Advertisement

Introduction

  • Hongjiu Yang
  • Yuanqing Xia
  • Qing Geng
Chapter
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 193)

Abstract

In order to do whatever we want with a dynamic system under control input, the dynamic system has to be controllable. Controllability plays a crucial role in many control problems, such as in complex networks [87], multi-fingered hands [9], spacecraft systems [70], dynamic power models [43], and so on. Note that nonlinear features are found in all practical systems almost. One of the nonlinear features in feedback control systems is saturation. Physical saturation is a key of control systems which are applicable to various aspects of engineering and science virtually [121, 153]. Saturation systems mainly include the following aspects: actuator saturation [81], state saturation [95], output saturation [194], multiple variable saturation [99], and so on. One of the most common saturation phenomenons is actuator saturation which has received much attention; please refer to [207, 209] and the references therein. A closed-loop system with actuator saturation is shown in Fig. 1.1.

References

  1. 1.
    S. Almer, U. Jonsson, Dynamic phasor analysis of periodic systems. IEEE Trans. Autom. Control 54(8), 2007–2012 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 3.
    A. Bateman, Z. Lin, An analysis and design method for linear systems under nested saturation. Syst. Control Lett. 48(1), 41–52 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 4.
    S. Bittanti, P. Colaneri, Periodic Systems: Filtering and Control (Springer, New York, 2008)zbMATHGoogle Scholar
  4. 6.
    F. Blanchini, Ultimate boundedness control for discrete-time uncertain system via set-induced Lyapunov functions. IEEE Trans. Autom. Control 39(3), 428–433 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 9.
    N. Brook, M. Shoham, J. Dayan, Controllability of grasps and manipulations in multi-fingered hands. IEEE Trans. Robot. Autom. 14(1), 185–192 (1998)CrossRefGoogle Scholar
  6. 10.
    Y. Cao, Z. Lin, Stability analysis of discrete-time systems with actuator saturation by a saturation-dependent Lyapunov function. Automatica 37(7), 1235–1241 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 11.
    M. Chadli, S. Aouaouda, H.R. Karimi, P. Shi, Robust fault tolerant tracking controller design for a VTOL aircraft. J. Frankl. Inst. 350(9), 2627–2645 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 13.
    F. Chen, B. Jiang, G. Tao, Fault self-repairing flight control of a small helicopter via fuzzy feedforward and quantum control technique. IET Cogn. Comput. 4(4), 543–548 (2012)CrossRefGoogle Scholar
  9. 14.
    F. Chen, B. Jiang, G. Tao, An intelligent self-repairing control for nonlinear MIMO systems via adaptive sliding mode control technology. J. Frankl. Inst. 351(1), 399–411 (2014)zbMATHCrossRefGoogle Scholar
  10. 15.
    F. Chen, F. Lu, B. Jiang, G. Tao, Adaptive compensation control of the quadrotor helicopter using quantum information technology and disturbance observer. J. Frankl. Inst. 351(1), 442–455 (2014)zbMATHCrossRefGoogle Scholar
  11. 16.
    Y. Chen, S. Fei, K. Zhang, L. Yu, Control of switched linear systems with actuator saturation and its applications. Math. Comput. Model. 56(1–2), 14–26 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 17.
    Z. Chen, J. Huang, A general formulation and solvability of the global robust output regulation problem. IEEE Trans. Autom. Control 50(4), 448–462 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 18.
    G. Chesi, Computing output feedback controllers to enlarge the domain of attraction in polynomial systems. IEEE Trans. Autom. Control 49(10), 1846–1853 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 19.
    G. Chesi, Rational Lyapunov functions for estimating and controlling the robust domain of attraction. Automatica 49(4), 1051–1057 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 21.
    M. Corradini, A. Cristofaro, G. Orlando, Sliding-mode control of discrete-time linear plants with input saturation: application to a twin-rotor system. Int. J. Control 87(8), 1523–1535 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 22.
    M. Corradini, A. Cristofaro, G. Orlando, S. Pettinari, Robust control of multi-input periodic discrete-time systems with saturating actuators. Int. J. Control 86(7), 1240–1247 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 23.
    M.L. Corradini, A. Cristofaro, F. Giannoni, Computation of null controllable regions for antistable linear systems subject to input saturation: an iterative approach. IET Control Theory Appl. 5(5), 744–749 (2011)MathSciNetCrossRefGoogle Scholar
  18. 24.
    A. Cristofaro, M.L. Corradini, F. Giannoni, An iterative approach for the description of null controllable regions of discrete-time linear systems with saturating inputs, in Proceedings of the 19th Mediterranean Conference on Control and Automation, Greece, 2011, pp. 96–101Google Scholar
  19. 25.
    C.A. Desoer, J. Wing, An optimal strategy for a saturating sampled data system. IEEE Trans. Autom. Control 6(1), 5–15 (1961)MathSciNetCrossRefGoogle Scholar
  20. 27.
    Z. Duan, Z. Xiang, H. Karimi, Delay-dependent h control for 2-D switched delay systems in the second fm model. J. Frankl. Inst. 350(7), 1697–1718 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 28.
    J. Fan, Y. Zhang, Z. Zheng, Robust fault-tolerant control against time-varying actuator faults and saturation. IET Control Theory Appl. 6(14), 2198–2208 (2009)MathSciNetCrossRefGoogle Scholar
  22. 29.
    M. Fardad, M.R. Jovanovic, B. Bamieh, Frequency analysis and norms of distributed spatially periodic systems. IEEE Trans. Autom. Control 53(10), 2266–2279 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 30.
    Z. Feng, L. Xu, M. Wu, Y. He, Delay-dependent robust stability and stabilisation of uncertain two-dimensional discrete systems with time-varying delays. IET Control Theory Appl. 4(10), 1959–1971 (2010)MathSciNetCrossRefGoogle Scholar
  24. 31.
    M. Fiacchini, S. Tarbouriech, C. Prieur, Quadratic stability for hybrid systems with nested saturations. IEEE Trans. Autom. Control 57(7), 1832–1838 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 32.
    G. Franze, D. Famularo, A. Casavola, Constrained nonlinear polynomial time-delay systems: a sum-of-squares approach to estimate the domain of attraction. IEEE Trans. Autom. Control 57(10), 2673–2679 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 34.
    I. Ghous, Z. Xiang, Robust state feedback h control for uncertain 2-D continuous state delayed systems in Roesser model. Multidim. Syst. Signal Process. 27(2), 297–319 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 35.
    I. Ghous, Z. Xiang, H. Karimi, State feedback h control for 2-D switched delay systems with actuator saturation in the second fm model. Circuits Syst. Signal Process. 34(7), 2167–2192 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 36.
    D. Ginoya, P.D. Shendge, S.B. Phadke, Delta-operator-based extended disturbance observer and its applications. IEEE Trans. Ind. Electron. 62(9), 5817–5828 (2015)CrossRefGoogle Scholar
  29. 38.
    G.C. Goodwin, Lozano R. Leal, D.Q. Mayne, R.H. Middleton, Rapprochement between continuous and discrete model reference adaptive control. Automatica 22(2), 199–207 (1986)Google Scholar
  30. 39.
    Z. Gu, D. Yue, C. Peng, J. Liu, J. Zhang, Fault tolerant control for systems with interval time-varying delay and actuator saturation. J. Frankl. Inst. 350(2), 231–243 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  31. 40.
    X. Guo, G. Yang, Low-sensitivity h filter design for linear delta operator systems with sampling time jitter. Int. J. Control 85(4), 397–408 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  32. 41.
    S. Hara, T. Iwasaki, D. Shiokata, Robust PID control using generalized KYP synthesis: direct open-loop shaping in multiple frequency ranges. IEEE Control Syst. 26(1), 80–91 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  33. 42.
    F. Hashemzadeh, J.M. Yazdanpanah, Semi-global enlargement of domain of attraction for a class of affine nonlinear systems, in IEEE International Conference on Control Applications, Munich, 2006, pp. 2257–2262Google Scholar
  34. 43.
    M. Hong, C.-C. Liu, M. Gibescu, Complete controllability of an N-bus dynamic power system model. IEEE Trans. Circuits Syst. I: Fund. Theory Appl. 46(6), 700–713 (1999)CrossRefGoogle Scholar
  35. 44.
    T. Hu, E.M. Daniel, L. Qiu, Null controllable region of LTI discrete-time systems with input saturation. Automatica 38(11), 2009–2013 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  36. 45.
    T. Hu, B. Huang, Z. Lin, Absolute stability with a generalized sector condition. IEEE Trans. Autom. Control 49(4), 535–548 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  37. 46.
    T. Hu, Z. Lin, On enlarging the basin of attraction for linear systems under saturated linear feedback. Syst. Control Lett. 40(1), 59–69 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  38. 47.
    T. Hu, Z. Lin, Control Systems with Actuator Saturation (Birkhäuser, Boston 2001)zbMATHCrossRefGoogle Scholar
  39. 50.
    T. Hu, Z. Lin, On improving the performance with bounded continuous feedback laws. IEEE Trans. Autom. Control 47(9), 1570–1575 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  40. 51.
    T. Hu, Z. Lin, Output regulation of linear systems with bounded continuous feedback. IEEE Trans. Autom. Control 49(11), 1941–1953 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  41. 52.
    T. Hu, Z. Lin, B.M. Chen, An analysis and design method for linear systems subject to actuator saturation and disturbances. Automatica 38(2), 351–359 (2002)zbMATHCrossRefGoogle Scholar
  42. 53.
    T. Hu, Z. Lin, L. Qiu, An explicit description of null controllable regions of linear systems with saturating actuators. Syst. Control Lett. 47(1), 65–78 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  43. 54.
    T. Hu, Z. Lin, Y. Shamash, On maximizing the convergence rate for linear systems with input saturation. IEEE Trans. Autom. Control 48(7), 1249–1253 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  44. 56.
    T. Iwasaki, S. Hara, Generalized KYP lemma: unified frequency domain inequalities with design applications. IEEE Trans. Autom. Control 50(1), 41–59 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  45. 57.
    D. Jin, J. Peng, A new approach for estimating the attraction domain for hopfield-type neural networks. Neural Comput. 21(1), 101–120 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  46. 58.
    V. Kadirkamanathan, C. Halauca, S. Anderson, Predictive control of fast-sampled systems using the delta-operator. Int. J. Syst. Sci. 40(7), 745–756 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  47. 61.
    H. Le, S. Lee, C. Lee, Integration model reference adaptive control and exact linearization with disturbance rejection for control of robot manipulators. Int. J. Innov. Comput. Inf. Control 7(6), 3255–3268 (2011)Google Scholar
  48. 63.
    B. Lennartson, R. Middleton, I. Gustafsson, Numerical sensitivity of linear matrix inequalities using shift and delta operators. IEEE Trans. Autom. Control 57(11), 2874–2879 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  49. 64.
    A. Levin, An analytical method of estimating the domain of attraction for polynomial differential equations. IEEE Trans. Autom. Control 39(12), 2471–2475 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  50. 66.
    H. Li, P. Shi, D. Yao, L. Wu, Observer-based adaptive sliding mode control for nonlinear Markovian jump systems. Automatica 64, 133–142 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  51. 68.
    J. Li, J. Zhao, Output regulation for switched discrete-time linear systems via error feedback: an output error-dependent switching method. IET Control Theory Appl. 8(10), 847–854 (2014)MathSciNetCrossRefGoogle Scholar
  52. 69.
    Y. Li, Z. Lin, Saturation-based switching anti-windup design for linear systems with nested input saturation. Automatica 50(11), 2888–2896 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  53. 70.
    K.-Y.Lian, L.-S. Wang, L.-C. Fu, Controllability of spacecraft systems in a central gravitational field. IEEE Trans. Autom. Control 39(12), 2426–2441 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  54. 73.
    Z. Lin, T. Hu, Semi-global stabilization of linear systems subject to output saturation. Syst. Control Lett. 43(3), 211–217 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  55. 75.
    Z. Lin, A. Saberi, Semi-global exponential stabilization of linear systems subject to input saturation via linear feedbacks. Syst. Control Lett. 21(3), 225–239 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  56. 76.
    Z. Lin, A. Saberi, Semi-global exponential stabilization of linear discrete-time systems subject to input saturation via linear feedbacks. Syst. Control Lett. 24(2), 125–132 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  57. 77.
    Z. Lin, A.A. Stoorvogel, A. Saberi, Output regulation for linear systems subject to input saturation. Automatica 32(1), 29–47 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  58. 79.
    H. Liu, F. Sun, E. Boukas, Robust control of uncertain discrete-time Markovian jump systems with actuator saturation. Int. J. Control 79(7), 805–812 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  59. 80.
    J. Liu, S. Laghrouche, M. Wack, Observer-based higher order sliding mode control of power factor in three-phase AC/DC converter for hybrid electric vehicle applications. Int. J. Control 87(6), 1117–1130 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  60. 81.
    K. Liu, E. Fridman, Discrete-time network-based control under scheduling and actuator constraints. Int. J. Robust Nonlinear Control 25(12), 1816–1830 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  61. 82.
    L. Liu, Q. Zhou, H. Liang, L. Wang, Stability and stabilization of nonlinear switched systems under average dwell time. Appl. Math. Comput. 298, 77–94 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  62. 83.
    M. Liu, P. Shi, L. Zhang, X. Zhao, Fault tolerant control for nonlinear Markovian jump systems via proportional and derivative sliding mode observer. IEEE Trans. Circuits Syst I: Regul. Pap. 58(11), 2755–2764 (2011)MathSciNetCrossRefGoogle Scholar
  63. 84.
    X. Liu, Y. Zou, Stability analysis for a class of complex dynamical networks with 2-D dynamics. Multidim. Syst. Signal Process. 25(3), 531–540 (2014)zbMATHCrossRefGoogle Scholar
  64. 85.
    Y. Liu, B. Emamizadeh, A. Farjudian, Optimization problems with fixed volume constraints and stability results related to rearrangement classes. Math. Anal. Appl. 443(2), 1293–1310 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  65. 86.
    Y. Liu, Y. Yin, F. Liu, Continuous gain scheduled h observer for uncertain nonlinear system with time-delay and actuator saturation. Int. J. Innov. Comput. Inf. Control 8(12), 8077–8088 (2012)Google Scholar
  66. 87.
    Y.-Y. Liu, J.-J. Slotine, A.-L. Barab\(\acute {\text{a}}\)si, Controllability of complex networks. Nature 473, 167–173 (2011)Google Scholar
  67. 89.
    L. Long, J. Zhao, Robust and decentralised output regulation of switched non-linear systems with switched internal model. IET Control Theory Appl. 8(8), 561–573 (2014)MathSciNetCrossRefGoogle Scholar
  68. 90.
    K. Loparo, G. Blankenship, Estimating the domain of attraction of nonlinear feedback systems. IEEE Trans. Autom. Control 23(4), 602–608 (1978)zbMATHCrossRefGoogle Scholar
  69. 92.
    K. Lu, Y. Xia, M. Fu, Controller design for rigid spacecraft attitude tracking with actuator saturation. Inf. Sci. 220, 343–366 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  70. 93.
    J. Luo, J. Zhao, Robust control for a class of uncertain switched fuzzy systems with saturating actuators. Asian J. Control 17(4), 1462–1469 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  71. 94.
    S. Ma, C. Zhang, S. Zhu, Robust stability for discrete-time uncertain singular Markov jump systems with actuator saturation. IET Control Theory Appl. 5(2), 255–262 (2011)MathSciNetCrossRefGoogle Scholar
  72. 95.
    R. Mantri, A. Saberi, V. Venkatasubramanian, Stability analysis of continuous time planar systems with state saturation nonlinearity. IEEE Trans. Circuits Syst. I: Fund. Theory Appl. 45(9), 989–993 (1998)CrossRefGoogle Scholar
  73. 98.
    B. Milani, Piecewise-affine Lyapunov functions for discretetime linear systems with saturating controls. Automatica 38(12), 2177–2184 (2005)zbMATHCrossRefGoogle Scholar
  74. 99.
    M. Ojaghi, J. Faiz, Extension to multiple coupled circuit modeling of induction machines to include variable degrees of saturation effects. IEEE Trans. Magnetics 44(11), 4053–4056 (2008)CrossRefGoogle Scholar
  75. 101.
    W. Paszke, K. Galkowski, E. Rogers, D. Owens, Linear repetitive process control theory applied to a physical example. Int. J. Appl. Math. Comput. Sci. 13(1), 87–99 (2003)MathSciNetzbMATHGoogle Scholar
  76. 103.
    A. Pavlov, B. Janssen, N. van de Wouw, H. Nijmeijer, Experimental output regulation for a nonlinear benchmark system. IEEE Trans. Control Syst. Technol. 15(4), 786–793 (2007)CrossRefGoogle Scholar
  77. 105.
    D. Peng, X. Guan, C. Long, Robust output feedback guarenteed cost control for 2-D uncertain state-delayed systems. Asian J. Control 9(4), 470–474 (2007)MathSciNetCrossRefGoogle Scholar
  78. 106.
    D. Peng, C. Hua, Delay-dependent stability and static output feedback control of 2-D discrete systems with interval time-varying delays. Asian J. Control 16(6), 1–9 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  79. 107.
    D. Peng, C. Hua, Improved approach to delay-dependent stability and stabilisation of two-dimensional discrete-time systems with interval time-varying delays. IET Control Theory Appl. 9(12), 1839–1845 (2015)MathSciNetCrossRefGoogle Scholar
  80. 108.
    C. Pittet, S. Tarbouriech, C. Burgat, Stability regions for linear systems with saturating controls via circle and Popov criteria, in Proceedings of the 36th IEEE Conference on Decision and Control, vol. 5, 1997, pp. 4518–4523Google Scholar
  81. 109.
    R. Qi, L. Zhu, B. Jiang, Fault-tolerant reconfigurable control for MIMO systems using online fuzzy identification. Int. J. Innov. Comput. Inf. Control 9(10), 3915–3928 (2013)Google Scholar
  82. 111.
    J. Qiu, H. Yang, P. Shi, Y. Xia, Robust h control for class of discrete-time Markovian jump systems with time-varying delays based on delta operator. Circuits Syst. Signal Process. 27(5), 627–643 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  83. 112.
    H. Rifai, S. Mohammed, W. Hassani, Y. Amirat, Nested saturation based control of an actuated knee joint orthosis. Mechatronics 23(8), 1141–1149 (2013)CrossRefGoogle Scholar
  84. 113.
    M. Saeki, M. Araki, B. Kondo, Local stability of composite systems-frequency-domain condition and estimate of the domain of attraction. IEEE Trans. Autom. Control 25(5), 936–940 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
  85. 115.
    R. De Santis, A. Isidori, On the output regulation for linear systems in the presence of input saturation. IEEE Trans. Autom. Control 46(1), 156–160 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  86. 116.
    W.E. Schmitendorf, B.R. Barmish, Null controllability of linear systems with constrained controls. SIAM J. Control Optim. 18(4), 327–345 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
  87. 118.
    G. Shi, A. Saberi, A.A. Stoorvogel, P. Sannuti, Output regulation of discrete-time linear plants subject to state and input constraints. Int. J. Robust Nonlinear Control 13(8), 691–713 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  88. 119.
    P. Shi, Y. Xia, G.-P. Liu, D. Rees, On designing of sliding-mode control for stochastic jump systems. IEEE Trans. Autom. Control 51(1), 97–103 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  89. 120.
    P. Shi, Y. Yin, F. Liu, Gain-scheduled worst case control on nonlinear stochastic systems subject to actuator saturation and unknown information. J. Optim. Theory Appl. 156(3), 844–858 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  90. 121.
    P. Shi, Y. Yin, F. Liu, J. Zhang, Robust control on saturated Markov jump systems with missing information. Inf. Sci. 266(5), 123–138 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  91. 124.
    E.D. Sontag, An algebraic approach to bounded controllability of linear systems. Int. J. Control 39(1), 181–188 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  92. 125.
    H. Su, M.Z.Q. Chen, J. Lam, Z. Lin, Semi-global leader-following consensus of linear multi-agent systems with input saturation via low gain feedback. IEEE Trans. Circuits Syst. I: Regul. Pap. 60(7), 1881–1889 (2013)MathSciNetCrossRefGoogle Scholar
  93. 129.
    S. Tarbouriech, C. Prieur, J. Silva, Stability analysis and stabilization of systems presenting nested saturations. IEEE Trans. Autom. Control 51(8), 1364–1371 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  94. 130.
    S. Tarbouriech, M. Turner, Anti-windup design: an overview of some recent advances and open problems. IET Control Theory Appl. 3(1), 1–19 (2009)MathSciNetCrossRefGoogle Scholar
  95. 131.
    A.R. Teel, Semi-global stabilization of linear controllable systems with input nonlinearities. IEEE Trans. Autom. Control 40(1), 96–100 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  96. 133.
    T. Thibodeau, W. Tong, T. Hu, Set invariant and performance analysis of linear systems via truncated ellipsoids. Automatica 45(9), 2046–2051 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  97. 136.
    H. Wang, L.-Y. Peng, H.-H. Ju, Y.-L. Wang, h state feedback controller design for continuous-time T-S fuzzy systems in finite frequency domain. Inf. Sci. 223, 221–235 (2013)Google Scholar
  98. 137.
    W. Wang, Y. Yu, Fuzzy adaptive consensus of second-order nonlinear multi-agent systems in the presence of input saturation. Int. J. Innov. Comput. Inf. Control 12(2), 533–542 (2016)Google Scholar
  99. 138.
    X. Wang, W. Ni, J. Yang, Distributed output regulation of switching multi-agent systems subject to input saturation. IET Control Theory Appl. 7(2), 202–209 (2013)MathSciNetCrossRefGoogle Scholar
  100. 139.
    Y. Wang, C. Wang, Z. Zuo, Controller synthesis for Markovian jump systems with incomplete knowledge of transition probabilities and actuator saturation. J. Frankl. Inst. 348(9), 2417–2429 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  101. 140.
    Y. Wei, W. Zheng, Z. Li, G. Zong, Anti-windup design of uncertain discrete-time Markovian jump systems with partially known transition probabilities and saturating actuator. Int. J. Syst. Sci. 46(7), 1288–1298 (2015)zbMATHCrossRefGoogle Scholar
  102. 141.
    Y. Wei, W. Zheng, S. Xu, Robust output feedback control of uncertain time-delay systems with actuator saturation and disturbances. J. Frankl. Inst. 352(5), 2229–2248 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  103. 142.
    D. West, Unichain coverings in partial orders with the nested saturation property. Discret. Math. 63(2), 297–303 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  104. 144.
    L. Wu, R. Yang, P. Shi, X. Su, Stability analysis and stabilization of 2-D switched systems under arbitrary and restricted switchings. Aumatica 59, 206–215 (2015)MathSciNetzbMATHGoogle Scholar
  105. 145.
    Y. Wu, H. Su, Z. Wu, Synchronisation control of dynamical networks subject to variable sampling and actuators saturation. IET Control Theory Appl. 9(3), 381–391 (2015)MathSciNetCrossRefGoogle Scholar
  106. 149.
    Z. Xiang, S. Huang, Stability analysis and stabilization of discrete-time 2D switched systems. Circuits Syst. Signal Process. 32(1), 401–414 (2013)MathSciNetCrossRefGoogle Scholar
  107. 150.
    B. Xiao, Q. Hu, P. Shi, Attitude stabilization of spacecrafts under actuator saturation and partial loss of control effectiveness. IEEE Trans. Control Syst. Technol. 21(6), 2251–2263 (2013)CrossRefGoogle Scholar
  108. 151.
    X. Xie, S. Yin, H. Gao, O. Kaynak, Asymptotic stability and stabilisation of uncertain delta operator systems with time-varying delays. IET Control Theory Appl. 7(8), 1071–1078 (2013)MathSciNetCrossRefGoogle Scholar
  109. 152.
    X. Xie, D. Yue, T. Ma, X. Zhu, Further studies on control synthesis of discrete-time T-S fuzzy systems via augmented multi-indexed matrix approach. IEEE Trans. Cybernetics 44(12), 2784–2791 (2014)CrossRefGoogle Scholar
  110. 153.
    B. Xu, X. Huang, D. Wang, F. Sun, Dynamic surface control of constrained hypersonic flight models with parameter estimation and actuator compensation. Asian J. Control 16(1), 162–174 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  111. 154.
    D. Xu, B. Jiang, H. Liu, P. Shi, Decentralized asymptotic fault tolerant control of near space vehicle with high order actuator dynamics. J. Frankl. Inst. 350(9), 2519–2534 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  112. 155.
    J. Xu, Y. Soh, A distributed simultaneous perturbation approach for large-scale dynamic optimization problems. Automatica 72, 194–204 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  113. 158.
    H. Yang, Q. Geng, Parametric delta operator Riccati equation and applications to semi-global stabilization in the presence of actuator saturation. J. Frankl. Inst. 354(12), 4697–4718 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  114. 159.
    H. Yang, Q. Geng, Y. Xia, L. Li, Output regulation for linear delta operator systems subject to actuator saturation. Int. J. Robust Nonlinear Control 27(7), 1043–1063 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  115. 160.
    H. Yang, H. Li, F. Sun, Y. Yuan, Robust control for Markovian jump delta operator systems with actuator saturation. Eur. J. Control 20(4), 207–215 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  116. 161.
    H. Yang, P. Li, Y. Xia, Q. Geng, Overall convergence rate of delta operator systems subject to actuator saturation. Int. J. Robust Nonlinear Control 27(17), 3564–3581 (2017)MathSciNetzbMATHGoogle Scholar
  117. 162.
    H. Yang, X. Li, Z. Liu, L. Zhao, Robust fuzzy-scheduling control for nonlinear systems subject to actuator saturation via delta operator approach. Information Sciences 272, 158–172 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  118. 163.
    H. Yang, P. Shi, Z. Li, C. Hua, Analysis and design for delta operator systems with actuator saturation. Int. J. Control 87(5), 987–999 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  119. 164.
    H. Yang, P. Shi, J. Zhang, J. Qiu, Robust h control for a class of discrete time fuzzy systems via delta operator approach. Inf. Sci. 184(1), 230–245 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  120. 165.
    H. Yang, Y. Xia, P. Shi, Stabilization of networked control systems with nonuniform random sampling periods. Int. J. Robust Nonlinear Control 21(5), 501–526 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  121. 167.
    H. Yang, Y. Xia, P. Shi, M. Fu, Stability analysis for high frequency networked control systems. IEEE Trans. Autom. Control 57(10), 2694–2700 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  122. 168.
    H. Yang, Y. Xia, P. Shi, M. Fu, Stability of Markovian jump systems over networks via delta operator approach. Circuits Syst. Signal Process. 31(1), 107–125 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  123. 169.
    H. Yang, Y. Xia, P. Shi, B. Liu, Guaranteed cost control of networked control systems based on delta operator Kalman filter. Int. J. Adapt. Control Signal Process. 27(8), 701–717 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  124. 170.
    H. Yang, Y. Xia, P. Shi, L. Zhao, Analysis and Synthesis of Delta Operator Systems (Springer, Berlin/Heidelberg, 2012)CrossRefGoogle Scholar
  125. 171.
    H. Yang, Y. Xia, J. Zhang, Generalized finite frequency KYP lemma in delta domain and applications to fault detection. Int. J. Control 84(3), 511–525 (2011)zbMATHCrossRefGoogle Scholar
  126. 172.
    H. Yang, C. Yan, Y. Xia, J. Zhang, Stabilization on null controllable region of delta operator systems subject to actuator saturation. Int. J. Robust Nonlinear Control 26(16), 3481–3506 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  127. 173.
    H. Yang, C. Yan, Y. Xia, J. Zhang, Practical stabilization of delta operator systems subject to actuator saturation and disturbances. J. Frankl. Inst. 354(5), 2199–2225 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  128. 174.
    H. Yang, L. Zhang, P. Shi, C. Hua, Enlarging the domain of attraction and maximising convergence rate for delta operator systems with actuator saturation. Int. J. Control 88(10), 2030–2043 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  129. 175.
    Y. Yang, C. Ge, H. Wang, X. Li, C. Hua, Adaptive neural network based prescribed performance control for teleoperation system under input saturation. J. Frankl. Inst. 352(5), 1850–1866 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  130. 177.
    X. Yao, L. Guo, Composite anti-disturbances control for Markovian jump nonlinear systems via disturbances observer. Automatica 49(8), 2538–2545 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  131. 178.
    Y. Yuan, F. Sun, Delay-dependent stability criteria for time-varying delay neural networks in the delta domain. Neurocomputing 125(11), 17–21 (2014)CrossRefGoogle Scholar
  132. 179.
    H. Zabiri, Y. Samyudia, A hybrid formulation and design of model predictive control for systems under actuator saturation and backlash. J. Process Control 16(7), 693–709 (2006)CrossRefGoogle Scholar
  133. 182.
    Y. Zhan, J. Jiang, Fault tolerant control system design with esplicit consideration of performance degradation. IEEE Trans. Aerosp. Electron. Syst. 39(3), 838–848 (2003)CrossRefGoogle Scholar
  134. 183.
    B. Zhang, W. Lan, Improving transient performance for output regulation problem of linear systems with input saturation. Int. J. Robust Nonlinear Control 23(10), 1087–1098 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  135. 184.
    B. Zhang, S. Xu, B. Du, Fuzzy tracking control for nonlinear time-delay systems subject to actuator saturation, in Proceedings of the 31st Chinese Control Conference, Hefei, China, 2012, pp. 648–653Google Scholar
  136. 186.
    H. Zhang, Y. Zhang, X. Ma, Dimensionless approach to multi-parametric stability analysis of nonlinear time-periodic systems: theory and its applications to switching converters. IEEE Trans. Circuits and Systems I: Regular Papers 60(2), 491–504 (2013)MathSciNetCrossRefGoogle Scholar
  137. 187.
    J. Zhang, P. Shi, W. Lin, Extended sliding mode observer based control for Markovian jump linear systems with disturbances. Automatica 70(2016), 140–147 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  138. 189.
    M. Zhang, X. Shen, T. Li, Fault tolerant attitude control for cubesats with input saturation based on dynamic adaptive neural network. Int. J. Innov. Comput. Inf. Control 12(2), 651–663 (2016)Google Scholar
  139. 190.
    Z. Zhang, A. Serrani, Adaptive robust output regulation of uncertain linear periodic systems. IEEE Trans. Autom. Control 54(2), 266–278 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  140. 191.
    J. Zhao, B. Jiang, P. Shi, Z. He, Fault tolerant control for damaged aircraft based on sliding mode control scheme. Int. J. Innovative Comput. Inf. Control 10(1), 293–302 (2014)Google Scholar
  141. 193.
    Y. Zhao, H. Gao, Fuzzy-model-based control of an overhead crane with input delay and actuator saturation. IEEE Trans. Autom. Control 20(1), 181–186 (2012)Google Scholar
  142. 194.
    Z. Zhao, Y. Hong, Z. Lin, Semi-global output consensus of linear agents with external disturbances and actuator saturation: an output regulation approach, in Proceedings of the 33rd Chinese Control Conference, Nanjing, China, 2014, pp. 5727–5732Google Scholar
  143. 195.
    B. Zhou, Analysis and design of discrete-time linear systems with nested actuator saturations. Syst. Control Lett. 62(10), 871–879 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  144. 196.
    B. Zhou, G. Duan, A novel nested non-linear feedback law for global stabilization of linear systems with bounded controls. Int. J. Control 81(9), 1352–1363 (2008)zbMATHCrossRefGoogle Scholar
  145. 197.
    B. Zhou, G. Duan, On analyitical of the maximal invariant ellipsoid for linear systems with bounded control. IEEE Trans. Autom. Control 54(2), 346–353 (2009)CrossRefGoogle Scholar
  146. 198.
    B. Zhou, G. Duan, Z. Lin, A parametric Lyapunov equation approach to the design of low gain feedback. IEEE Trans. Autom. Control 53(6), 1548–1554 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  147. 199.
    B. Zhou, G. Duan, Z. Lin, Approximation and monotonicity of the maximal invariant ellipsoid for discrete-time systems by bounded controls. IEEE Trans. Autom. Control 55(2), 440–446 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  148. 200.
    B. Zhou, G. Duan, Z. Lin, On semiglobal stabilization of siscrete-time periodic systems with bounded controls. IEEE Trans. Circuits Syst.-II: Exp. Briefs 58(7), 452–456 (2011)CrossRefGoogle Scholar
  149. 201.
    B. Zhou, Z. Lin, Parametric Lyapunov equation approach to stabilization of discrete-time systems with input delay and saturation. IEEE Trans. Circuits Syst. I: Regul. Pap. 58(11), 2741–2754 (2011)MathSciNetCrossRefGoogle Scholar
  150. 202.
    B. Zhou, Z. Lin, G. Duan, Properties of the parametric Lyapunov equation based low-gain design with applications in stabilization of time-delay systems. IEEE Trans. Autom. Control 54(7), 1698–1704 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  151. 203.
    B. Zhou, Z. Lin, G. Duan, Low-gain feedback: their properties, characterizations and applications in constrained control. IEEE Trans. Autom. Control 56(5), 1030–1045 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  152. 204.
    B. Zhou, W. Zheng, G. Duan, An improved treatment of saturation nonlinearity with its application to control of systems subject to nested saturation. Automatica 47(2), 306–315 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  153. 205.
    Q. Zhou, C. Wu, P. Shi, Observer-based adaptive fuzzy tracking control of nonlinear systems with time delay and input saturation. Fuzzy Sets Syst. 316, 49–68 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  154. 206.
    J. Zhu, L. Wang, M. Spiryagin, Control and decision strategy for a class of Markovian jump systems in failure prone manufacturing process. IET Control Theory Appl. 6(12), 1803–1811 (2012)MathSciNetCrossRefGoogle Scholar
  155. 207.
    Z. Zhu, Y. Xia, M. Fu, Adaptive sliding mode control for attitude stabilization with actuator saturation. IEEE Trans. Ind. Electron. 58(10), 4898–4907 (2011)CrossRefGoogle Scholar
  156. 209.
    Z. Zuo, Y. Wang, W. Yang, L 2-gain fault tolerant control of singular Lipschitz systems in the presence of actuator saturation. Int. J. Robust Nonlinear Control 25(12), 1751–1766 (2015)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Hongjiu Yang
    • 1
  • Yuanqing Xia
    • 2
  • Qing Geng
    • 3
  1. 1.School of Electrical and Information EngineeringTianjin UniversityTianjinChina
  2. 2.School of AutomationBeijing Institute of TechnologyBeijingChina
  3. 3.Institute of Electrical EngineeringYanshan UniversityQinhuangdaoChina

Personalised recommendations