Advertisement

Abstract

Geometric objects on maps are representations of real phenomena in the geographical space. A single phenomenon may have multiple representations reflecting its different perspectives at the same or different scales on maps. Usually, an object or a group of objects in the geographic space has two types of “multiple representations” on maps. The former is that the object or the group of objects is expressed by different cartographers using different symbols at the same scale on maps, i.e. multi-cartographers’ representations or horizontal representation. The latter is that the object or the group of objects is observed at different distances and therefore expressed at different scales on maps, i.e. multi-scale representations or perpendicular representations.

References

  1. Ai T.H., Li J.Z., 2010. A DEM generalization by minor valley branch detection and grid filling, ISPRS Journal of Photogrammetry and Remote Sensing, 65(2): 198–207CrossRefGoogle Scholar
  2. Barrault M. Regnauld N. Duchene C. et al. 2001. Integrating multi-agent, object-oriented and algorithmic techniques for improved automated map generalization. In Proceedings of the 20th International Cartographic Conference, Beijing, China, pp. 2110–2116.Google Scholar
  3. BjǾrke J. 1996. Framework for entroy-based map evaluation. Cartography and Geographic Information Systems, 23(2), pp.78–95.CrossRefGoogle Scholar
  4. Boffet A., Serra S.R., 2001. Identification of spatial structures within urban blocks for town characterization, the Proceedings of the 20th International Cartographic Conference, Beijing, China.Google Scholar
  5. Burghardt D., Purves R., and Edwards A., 2004, Techniques for on-the-fly generalization of thematic point data using hierarchical data structures. In the Proceedings of the GIS Research UK 12th Annual Conference, Norwich, UK.Google Scholar
  6. Buttenfield B.P., 1986. Digital definitions of scale-dependent structure, Auto-Carto1986, Vol.1: 497–506.Google Scholar
  7. Christophe S., Ruas A., 2002. Detecting building alignment for generalization purpose. The Proceedings of the 10th International Symposium on Spatial Data Handling, Ottawa, Canada.Google Scholar
  8. De Berg M., Bose P., Cheong O. and Morin P., 2004, On simplifying dot maps. Computational Geometry, 27(1): 43–62.CrossRefGoogle Scholar
  9. Douglas D.H., Peucker T.K., 1973. Algorithms for the reduction of the number of points required to represent a line or its caricature, The Canadian Cartographer, 10(2): 112–122.CrossRefGoogle Scholar
  10. Duchêne C. Bard S. and Barillot X. 2003. Quantitative and qualitative description of building orientation. in The 5th ICA workshop on progress in automated map generalization, Paris, France.Google Scholar
  11. Galanda M., and Weibel R. 2002. An agent-based framework for polygonal subdivision generalization. In Proceedings of Spatial Data Handling 2002, Ottawa, Canada. (CD-ROM).CrossRefGoogle Scholar
  12. Geospatial Revolution Project., 2010, The Pennsylvania State University. Retrieved from: http://geospatialrevolution.psu.edu/ Accessed: March 8, 2018.Google Scholar
  13. Gore A, 1998, The Digital Earth: Understanding our planet in the 21st Century. Al Gore’s speech at California Science Center, Los Angeles, California, on January 31, 1998. Retrieved from: http://www.isde5.org/al_gore_speech.htm Accessed: December 24, 2016.
  14. Goyal R K. 2000. Similarity assessment for cardinal directions between extended spatial objects. PhD thesis, The University of MaineGoogle Scholar
  15. Guilbert E., 2013. Multi-level representation of terrain features on a contour map, Geoinformatica, 17(2): 301–324.CrossRefGoogle Scholar
  16. Guo Q.S., 1998, Classification and formal description of the knowledge in automated map generalization, Journal of the Surveying and Mapping University of PLA, 15(3): 199–203.Google Scholar
  17. Guo R.Z., 1997. Spatial analysis. Wuhan: Press of Wuhan University of Science and Technology. (in Chinese)Google Scholar
  18. Gϋlgen F., Gökgöz T., 2011. A block-based selection method for road network generalization, International Journal of Digital Earth, 4(2): 133–153.CrossRefGoogle Scholar
  19. Karen K. 2008. Encyclopedia of Geographic Information Science, SAGE, p146–147Google Scholar
  20. Langan C., and Poicker T., 1986, Integration of name selection and name placement. in the Proceedings of the 2nd International Symposium on Spatial Data Handling, pp. 50–64.Google Scholar
  21. Li Z.L., Huang P.Z., 2002. Quantitative measures for spatial information of maps. International Journal of Geographical Information Systems, 16(7): 699–709.CrossRefGoogle Scholar
  22. Li Z.L., Openshaw S., 1992. Algorithms for objective generalization of line features based on the natural principle. International Journal of Geographical Information Systems, 6(5): 373–389.CrossRefGoogle Scholar
  23. Li Z.L., Su B., 1996. Algebraic models for feature displacement in the generalization of digital map data using morphological techniques, Cartographica, 32(3): 39–56.CrossRefGoogle Scholar
  24. Li Z.L., Yan H.W., Ai T.H., Chen J., 2004. Automated building generalization based on urban morphology and gestalt theory. International Journal of Geographical Information Science, 18(5):513–534.CrossRefGoogle Scholar
  25. Monmonier M., 1983. Raster-mode area generalization for land use and land cover maps, Cartographica, 20(4): 65–91.CrossRefGoogle Scholar
  26. Müller J C., Wang Z.S., 1992. Area-patch Generalisation: A Competitive Approach, The Cartographic Journal, 29(2), pp.137–144.CrossRefGoogle Scholar
  27. Mustiere S., 2005. Cartographic generalization of road in a local and adaptive approach: a knowledge acquisition problem. International Journal of Geographical Information Science, 19(8–9): 937–956.CrossRefGoogle Scholar
  28. Neumann J. 1994. The topological information content of a map: an attempt at a rehabilitation of information theory in cartography. Cartographica, 31(1): 26–34.CrossRefGoogle Scholar
  29. Papadias D. and Sellis T. 1994. The qualitative representation of spatial knowledge in two dimensional space. Very Large Database Journal, 3(4): 479–516.CrossRefGoogle Scholar
  30. Peter B., Weibel R., 1999. Using vector and raster-based techniques in categorical map generalization, the Third ICA Workshop on Progress in Automated Map Generalization, Ottawa, 12–14 August, 1999.Google Scholar
  31. Rainsford D., Mackness W., 2002. Template matching in support of generalization of rural buildings. The Proceedings of 10th International Symposium on Spatial Data Handling. Ottawa, Canada.Google Scholar
  32. Regnauld N., 2001. Contextual building typification in automated map generalization. Algorithmica, 30(2): 312–333.CrossRefGoogle Scholar
  33. Saalfeld A., 1999. Topologically consistent line simplification with the Douglas-Peucker Algorithm, CGIS 1999, 26(1): 7–18.Google Scholar
  34. Su B., Li Z.L., 1995. An algebraic basis for digital generalization of area-patches based on morphological techniques, The Cartographic Journal, 32(2): 148–153.CrossRefGoogle Scholar
  35. Su B., Li Z.L., Lodwick G., Muller J.C., 1997. Algebraic models for the aggregation of area features based on morphological operators, International Journal of Geographical Information Systems, 11(3): 233–246.CrossRefGoogle Scholar
  36. Sukhov V., 1967. Information capacity of map entropy. Geodesy and Aerophotography, 10(4): 212–215.Google Scholar
  37. Sukhov V., 1970. Application of information theory in generalization of map contents. International Yearbook of Cartography, Vol.10: 41–47.Google Scholar
  38. Tarboton D.G., 1996. Fractal river networks, Horton’s laws and Tokunaga cyclicity, Journal of Hydrology, 187: 105–117.CrossRefGoogle Scholar
  39. Thomson R.C., Richardson D.E., 1999. The “good continuation” principles of perceptual organization applied to the generalization of road networks. The Proceedings of ICA 1999, Ottawa, Canada.Google Scholar
  40. Tobler W.R., 1970. A computer movie simulating urban growth in the Detroit region. Economic Geography, 46: 234–240.CrossRefGoogle Scholar
  41. Van Kreveld M., Van Oostrum R., Snoeyink J., 1995. Efficient settlement selection for interactive display. The Proceedings of Auto Carto 12, Bethesda, Md. pp.287–296.Google Scholar
  42. van Oosterom P., Schenkelaars V., 1995. The development of an interactive multi-scale GIS, International Journal of Geographical Information Systems, 9(5): 489–507CrossRefGoogle Scholar
  43. Visvalingam M., Williamson P.J, 1995. Simplification and generalization of large scale data for roads, Cartography and Geographic Information Science, 22(4), 3–15.CrossRefGoogle Scholar
  44. Yan H.W., Chu Y.D., Li Z.L., Guo R.Z., 2006. A quantitative description model for directional relations based on direction groups, Geoinformatica, 10(2):177–195.CrossRefGoogle Scholar
  45. Yan H.W., Li J., 2014. Spatial similarity relations in multi-scale map spaces. Springer International Publishing Switzerland.Google Scholar
  46. Yan H.W., Wang J.Y., 2005, A Voronoi-based generic algorithm for point cluster generalization, Journal of Image and Graphics,10(5): 633–636.Google Scholar
  47. Yan H.W., Weibel R., 2008. An algorithm for point cluster generalization based on the Voronoi diagram, Computers & GeoSciences. 34(8): 939–954CrossRefGoogle Scholar
  48. Zhan F., Mark D.M., 1993. Conflict resolution in map generalization: a cognitive study, Auto-Carto 1993, Vol.13: 406–413.Google Scholar
  49. Zhang G., Tulip J., 1990. An algorithm for the avoidance of sliver polygons and clusters of points in spatial overlay. The Proceedings of the 4th International Symposium on Spatial Data Handling, Zurich, Switerland.Google Scholar
  50. Zhou Q., Li Z.L., 2014. Use of artificial neural networks for selective omission in updating road networks, The Cartographic Journal, 51(1): 38–51.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Haowen Yan
    • 1
  1. 1.Faculty of GeomaticsLanzhou Jiaotong UniversityLanzhouChina

Personalised recommendations