Advertisement

Modeling Cardiomyopathies with iPSCs

  • Jean-Sébastien HulotEmail author
Chapter
Part of the Current Human Cell Research and Applications book series (CHCRA)

Abstract

Cardiomyopathies are disorders with primary defect of the cardiac muscle, typically presenting in a familial context and associated with mutations in major determinants of the electrical or contractile properties of cardiomyocytes. This chapter reviews the main advances in the physiopathological and pharmacological understanding of cardiomyopathies using iPSCs.

Keywords

Cardiomyopathy Heart failure Arrhythmias Sudden death Electrophysiology Contractility 

References

  1. 1.
    Report of the WHO/ISFC task force on the definition and classification of cardiomyopathies. Br Heart J. 1980;44:672–3.Google Scholar
  2. 2.
    Elliott P, et al. Classification of the cardiomyopathies: a position statement from the European Society Of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur Heart J. 2008;29:270–6.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Chen IY, Matsa E, Wu JC. Induced pluripotent stem cells: at the heart of cardiovascular precision medicine. Nat Rev Cardiol. 2016;13:333–49.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Jeziorowska D, Korniat A, Salem JE, Fish K, Hulot JS. Generating patient-specific induced pluripotent stem cells-derived cardiomyocytes for the treatment of cardiac diseases. Expert Opin Biol Ther. 2015;15:1399–409.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Matsa E, Ahrens JH, Wu JC. Human induced pluripotent stem cells as a platform for personalized and precision cardiovascular medicine. Physiol Rev. 2016;96:1093–126.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Shi Y, Inoue H, Wu JC, Yamanaka S. Induced pluripotent stem cell technology: a decade of progress. Nat Rev Drug Discov. 2017;16:115–30.PubMedCrossRefGoogle Scholar
  7. 7.
    Kattman SJ, Huber TL, Keller GM. Multipotent flk-1+ cardiovascular progenitor cells give rise to the cardiomyocyte, endothelial, and vascular smooth muscle lineages. Dev Cell. 2006;11:723–32.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Kouskoff V, Lacaud G, Schwantz S, Fehling HJ, Keller G. Sequential development of hematopoietic and cardiac mesoderm during embryonic stem cell differentiation. Proc Natl Acad Sci U S A. 2005;102:13170–5.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Burridge PW, Holmstrom A, Wu JC. Chemically defined culture and cardiomyocyte differentiation of human pluripotent stem cells. Curr Protoc Hum Genet. 2015;87:21.3.1–15.CrossRefGoogle Scholar
  10. 10.
    Burridge PW, et al. Chemically defined generation of human cardiomyocytes. Nat Methods. 2014;11:855–60.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Jeziorowska D, et al. Differential sarcomere and electrophysiological maturation of human iPSC-derived cardiac myocytes in monolayer vs. aggregation-based differentiation protocols. Int J Mol Sci. 2017;18:E1173.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Dubois NC, et al. SIRPA is a specific cell-surface marker for isolating cardiomyocytes derived from human pluripotent stem cells. Nat Biotechnol. 2011;29:1011–8.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Karakikes I, et al. Small molecule-mediated directed differentiation of human embryonic stem cells toward ventricular cardiomyocytes. Stem Cells Transl Med. 2014;3:18–31.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Mazzotta S, Neves C, Bonner RJ, Bernardo AS, Docherty K, Hoppler S. Distinctive roles of canonical and noncanonical Wnt signaling in human embryonic cardiomyocyte development. Stem Cell Reports. 2016;7:764–76.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Ma D, et al. Characterization of a novel KCNQ1 mutation for type 1 long QT syndrome and assessment of the therapeutic potential of a novel IKs activator using patient-specific induced pluripotent stem cell-derived cardiomyocytes. Stem Cell Res Ther. 2015;6:39.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Moretti A, et al. Patient-specific induced pluripotent stem-cell models for long-QT syndrome. N Engl J Med. 2010;363:1397–409.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Sala L, et al. A new hERG allosteric modulator rescues genetic and drug-induced long-QT syndrome phenotypes in cardiomyocytes from isogenic pairs of patient induced pluripotent stem cells. EMBO Mol Med. 2016;8:1065–81.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Wang Y, et al. Genome editing of isogenic human induced pluripotent stem cells recapitulates long QT phenotype for drug testing. J Am Coll Cardiol. 2014b;64:451–9.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Bellin M, et al. Isogenic human pluripotent stem cell pairs reveal the role of a KCNH2 mutation in long-QT syndrome. EMBO J. 2013;32:3161–75.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Caballero R, et al. Tbx20 controls the expression of the KCNH2 gene and of hERG channels. Proc Natl Acad Sci U S A. 2017;114:E416–25.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Duncan G, Firth K, George V, Hoang MD, Staniforth A, Smith G, Denning C. Drug-mediated shortening of action potentials in LQTS2 human induced pluripotent stem cell-derived cardiomyocytes. Stem Cells Dev. 2017;26(23):1695–705.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Itzhaki I, et al. Modelling the long QT syndrome with induced pluripotent stem cells. Nature. 2011;471:225–9.PubMedCrossRefGoogle Scholar
  23. 23.
    Jouni M, et al. Toward personalized medicine: using cardiomyocytes differentiated from urine-derived pluripotent stem cells to recapitulate electrophysiological characteristics of type 2 long QT syndrome. J Am Heart Assoc. 2015;4:e002159.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Lahti AL, et al. Model for long QT syndrome type 2 using human iPS cells demonstrates arrhythmogenic characteristics in cell culture. Dis Model Mech. 2012;5:220–30.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Liu QN, Trudeau MC. Eag domains regulate LQT mutant hERG channels in human induced pluripotent stem cell-derived cardiomyocytes. PLoS One. 2015;10:e0123951.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Matsa E, Rajamohan D, Dick E, Young L, Mellor I, Staniforth A, Denning C. Drug evaluation in cardiomyocytes derived from human induced pluripotent stem cells carrying a long QT syndrome type 2 mutation. Eur Heart J. 2011;32:952–62.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Fatima A, et al. The disease-specific phenotype in cardiomyocytes derived from induced pluripotent stem cells of two long QT syndrome type 3 patients. PLoS One. 2013;8:e83005.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Ma D, et al. Modeling type 3 long QT syndrome with cardiomyocytes derived from patient-specific induced pluripotent stem cells. Int J Cardiol. 2013b;168:5277–86.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Malan D, et al. Human iPS cell model of type 3 long QT syndrome recapitulates drug-based phenotype correction. Basic Res Cardiol. 2016;111:14.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Paci M, Passini E, Severi S, Hyttinen J, Rodriguez B. Phenotypic variability in LQT3 human induced pluripotent stem cell-derived cardiomyocytes and their response to antiarrhythmic pharmacologic therapy: an in silico approach. Heart Rhythm. 2017;14(11):1704–12.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Terrenoire C, et al. Induced pluripotent stem cells used to reveal drug actions in a long QT syndrome family with complex genetics. J Gen Physiol. 2013;141:61–72.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Gelinas R, et al. Characterization of a human induced pluripotent stem cell-derived cardiomyocyte model for the study of variant pathogenicity: validation of a KCNJ2 mutation. Circ Cardiovasc Genet. 2017;10:e001755.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Kuroda Y, et al. Flecainide ameliorates arrhythmogenicity through NCX flux in Andersen-Tawil syndrome-iPS cell-derived cardiomyocytes. Biochem Biophys Rep. 2017;9:245–56.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Yazawa M, Hsueh B, Jia X, Pasca AM, Bernstein JA, Hallmayer J, Dolmetsch RE. Using induced pluripotent stem cells to investigate cardiac phenotypes in Timothy syndrome. Nature. 2011;471:230–4.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Limpitikul WB, et al. A precision medicine approach to the rescue of function on malignant calmodulinopathic long-QT syndrome. Circ Res. 2017;120:39–48.PubMedCrossRefGoogle Scholar
  36. 36.
    Pipilas DC, et al. Novel calmodulin mutations associated with congenital long QT syndrome affect calcium current in human cardiomyocytes. Heart Rhythm. 2016;13:2012–9.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Rocchetti M, et al. Elucidating arrhythmogenic mechanisms of long-QT syndrome CALM1-F142L mutation in patient-specific induced pluripotent stem cell-derived cardiomyocytes. Cardiovasc Res. 2017;113:531–41.PubMedCrossRefGoogle Scholar
  38. 38.
    Yamamoto Y, et al. Allele-specific ablation rescues electrophysiological abnormalities in a human iPS cell model of long-QT syndrome with a CALM2 mutation. Hum Mol Genet. 2017;26:1670–7.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Di Pasquale E, et al. CaMKII inhibition rectifies arrhythmic phenotype in a patient-specific model of catecholaminergic polymorphic ventricular tachycardia. Cell Death Dis. 2013;4:e843.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Fatima A, et al. In vitro modeling of ryanodine receptor 2 dysfunction using human induced pluripotent stem cells. Cell Physiol Biochem. 2011;28:579–92.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Itzhaki I, et al. Modeling of catecholaminergic polymorphic ventricular tachycardia with patient-specific human-induced pluripotent stem cells. J Am Coll Cardiol. 2012;60:990–1000.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Jung CB, et al. Dantrolene rescues arrhythmogenic RYR2 defect in a patient-specific stem cell model of catecholaminergic polymorphic ventricular tachycardia. EMBO Mol Med. 2012;4:180–91.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Kujala K, et al. Cell model of catecholaminergic polymorphic ventricular tachycardia reveals early and delayed afterdepolarizations. PLoS One. 2012;7:e44660.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Novak A, et al. Functional abnormalities in iPSC-derived cardiomyocytes generated from CPVT1 and CPVT2 patients carrying ryanodine or calsequestrin mutations. J Cell Mol Med. 2015;19:2006–18.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Preininger MK, et al. A human pluripotent stem cell model of catecholaminergic polymorphic ventricular tachycardia recapitulates patient-specific drug responses. Dis Model Mech. 2016;9:927–39.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Sasaki K, et al. Patient-specific human induced pluripotent stem cell model assessed with electrical pacing validates S107 as a potential therapeutic agent for Catecholaminergic polymorphic ventricular tachycardia. PLoS One. 2016;11:e0164795.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Zhang XH, et al. Ca2+ signaling in human induced pluripotent stem cell-derived cardiomyocytes (iPS-CM) from normal and catecholaminergic polymorphic ventricular tachycardia (CPVT)-afflicted subjects. Cell Calcium. 2013;54:57–70.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Lodola F, et al. Adeno-associated virus-mediated CASQ2 delivery rescues phenotypic alterations in a patient-specific model of recessive catecholaminergic polymorphic ventricular tachycardia. Cell Death Dis. 2016;7:e2393.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Novak A, et al. Cardiomyocytes generated from CPVTD307H patients are arrhythmogenic in response to beta-adrenergic stimulation. J Cell Mol Med. 2012;16:468–82.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Liang P, et al. Patient-specific and genome-edited induced pluripotent stem cell-derived cardiomyocytes elucidate single-cell phenotype of Brugada syndrome. J Am Coll Cardiol. 2016;68:2086–96.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Selga E, et al. Sodium channel current loss of function in induced pluripotent stem cell-derived cardiomyocytes from a Brugada syndrome patient. J Mol Cell Cardiol. 2017;114:10–9.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Ross SB, Fraser ST, Semsarian C. Induced pluripotent stem cell technology and inherited arrhythmia syndromes. Heart Rhythm. 2018;15(1):137–44.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Caballero R, et al. Flecainide increases Kir2.1 currents by interacting with cysteine 311, decreasing the polyamine-induced rectification. Proc Natl Acad Sci U S A. 2010;107:15631–6.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Pasca SP, et al. Using iPSC-derived neurons to uncover cellular phenotypes associated with Timothy syndrome. Nat Med. 2011;17:1657–62.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Tian Y, et al. Alteration in basal and depolarization induced transcriptional network in iPSC derived neurons from Timothy syndrome. Genome Med. 2014;6:75.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Gomez-Hurtado N, Blackwell DJ, Knollmann BC. Modelling human calmodulinopathies with induced pluripotent stem cells: progress and challenges. Cardiovasc Res. 2017;113:437–9.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Zhang M, et al. Recessive cardiac phenotypes in induced pluripotent stem cell models of Jervell and Lange-Nielsen syndrome: disease mechanisms and pharmacological rescue. Proc Natl Acad Sci U S A. 2014;111:E5383–92.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Gray B, Semsarian C, Sy RW. Brugada syndrome: a heterogeneous disease with a common ECG phenotype? J Cardiovasc Electrophysiol. 2014;25:450–6.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Veerman CC, et al. hiPSC-derived cardiomyocytes from Brugada syndrome patients without identified mutations do not exhibit clear cellular electrophysiological abnormalities. Sci Rep. 2016;6:30967.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Davis J, et al. A tension-based model distinguishes hypertrophic versus dilated cardiomyopathy. Cell. 2016;165:1147–59.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Broughton KM, et al. A myosin activator improves actin assembly and sarcomere function of human-induced pluripotent stem cell-derived cardiomyocytes with a troponin T point mutation. Am J Physiol Heart Circ Physiol. 2016;311:H107–17.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Sun N, et al. Patient-specific induced pluripotent stem cells as a model for familial dilated cardiomyopathy. Sci Transl Med. 2012;4:130ra147.CrossRefGoogle Scholar
  63. 63.
    Wu H, et al. Epigenetic regulation of phosphodiesterases 2A and 3A underlies compromised beta-adrenergic signaling in an iPSC model of dilated cardiomyopathy. Cell Stem Cell. 2015;17:89–100.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Hinson JT, et al. HEART DISEASE. Titin mutations in iPS cells define sarcomere insufficiency as a cause of dilated cardiomyopathy. Science. 2015;349:982–6.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Karakikes I, et al. Correction of human phospholamban R14del mutation associated with cardiomyopathy using targeted nucleases and combination therapy. Nat Commun. 2015;6:6955.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Stillitano F, et al. Genomic correction of familial cardiomyopathy in human engineered cardiac tissues. Eur Heart J. 2016;37:3282–4.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Lee YK, et al. Modeling treatment response for lamin A/C related dilated cardiomyopathy in human induced pluripotent stem cells. J Am Heart Assoc. 2017;6:e005677.PubMedPubMedCentralGoogle Scholar
  68. 68.
    Siu CW, et al. Modeling of lamin A/C mutation premature cardiac aging using patient-specific induced pluripotent stem cells. Aging (Albany NY). 2012;4:803–22.CrossRefGoogle Scholar
  69. 69.
    Judge LM, et al. A BAG3 chaperone complex maintains cardiomyocyte function during proteotoxic stress. JCI Insight. 2017;2:94623.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Streckfuss-Bomeke K, et al. Severe DCM phenotype of patient harboring RBM20 mutation S635A can be modeled by patient-specific induced pluripotent stem cell-derived cardiomyocytes. J Mol Cell Cardiol. 2017;113:9–21.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Wyles SP, Hrstka SC, Reyes S, Terzic A, Olson TM, Nelson TJ. Pharmacological modulation of calcium homeostasis in familial dilated cardiomyopathy: an in vitro analysis from an RBM20 patient-derived iPSC model. Clin Transl Sci. 2016a;9:158–67.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Wyles SP, et al. Modeling structural and functional deficiencies of RBM20 familial dilated cardiomyopathy using human induced pluripotent stem cells. Hum Mol Genet. 2016b;25:254–65.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Tse HF, et al. Patient-specific induced-pluripotent stem cells-derived cardiomyocytes recapitulate the pathogenic phenotypes of dilated cardiomyopathy due to a novel DES mutation identified by whole exome sequencing. Hum Mol Genet. 2013;22:1395–403.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Han L, et al. Study familial hypertrophic cardiomyopathy using patient-specific induced pluripotent stem cells. Cardiovasc Res. 2014;104:258–69.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Lan F, et al. Abnormal calcium handling properties underlie familial hypertrophic cardiomyopathy pathology in patient-specific induced pluripotent stem cells. Cell Stem Cell. 2013;12:101–13.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Birket MJ, et al. Contractile defect caused by mutation in MYBPC3 revealed under conditions optimized for human PSC-cardiomyocyte function. Cell Rep. 2015;13:733–45.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Ojala M, et al. Mutation-specific phenotypes in hiPSC-derived Cardiomyocytes carrying either myosin-binding protein C or alpha-Tropomyosin mutation for hypertrophic cardiomyopathy. Stem Cells Int. 2016;2016:1684792.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Prondzynski M, et al. Evaluation of MYBPC3 trans-splicing and gene replacement as therapeutic options in human iPSC-derived cardiomyocytes. Mol Ther Nucleic Acids. 2017;7:475–86.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Tanaka A, et al. Endothelin-1 induces myofibrillar disarray and contractile vector variability in hypertrophic cardiomyopathy-induced pluripotent stem cell-derived cardiomyocytes. J Am Heart Assoc. 2014;3:e001263.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Ben Jehuda R, et al. CRISPR correction of the PRKAG2 gene mutation in a patient's induced pluripotent stem cell-derived cardiomyocytes eliminates electrophysiological and structural abnormalities. Heart Rhythm. 2018;15(2):267–76.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Cashman TJ, Josowitz R, Johnson BV, Gelb BD, Costa KD. Human engineered cardiac tissues created using induced pluripotent stem cells reveal functional characteristics of BRAF-mediated hypertrophic cardiomyopathy. PLoS One. 2016;11:e0146697.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Josowitz R, et al. Autonomous and non-autonomous defects underlie hypertrophic cardiomyopathy in BRAF-mutant hiPSC-derived cardiomyocytes. Stem Cell Reports. 2016;7:355–69.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Carvajal-Vergara X, et al. Patient-specific induced pluripotent stem-cell-derived models of LEOPARD syndrome. Nature. 2010;465:808–12.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Lee YK, et al. Modeling of Friedreich ataxia-related iron overloading cardiomyopathy using patient-specific-induced pluripotent stem cells. Pflugers Arch. 2014;466:1831–44.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Lee YK, et al. Efficient attenuation of Friedreich's ataxia (FRDA) cardiomyopathy by modulation of iron homeostasis-human induced pluripotent stem cell (hiPSC) as a drug screening platform for FRDA. Int J Cardiol. 2016;203:964–71.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Caspi O, Huber I, Gepstein A, Arbel G, Maizels L, Boulos M, Gepstein L. Modeling of arrhythmogenic right ventricular cardiomyopathy with human induced pluripotent stem cells. Circ Cardiovasc Genet. 2013;6:557–68.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Kim C, et al. Studying arrhythmogenic right ventricular dysplasia with patient-specific iPSCs. Nature. 2013;494:105–10.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Ma D, et al. Generation of patient-specific induced pluripotent stem cell-derived cardiomyocytes as a cellular model of arrhythmogenic right ventricular cardiomyopathy. Eur Heart J. 2013a;34:1122–33.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Lin B, et al. Modeling and study of the mechanism of dilated cardiomyopathy using induced pluripotent stem cells derived from individuals with Duchenne muscular dystrophy. Dis Model Mech. 2015;8:457–66.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Drawnel FM, et al. Disease modeling and phenotypic drug screening for diabetic cardiomyopathy using human induced pluripotent stem cells. Cell Rep. 2014;9:810–21.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Dudek J, et al. Cardiolipin deficiency affects respiratory chain function and organization in an induced pluripotent stem cell model of Barth syndrome. Stem Cell Res. 2013;11:806–19.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Wang G, et al. Modeling the mitochondrial cardiomyopathy of Barth syndrome with induced pluripotent stem cell and heart-on-chip technologies. Nat Med. 2014a;20:616–23.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Huang HP, et al. Human Pompe disease-induced pluripotent stem cells for pathogenesis modeling, drug testing and disease marker identification. Hum Mol Genet. 2011;20:4851–64.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Raval KK, et al. Pompe disease results in a Golgi-based glycosylation deficit in human induced pluripotent stem cell-derived cardiomyocytes. J Biol Chem. 2015;290:3121–36.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Sato Y, et al. Disease modeling and lentiviral gene transfer in patient-specific induced pluripotent stem cells from late-onset Pompe disease patient. Mol Ther Methods Clin Dev. 2015;2:15023.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Sato Y, Kobayashi H, Higuchi T, Shimada Y, Ida H, Ohashi T. Metabolomic profiling of pompe disease-induced pluripotent stem cell-derived cardiomyocytes reveals that oxidative stress is associated with cardiac and skeletal muscle pathology. Stem Cells Transl Med. 2017;6:31–9.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Chou SJ, et al. Energy utilization of induced pluripotent stem cell-derived cardiomyocyte in Fabry disease. Int J Cardiol. 2017;232:255–63.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Itier JM, et al. Effective clearance of GL-3 in a human iPSC-derived cardiomyocyte model of Fabry disease. J Inherit Metab Dis. 2014;37:1013–22.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Hulot JS, Jouven X, Empana JP, Frank R, Fontaine G. Natural history and risk stratification of arrhythmogenic right ventricular dysplasia/cardiomyopathy. Circulation. 2004;110:1879–84.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Mehta A, et al. Identification of a targeted and testable antiarrhythmic therapy for long-QT syndrome type 2 using a patient-specific cellular model. Eur Heart J. 2017;39(16):1446–55.CrossRefGoogle Scholar
  101. 101.
    Roden DM. Cardiovascular pharmacogenomics: current status and future directions. J Hum Genet. 2016;61:79–85.PubMedCrossRefGoogle Scholar
  102. 102.
    Roden DM. Long QT syndrome: reduced repolarization reserve and the genetic link. J Intern Med. 2006;259:59–69.PubMedCrossRefGoogle Scholar
  103. 103.
    Stillitano F, et al. Modeling susceptibility to drug-induced long QT with a panel of subject-specific induced pluripotent stem cells. elife. 2017;6:e19406.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Burridge PW, et al. Human induced pluripotent stem cell-derived cardiomyocytes recapitulate the predilection of breast cancer patients to doxorubicin-induced cardiotoxicity. Nat Med. 2016;22:547–56.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Bedada FB, Wheelwright M, Metzger JM. Maturation status of sarcomere structure and function in human iPSC-derived cardiac myocytes. Biochim Biophys Acta. 2016;1863:1829–38.PubMedCrossRefGoogle Scholar
  106. 106.
    Eder A, Vollert I, Hansen A, Eschenhagen T. Human engineered heart tissue as a model system for drug testing. Adv Drug Deliv Rev. 2016;96:214–24.PubMedCrossRefGoogle Scholar
  107. 107.
    Tiburcy M, et al. Defined engineered human myocardium with advanced maturation for applications in heart failure modeling and repair. Circulation. 2017;135:1832–47.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Turnbull IC, et al. Advancing functional engineered cardiac tissues toward a preclinical model of human myocardium. FASEB J. 2014;28:644–54.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Lu J, et al. An abnormal TRPV4-related cytosolic Ca2+ rise in response to uniaxial stretch in induced pluripotent stem cells-derived cardiomyocytes from dilated cardiomyopathy patients. Biochim Biophys Acta. 2017;1863:2964–72.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Paris Cardiovascular Research Center PARCC, INSERM UMR970, Hôpital Européen Georges PompidouParisFrance

Personalised recommendations