Centre de Transfusion Sanguine des ArméesClamartFrance

Personalised recommendations