Advertisement

Reviews on Observer Metamerism and Individual Color Vision Variability

  • Qianwen Chen
  • Lu Feng
  • Yalin Li
  • Shengyan CaiEmail author
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 543)

Abstract

Significant color discrimination exists among color deficiency observers, while the color vision variability was used to being neglected among ordinary individuals. The standard observer is widely used in the traditional colorimetry for convenience with the observer metamerism phenomenon ignored. While with the contribution of physiology, psychophysics, color science and other areas, the study of color vision variability in individual observers goes further. This paper reviews on the past research works about observer metamerism and individual color vision variability according to its physiological influence factors, significance and quantification.

Keywords

Review Observer metamerism Physiological CMFs 

Notes

Acknowledgments

Thanks for the laboratory innovation funds of Tianjin University of Science and Technology, No. 1706A201.

References

  1. 1.
    Kuo, W. G. (1995). Quantification of metamerism and color constancy. Loughborough University of Technology.Google Scholar
  2. 2.
    CIE. (1987). International lighting vocabulary. Genève: Bureau Central de la Commission Electrotechnique Internationale.Google Scholar
  3. 3.
    Artigas, J. M., Felipe, A., et al. (2012). Spectral transmission of the human crystalline lens in adult and elderly persons. Investigative Ophthalmology Visual Science, 53(7), 4076–4084.CrossRefGoogle Scholar
  4. 4.
    Berendschot, T. T. J. M. (2002). Lens aging in relation to nutritional determinants and possible risk factors for age-related cataract. Archives of Ophthalmology, 120(12), 1732–1737.CrossRefGoogle Scholar
  5. 5.
    Norren, D. V., & Vos, J. J. (1974). Spectral transmission of the human ocular media. Vision Research, 14(11), 1237–1244.  https://doi.org/10.1016/0042-6989(74)90222-3.CrossRefGoogle Scholar
  6. 6.
    Crawford, B. H. (1949). The scotopic visibility function. Proceedings of the Physical Society. Section B, 62(5), 321–334.  https://doi.org/10.1088/0370-1301/62/5/305.CrossRefGoogle Scholar
  7. 7.
    Pokorny, J., Smith, V. C., & Lutze, M. (1987). Aging of the human lens. Applied Optics, 26(8), 1437–1440.  https://doi.org/10.1364/AO.26.001437.CrossRefGoogle Scholar
  8. 8.
    Backhaus, W., Kliegl, R., & Werner, J. S. (1998). Color vision: Perspectives from different disciplines. Berlin: Walter de Gruyter.CrossRefGoogle Scholar
  9. 9.
    Werner, J. S., & Schefrin, B. E. (1993). Loci of achromatic points throughout the life span. Journal of the Optical Society of America A, 10(7), 1509.Google Scholar
  10. 10.
    Schefrin, B. E., & Werner, J. S. (1993). Age-related changes in the color appearance of broadband surfaces. Color Research & Application, 18(6), 380–389.Google Scholar
  11. 11.
    Xu, J., Pokorny, J., & Smith, V. C. (1997). Optical density of the human lens. Journal of the Optical Society of America A, 14(5), 953.Google Scholar
  12. 12.
    Lutze, M., & Bresnick, G. H. (1991). Lenses of diabetic patients “yellow” at an accelerated rate similar to older normals. Investigative Ophthalmology & Visual Science, 32(1), 194–199.Google Scholar
  13. 13.
    Ambach, W., Blumthaler, M., et al. (1994). Spectral transmission of the optical media of the human eye with respect to keratitis and cataract formation. Documenta Ophthalmologica, 88(2), 165–173.CrossRefGoogle Scholar
  14. 14.
    Hammond, B. R., Wooten, B. R., et al. (1999). Smoking and lens optical density. Ophthalmic & Physiological Optics the Journal of the British College of Ophthalmic Opticians, 19(4), 300–305.CrossRefGoogle Scholar
  15. 15.
    Sarkar, A. (2011). Identification and assignment of colorimetric observer categories and their applications in color and vision sciences. School of Computer and Communication.Google Scholar
  16. 16.
    Howells, O., Eperjesi, F., & Bartlett, H. (2013). Macular pigment optical density in young adults of South Asian origin. Investigative Ophthalmology & Visual Science, 54(4), 2711–2719.CrossRefGoogle Scholar
  17. 17.
    Iannaccone, A., Mura, M., et al. (2007). Macular pigment optical density in the elderly: Findings in a large biracial Midsouth population sample. Investigative Ophthalmology & Visual Science, 48(4), 1458–1465.CrossRefGoogle Scholar
  18. 18.
    Ciulla, T. A., Curran-Celantano, J., Cooper, D. A., Hammond Jr, B. R., Danis, R. P., Pratt, L. M., Riccardi, K. A., & Filloon, T. G. (2001). Macular pigment optical density in a midwestern sample. Ophthalmology, 108(4), 730–737.Google Scholar
  19. 19.
    Bone, R. A., Landrum, J. T., Guerra, L. H., & Ruiz, C. A. (2003). Lutein and zeaxanthin dietary supplements raise macular pigment density and serum concentrations of these carotenoids in humans. The Journal of Nutrition, 133(4), 992–998.Google Scholar
  20. 20.
    Nolan, J., O’Donovan, O., Kavanagh, H., et al. (2004). Macular pigment and percentage of body fat. Investigative Ophthalmology & Visual Science, 45(11), 3940–3950.CrossRefGoogle Scholar
  21. 21.
    Thomas, P. B. M., Formankiewicz, M. A., & Mollon, J. D. (2011). The effect of photopigment optical density on the color vision of the anomalous trichromat. Vision Research, 51(20), 2224–2233.CrossRefGoogle Scholar
  22. 22.
    Neitz, J., Neitz, M., He, J. C., et al. (1999). Trichromatic color vision with only two spectrally distinct photopigments. Nature Neuroscience, 2(10), 884–888.  https://doi.org/10.1038/13185.CrossRefGoogle Scholar
  23. 23.
    Asano, Y. (2015). Individual colorimetric observers for personalized color imaging. Rochester Institute of Technology.Google Scholar
  24. 24.
    Maxwell, J. C. (1860). On the theory of compound colours, and the relations of the colours of the spectrum. Philosophical Transactions of the Royal Society of London, 10, 404–409.Google Scholar
  25. 25.
    Wright, W. D. (1928). A trichromatic colorimeter with spectral primaries. Transactions of the Optical Society, 29(5), 225–242.  https://doi.org/10.1088/1475-4878/29/5/302.CrossRefGoogle Scholar
  26. 26.
    Wright, W. D. (1929). A re-determination of the trichromatic coefficients of the spectral colours. Transactions of the Optical Society, 30(4), 141–164.  https://doi.org/10.1088/1475-4878/30/4/301.CrossRefGoogle Scholar
  27. 27.
    Guild, J. (1932). The colorimetric properties of the spectrum. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 230, 149–187.CrossRefGoogle Scholar
  28. 28.
    Stiles, W.S., & Burch, J.M. (2010). N.P.L. colour-matching investigation: Final report (1958). Optica Acta: International Journal of Optics, 6(1), 1–26.Google Scholar
  29. 29.
    Speranskaya, N. I. (1959). Determination of spectrum color coordinates for 27 normal observers. Optics and Spectroscopy, 7, 424.Google Scholar
  30. 30.
    Nayatani, Y., Takahama, K., & Sobagaki, H. (1983). A proposal of new standard deviate observers. Color Research & Application, 8(1), 47–56.CrossRefGoogle Scholar
  31. 31.
    Fairchild, M. D., & Heckaman, R. L. (2016). Measuring observer metamerism: The Nimeroff approach. Color Research & Application, 41(2), 115–124.CrossRefGoogle Scholar
  32. 32.
    CIE. (2006). Fundamental chromaticity diagram with physiological axes. Vienna: Commission Internationale de l’ Éclairage.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.College of Packaging and Printing EngineeringTianjin University of Science and TechnologyTianjinChina

Personalised recommendations