Advertisement

Astrobiology pp 323-344 | Cite as

Limits of Terrestrial Life and Biosphere

  • Ken TakaiEmail author
Chapter

Abstracts

The origin, evolution, and distribution of life in the Universe can be better addressed by understanding the limits of life on Earth. A broad range of physical and chemical constraints for limits of life, such as temperature, pressure, pH, salinity, physical space, water content, and availability of energy and nutrients, have been explored in many environments of the Earth that potentially host certain boundaries between the habitable and the uninhabitable terrains. In this chapter, the presently known limits of life are described, and the possible environments and their physical and chemical characteristics that could signify the limits of life and biosphere on the Earth are reviewed. Although the nature and distribution of fringe biospheres that face the boundaries are highly unknown, numerous geomicrobiological explorations have demonstrated the limits of biosphere realistically occur in the subsurface environments and are controlled by certain boundary conditions. Energetic aspects of boundary conditions are quite important and are discussed based on the theoretical estimations and field observations of earthly life and biosphere.

Keywords

Limits of life Limits of biosphere Fringe biosphere Habitability Energetic balance of habitability 

References

  1. Antunes A, Taborda M, Huber R, Moissl C, Nobre MF, da Costa MS (2008) Halorhabdus tiamatea sp. nov., a non-pigmented, extremely halophilic archaeon from a deep-sea, hypersaline anoxic basin of the Red Sea, and emended description of the genus Halorhabdus. Int J Syst Evol Microbiol 58:215–220PubMedGoogle Scholar
  2. Antunes A, Ngugi DK, Stingl U (2011) Microbiology of the Red Sea (and other) deep-sea anoxic brine lakes. Environ Microbiol Rep 3:416–433PubMedGoogle Scholar
  3. Aoyama S, Nishizawa M, Takai K, Ueno Y (2014) Microbial sulfate reduction within the Iheya North subseafloor hydrothermal system constrained by quadruple sulfur isotopes. Earth Planet Sci Lett 398:113–126Google Scholar
  4. Aoyama S, Nishizawa M, Miyazaki J, Shibuya T, Ueno Y, Takai K (2018) Recycled Archean sulfur in the mantle wedge of the Mariana Forearc and microbial sulfate reduction within an extremely alkaline serpentine seamount. Earth Planet Sci Lett 491:109–120Google Scholar
  5. Battista JR (1997) Against all odds: the survival strategies of Deinococcus radiodurans. Ann Rev Microbiol 51:203–224Google Scholar
  6. Belliaev GM, Brueggeman PL (1989) Deep sea ocean trenches and their Fauna. Scripps Institution of Oceanography Technical Report, Scripps Institution of Oceanography, UC San DiegoGoogle Scholar
  7. Binns RA, Barriga FJAS, Miller DJ, Shipboard Scientific Party (2002) Proc ODP Init Rep 193. doi: https://doi.org/10.2973/odp.proc.ir.193.2002
  8. Bischoff JL, Pitzer KS (1989) Liquid-vapor relations for the system NaCl-H2O; summary of the P-T-x surface from 300 degrees to 500 degrees C. Am J Sci 289:217–248Google Scholar
  9. Bischoff JL, Rosenbauer RJ (1988) Liquid-vapor relations in the critical region of the system NaCl-H2O from 380 to 415 °C: a refined determination of the critical point and two-phase boundary of seawater. Geochim Cosmochim Acta 52:2121–2126Google Scholar
  10. Blackman DK, Ildefonse B, John BE, Ohara Y, Miller DJ, MacLeod CJ, The Expedition 304/305 Scientists (2006) Proc IODP Exp 304/305. doi: https://doi.org/10.2204/iodp.proc.304305.101.2006
  11. Butterfield DA, Nakamura K, Takano B, Lilley MD, Lupton JE, Resing JA, Roe KK (2011) High SO2 flux, sulfur accumulation, and gas fractionation at an erupting submarine volcano. Geology 39:803–806Google Scholar
  12. Charmasson S, Sarradin PM, Le Faouder A, Agarande M, Loyen J, Desbruyeres D (2009) High levels of natural radioactivity in biota from deep-sea hydrothermal vents: a preliminary communication. J Environ Radioact 100:522–526PubMedGoogle Scholar
  13. Ciobanu MC, Burgaud G, Dufresne A, Breuker A, Redou V, Maamar SB, Gaboyer F, Vandenabeele-Trambouze O, Lipp JS, Schippers A, Vandenkoornhuyse P, Barbier G, Jebbar M, Godfroy A, Alain K (2014) Microorganisms persist at record depths in the subseafloor of the Canterbury Basin. ISME J 8:1370–1380PubMedPubMedCentralGoogle Scholar
  14. Cockell CS (2000) Ultraviolet radiation and the photobiology of Earth’s early oceans. Orig Life Evol Biosph 30:467–500PubMedGoogle Scholar
  15. Cragg BA, Parkes RJ (1994) Bacterial profiles in hydrothermally active deep sediment layers from Middle Valley (NE Pacific), Sites 857 and 858. Proc ODP Sci Results 139:509–516Google Scholar
  16. Cragg BA, Summit M, Parkes RJ (2000) Bacterial profiles in a sulfide mound (Site 1035) and an area of active fluid venting (Site 1036) in hot hydrothermal sediments from Middle Valley (Northeast Pacific). Proc ODP Sci Result 169. doi: https://doi.org/10.2973/odp.proc.sr.169.105.2000 Google Scholar
  17. D’Elia T, Veerapaneni R, Rogers SO (2008) Isolation of microbes from Lake Vostok accretion ice. Appl Environ Microbiol 74:4962–4965PubMedPubMedCentralGoogle Scholar
  18. D’Hondt S, Inagaki F, Zarikian CA, Abrams LJ, Dubois N, Engelhardt T, Evans H, Ferdelman T, Gribsholt B, Harris R, Hoppie BW, Hyun JH, Kallmeyer J, Kim J, Lynch JE, McKinley CC, Mitsunobu S, Morono Y, Murray RW, Pockalny R, Sauvage J, Shimono T, Shiraishi F, Smith DC, Smith-Duque CE, Spivack AJ, Steinsbu BO, Suzuki Y, Szpak M, Toffin L, Uramoto G, Yamaguchi Y, Zhang GL, Zhang XH, Ziebis W (2015) Presence of oxygen and aerobic communities from sea floor to basement in deep-sea sediments. Nat Geosci 8:299–304Google Scholar
  19. Dalmasso C, Oger P, Selva G, Courtine D, L’Haridon S, Garlaschelli A, Roussel E, Miyazaki J, Reveillaud J, Jebbar M, Takai K, Maignien L, Alain K (2016) Thermococcus piezophilus sp. nov., a novel hyperthermophilic and piezophilic archaeon with a broad pressure range for growth, isolated from a deepest hydrothermal vent at the Mid-Cayman Rise. Syst Appl Microbiol 39:440–444PubMedGoogle Scholar
  20. Darrah TH, Tedesco D, Tassi F, Vaselli O, Cuoco E, Poreda RJ (2013) Gas chemistry of the Dallol region of the Danakil Depression in the Afar region of the northern-most East African Rift. Chem Geol 339:16–29Google Scholar
  21. Dartnell LR (2011) Ionizing radiation and life. Astrobiology 11:551–582PubMedGoogle Scholar
  22. Davis EE, Mottl MJ, Fisher AT, Shipboard Scientific Party (1992) Proc ODP Init Rep 139. doi: https://doi.org/10.2973/odp.proc.ir.139.1992
  23. Doemel WN, Brock TD (1971) The physiological ecology of Cyanidium caldarium. J Gen Microbiol 67:17–32Google Scholar
  24. Eder W, Ludwig W, Huber R (1999) Novel 16S rRNA gene sequences retrieved from highly saline brine sediments of Kebrit Deep, Red Sea. Arch Microbiol 172:213–218PubMedGoogle Scholar
  25. Edwards KJ, Bond PL, Gihring TM, Banfield JF (2000) An archaeal iron-oxidizing extreme acidophile important in acid mine drainage. Science 287:1796–1799PubMedGoogle Scholar
  26. Elsgaard L, Prieur D (2011) Hydrothermal vents in Lake Tanganyika harbor spore-forming thermophiles with extremely rapid growth. J Great Lakes Res 37:203–206Google Scholar
  27. Fouquet Y, Zierenberg RA, Miller DJ, Shipboard Scientific Party (1998) Proc ODP Init Rep 169. doi: https://doi.org/10.2973/odp.proc.ir.169.1998
  28. Fukuda R, Ogawa H, Nagata T, Koike I (1998) Direct determination of carbon and nitrogen contents of natural bacterial assemblages in marine environments. Appl Environ Microbiol 64:3352–3358PubMedPubMedCentralGoogle Scholar
  29. Glud RN, Wenzhöfer F, Middelboe M, Oguri K, Turnewitsch R, Canfield DE, Kitazato H (2013) High rates of microbial carbon turnover in sediments in the deepest oceanic trench on Earth. Nat Geosci 6:284–288Google Scholar
  30. Gomez P, Garralon A, Buil B, Turrero MJ, Sanchez L, de la Cruz B (2006) Modeling of geochemical processes related to uranium mobilization in the groundwater of a uranium mine. Sci Total Environ 366:295–309PubMedGoogle Scholar
  31. Heijnen JJ, van Dijken JP (1992) In search of a thermodynamic description of biomass yield for the chemotrophic growth of microorganisms. Biotechnol Bioeng 39:833–858PubMedGoogle Scholar
  32. Heuer VB, Inagaki F, Morono Y, Kubo Y, Maeda L, the IODP Exp 370 Onboard scientists (2017) Expedition 370 preliminary report: temperature limit of the deep biosphere off Muroto. International Ocean Discovery Program. doi: https://doi.org/10.14379/iodp.pr.370.2017
  33. Hoehler TM (2007) An energy balance concept for habitability. Astrobiology 7:824–838PubMedGoogle Scholar
  34. Horikoshi K (1999) Alkaliphiles: some applications of their products for biotechnology. Microbiol Mol Biol Rev 63:735–750PubMedPubMedCentralGoogle Scholar
  35. Horneck G, Rettberg P, Reitz G, Wehner J, Eschweiler U, Strauch K, Verena CP, Baumstark-Khan C (2001) Protection of bacterial spores in space, a contribution to the discussion on panspermia. Orig Life Evol Biosph 31:527–547PubMedGoogle Scholar
  36. Humphris SE, Herzig PM, Miller DJ, Shipboard Scientific Party (1996) Proc ODP Init Rep 158. doi: https://doi.org/10.2973/odp.proc.ir.158.1996
  37. Imshenetsky AA, Lysenko SV, Kazakov GA, Ramkova NV (1976) On micro-organisms of the stratosphere. Life Sci Space Res 14:359–362PubMedGoogle Scholar
  38. Inagaki F, Hinrichs KU, Kubo Y, Bowles MW, Heuer VB, Hong WL, Hoshino T, Ijiri A, Imachi H, Ito M, Kaneko M, Lever M, Lin YS, Methé BA, Morita S, Morono Y, Tanikawa W, Bihan M, Bowden S, Elvert M, Glombitza C, Gross D, Harrington GJ, Hori T, Li K, Limmer D, Liu CH, Murayama M, Ohkouchi N, Ono S, Park YS, Phillips SC, Prieto-Mollar X, Purkey M, Riedinger N, Sanada Y, Sauvage J, Snyder G, Susilawati R, Takano Y, Tasumi E, Terada T, Tomaru H, Trembath-Reichert E, Wang DT, Yamada Y (2015) Exploring deep microbial life in coal-bearing sediment down to ~2.5 km below the ocean floor. Science 349:420–424PubMedGoogle Scholar
  39. Jackson BE, McInerney MJ (2002) Anaerobic microbial metabolism can proceed close to thermodynamic limits. Nature 415:454–456PubMedGoogle Scholar
  40. Jamieson AJ, Malkocs T, Piertney SB, Fujii T, Zhang Z (2017) Bioaccumulation of persistent organic pollutants in the deepest ocean fauna. Nature Ecol Evol 1:0051Google Scholar
  41. Jensen KA, Ewing RC (2001) The Okélobondo natural fission reactor, southeast Gabon: geology, mineralogy, and retardation of nuclear-reaction products. GSA Bull 113:32–62Google Scholar
  42. Jolivet E, Corre E, L’Haridon S, Forterre P, Prieur D (2003) Thermococcus gammatolerans sp. nov., a hyperthermophilic archaeon from a deep-sea hydrothermal vent that resists ionizing radiation. Int J Syst Evol Microbiol 53:847–851PubMedGoogle Scholar
  43. Jolivet E, Corre E, L’Haridon S, Forterre P, Prieur D (2004) Thermococcus marinus sp. nov. and Thermococcus radiotolerans sp. nov., two hyperthermophilic archaea from deep-sea hydrothermal vents that resist ionizing radiation. Extremophiles 8:219–227PubMedGoogle Scholar
  44. Kato C, Li L, Tamaoka J, Horikoshi K (1997) Molecular analyses of the sediment of the 11,000-m deep Mariana Trench. Extremophiles 1:117–123PubMedGoogle Scholar
  45. Kawagucci S, Miyazaki J, Morono Y, Seewald JS, Wheat G, Takai K (2018) Cool and alkaline serpentinite formation fluid regime with scarce microbial habitability and possible abiotic synthesis beneath the South Chamorro Seamount. Proc Earth Planet Sci 5:1–20Google Scholar
  46. Kelley DS, Karson JA, Blackman DK, Fruh-Green GL, Butterfield DA, Lilley MD, Olson EJ, Schrenk MO, Roe KK, Lebon GG, Rivizzigno P (2001) An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30 degrees N. Nature 412:145–149PubMedGoogle Scholar
  47. Kelley DS, Karson JA, Fruh-Green GL, Yoerger DR, Shank TM, Butterfield DA, Hayes JM, Schrenk MO, Olson EJ, Proskurowski G, Jakuba M, Bradley A, Larson B, Ludwig K, Glickson D, Buckman K, Bradley AS, Brazelton WJ, Roe K, Elend MJ, Delacour A, Bernasconi SM, Lilley MD, Baross JA, Summons RE, Sylva SP (2005) A serpentinite-hosted ecosystem: the lost city hydrothermal field. Science 307:1428–1434PubMedGoogle Scholar
  48. Kimura H, Asada R, Masta A, Naganuma T (2003) Distribution of microorganisms in the subsurface of the manus basin hydrothermal vent field in Papua New Guinea. Appl Environ Microbiol 69:644–648PubMedPubMedCentralGoogle Scholar
  49. Klotz B, Pyle DL, Mackey BM (2007) New mathematical modeling approach for predicting microbial inactivation by high hydrostatic pressure. Appl Environ Microbiol 73:2468–2478PubMedPubMedCentralGoogle Scholar
  50. Kobayashi H, Hatada Y, Tsubouchi T, Nagahama T, Takami H (2012) The hadal amphipod Hirondellea gigas possessing a unique cellulase for digesting wooden debris buried in the deepest seafloor. PLoS One 7:e42727PubMedPubMedCentralGoogle Scholar
  51. Koschinsky A, Garbe-Schönberg D, Sander S, Schmidt K, Gennerich HH, Strauss H (2008) Hydrothermal venting at pressure-temperature conditions above the critical point of seawater, 5°S on the Mid-Atlantic Ridge. Geology 36:615–618Google Scholar
  52. Krijgsman W, Hilgen FJ, Raffi I, Sierro FJ, Wilson DS (1999) Chronology, causes and progression of the Messinian salinity crisis. Nature 400:652–655Google Scholar
  53. Kusube M, Kyaw TS, Tanikawa K, Chastain RA, Hardy KM, Cameron J, Bartlett DH (2017) Colwellia marinimaniae sp. nov., a hyperpiezophilic species isolated from an amphipod within the Challenger Deep, Mariana trench. Int J Syst Evol Microbiol 67:824–831PubMedGoogle Scholar
  54. LaRowe DE, Amend JP (2015) Catabolic rates, population sizes and doubling/replacement times of microorganisms in natural settings. Am J Sci 315:167–203Google Scholar
  55. Margosch D, Ehrmann MA, Buckow R, Heinz V, Vogel RF, Gänzle MG (2006) High-pressure-mediated survival of Clostridium botulinum and Bacillus amyloliquefaciens endospores at high temperature. Appl Environ Microbiol 72:3476–3481PubMedPubMedCentralGoogle Scholar
  56. Mason OU, Nakagawa T, Rosner M, Van Nostrand JD, Zhou J, Maruyama A, Fisk MR, Giovannoni SJ (2010) First investigation of the microbiology of the deepest layer of ocean crust. PLoS One 5:e15399PubMedPubMedCentralGoogle Scholar
  57. McCollom TM, Amend JP (2005) A thermodynamic assessment of energy requirements for biomass synthesis by chemolithoautotrophic micro-organisms in oxic and anoxic environments. Geobiology 3:135–144Google Scholar
  58. McCollom TM, Bach W (2009) Thermodynamic constraints on hydrogen generation during serpentinization of ultramafic rocks. Geochim Cosmochim Acta 73:856–875Google Scholar
  59. Méndez-García C, Peláez AI, Mesa V, Sánchez J, Golyshina OV, Ferrer M (2015) Microbial diversity and metabolic networks in acid mine drainage habitats. Front Microbiol 6:475PubMedPubMedCentralGoogle Scholar
  60. Minton KW (1994) DNA repair in the extremely radioresistant bacterium Deinococcus radiodurans. Mol Microbiol 13:9–15PubMedGoogle Scholar
  61. Morono Y, Terada T, Nishizawa M, Ito M, Hillion F, Takahata N, Sano Y, Inagaki F (2012) Carbon and nitrogen assimilation in deep subseafloor microbial cells. Proc Natl Acad Sci U S A 108:18295–18300Google Scholar
  62. Mottl MJ (2009) Highest pH. Geochem News 141:09Google Scholar
  63. Mottl MJ, Komor SC, Fryer P, Moyer CL (2003) Deep-slab fluids fuel extremophilic Archaea on a Mariana forearc serpentinite mud volcano: ocean Drilling Program Leg 195. Geochem Geophys Geosyst 4:11Google Scholar
  64. Nakagawa T, Takai K, Suzuki Y, Hirayama H, Konno U, Tsunogai U, Horikoshi K (2006) Geomicrobiological exploration and characterization of a novel deep-sea hydrothermal system at the TOTO caldera in the mariana Volcanic Arc. Environ Microbiol 8:37–49PubMedGoogle Scholar
  65. Nakamura K, Takai K (2014) Theoretical constraints of physical and chemical properties of hydrothermal fluids on variations in chemolithotrophic microbial communities in seafloor hydrothermal systems. Prog Earth Planet Sci 1:5Google Scholar
  66. Nakamura K, Takai K (2015) Geochemical constraints on potential biomass sustained by subseafloor water–rock interactions. In: Ishibashi J, Okino K, Sunamura M (eds) Subseafloor biosphere linked to hydrothermal systems. Springer Japan, Tokyo, pp 11–30Google Scholar
  67. Nordstrom DK, Alpers CN, Ptacek CJ, Blowes DW (2000) Negative pH and extremely acidic mine waters from Iron Mountain, California. Environ Sci Tech 34:254–258Google Scholar
  68. Nunoura T, Takaki Y, Hirai M, Shimamura S, Makabe A, Koide O, Kikuchi T, Miyazaki J, Koba K, Yoshida N, Sunamura M, Takai K (2015) Hadal biosphere: insight into the microbial ecosystem in the deepest ocean on Earth. Proc Natl Acad Sci U S A 112:E1230–E1236PubMedPubMedCentralGoogle Scholar
  69. Olsson-Francis K, Cockell CS (2010) Experimental methods for studying microbial survival in extraterrestrial environments. J Microbiol Methods 80:1–13PubMedGoogle Scholar
  70. Pedersen K, Nilsson E, Arlinger J, Hallbeck L, O’Neill A (2004) Distribution, diversity and activity of microorganisms in the hyper-alkaline spring waters of Maqarin in Jordan. Extremophiles 8:151–164PubMedGoogle Scholar
  71. Price PB, Sowers T (2004) Temperature dependence of metabolic rates for microbial growth, maintenance, and survival. Proc Natl Acad Sci U S A 101:4631–4636PubMedPubMedCentralGoogle Scholar
  72. Rainy FA, Oren A (2006) Extremophile microorganisms and the method to handle them, Method Microbiol vol 35 Extremophiles. Elsevier, LondonGoogle Scholar
  73. Resing JA, Lebon G, Baker ET, Lupton JE, Embley RW, Massoth GJ, Chadwick WW, de Ronde CEJ (2007) Venting of acid-sulfate fluids in a high-sulfidation setting at NW rota-1 submarine volcano on the Mariana Arc. Econ Geol 102:1047–1061Google Scholar
  74. Reysenbach AL, Holm NG, Hershberger K, Prieur D, Jeanthon C (1998) In search of a subsurface biosphere at a slow-spreading ridge. Proc ODP Sci Results 158:355–365Google Scholar
  75. Reysenbach AL, Liu Y, Banta AB, Beveridge TJ, Kirshtein JD, Schouten S, Tivey MK, Vom Domm KL, Voytek MA (2006) A ubiquitous thermoacidophilic archaeon from deep-sea hydrothermal vents. Nature 442:444–447PubMedGoogle Scholar
  76. Rothschild LJ, Mancinelli RL (2001) Life in extreme environments. Nature 409:1092–1101PubMedGoogle Scholar
  77. Roussel EG, Cambon Bonavita MA, Querellou J, Cragg BA, Webster G, Prieur D, Parkes RJ (2008) Extending the sub-sea-floor biosphere. Science 320:1046PubMedGoogle Scholar
  78. Rowe GL, Brantley SL, Fernandez M, Fernandez JF, Borgia A, Barquero J (1992) Fluid-volcano interaction in an active stratovolcano: the crater lake system of Poás volcano, Costa Rica. J Volcanol Geotherm Res 49:23–51Google Scholar
  79. Russell JB, Cook GM (1995) Energetics of bacterial growth: balance of anabolic and catabolic reactions. Microbiol Rev 59:48–62PubMedPubMedCentralGoogle Scholar
  80. Salisbury MH, Shinohara M, Richter C, Shipboard Scientific Party (2002) Proc ODP Init Rep 195. doi: https://doi.org/10.2973/odp.proc.ir.195.2002
  81. Schink B (1997) Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Mol Biol Rev 61:262–280PubMedPubMedCentralGoogle Scholar
  82. Schleper C, Pühler G, Kühlmorgen B, Zillig W (1995) Life at extremely low pH. Nature 375:741–742PubMedGoogle Scholar
  83. Schrenk MO, Brazelton WJ, Lang SQ (2013) Serpentinization, carbon, and deep life. Rev Mineral Geochem 75:575–606Google Scholar
  84. Schuster M, Dachev T, Richter P, Häder DP (2012) R3DE: radiation risk radiometer-dosimeter on the International Space Station—optical radiation data recorded during 18 months of EXPOSE-E exposure to open space. Astrobiology 12:393–402PubMedPubMedCentralGoogle Scholar
  85. Seyfried WE Jr, Ding K, Berndt ME (1991) Phase equilibria constraints on the chemistry of hot spring fluids at mid-ocean ridges. Geochim Cosmochim Acta 55:3559–3580Google Scholar
  86. Shahbazi-Gahrouei D, Gholami M, Setayandeh S (2013) A review on natural background radiation. Adv Biomed Res 2:65PubMedPubMedCentralGoogle Scholar
  87. Shock EL (1992) Chemical environments of submarine hydrothermal systems. Orig Life Evol Biosph 22:67–107PubMedGoogle Scholar
  88. Spiess FN, RISE Group (1980) East Pacific Rise; hot springs and geophysical experiments. Science 297:1421–1433Google Scholar
  89. Swallow JC, Crease J (1965) Hot salty water at the bottom of the Red Sea. Nature 205:165–166Google Scholar
  90. Takai K (2011) Limits of life and the biosphere: lessons from the detection of microorganisms in the deep-sea and deep subsurface of the Earth. In: Gargaud M, Lopez-Garcia P, Martin H (eds) Origins and evolution of life – an astrobiological perspective. Cambridge University Press, Cambridge, UK, pp 469–486Google Scholar
  91. Takai K, Nakamura K (2011) Archaeal diversity and community development in deep-sea hydrothermal vents. Curr Opin Microbiol 14:282–291PubMedGoogle Scholar
  92. Takai K, Inoue A, Horikoshi K (1999) Thermaerobacter marianensis gen. nov., sp. nov., an aerobic extremely thermophilic marine bacterium from the 11,000 m deep Mariana Trench. Int J Syst Bacteriol 49:619–628PubMedGoogle Scholar
  93. Takai K, Komatsu T, Inagaki F, Horikoshi K (2001a) Distribution and colonization of archaea in a black smoker chimney structure. Appl Environ Microbiol 67:3618–3629PubMedPubMedCentralGoogle Scholar
  94. Takai K, Moser DP, Onstott TC, Spoelstra N, Pfiffner SM, Dohnalkova A, Fredrickson JK (2001b) Alkaliphilus transvaalensis gen. nov., sp. nov., an extremely alkaliphilic bacterium isolated from a deep South African gold mine. Int J Syst Evol Microbiol 51:1245–1256PubMedGoogle Scholar
  95. Takai K, Gamo T, Tsunogai U, Nakayama N, Hirayama H, Nealson KH, Horikoshi K (2004) Geochemical and microbiological evidence for a hydrogen-based, hyperthermophilic subsurface lithoautotrophic microbial ecosystem (HyperSLiME) beneath an active deep-sea hydrothermal field. Extremophiles 8:269–282PubMedGoogle Scholar
  96. Takai K, Moyer CL, Miyazaki M, Nogi Y, Hirayama H, Nealson KH, Horikoshi K (2005) Marinobacter alkaliphilus sp. nov., a novel alkaliphilic bacterium isolated from subseafloor alkaline serpentine mud from Ocean Drilling Program (ODP) Site 1200 at South Chamorro Seamount, Mariana Forearc. Extremophiles 9:17–27PubMedGoogle Scholar
  97. Takai K, Nakamura K, Toki T, Tsunogai T, Miyazaki M, Miyazaki J, Hirayama H, Nakagawa S, Nunoura T, Horikoshi K (2008a) Cell proliferation at 122 °C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high pressures cultivation. Proc Natl Acad Sci U S A 105:10949–10954PubMedPubMedCentralGoogle Scholar
  98. Takai K, Nunoura T, Ishibashi J, Lupton J, Suzuki R, Hamasaki H, Ueno Y, Kawagucci S, Gamo T, Suzuki Y, Hirayama H, Horikoshi K (2008b) Variability in the microbial communities and hydrothermal fluid chemistry at the newly discovered Mariner hydrothermal field, southern Lau Basin. J Geophys Res 113:G02031Google Scholar
  99. Takai K, Mottl MJ, Nielsen SH, The Expedition 331 Scientists (2011) Proc IODP Exp 331. doi: https://doi.org/10.2204/iodp.proc.331.2011 doi: https://doi.org/10.2204/iodp.proc.331.2011
  100. Takai K, Nakamura K, LaRowe D, Amend JP (2014) Chapter 2.4 – Life at subseafloor extremes. In: Stein R, Blackman D, Inagaki F, Larsen HC (eds) Earth and life processes discovered from subseafloor environments a decade of science achieved by the Integrated Ocean Drilling Program (IODP), Dev Mar Geol 7. Elsevier, Amsterdam, pp 149–174Google Scholar
  101. Takami H, Inoue A, Fuji F, Horikoshi K (1997) Microbial flora in the deepest sea mud of the Mariana Trench. FEMS Microbiol Lett 152:279–285PubMedGoogle Scholar
  102. Valentine DL (2007) Adaptations to energy stress dictate the ecology and evolution of the Archea. Nat Rev Microbiol 5:316–323PubMedGoogle Scholar
  103. Von Damm KL (1995) Controls on the chemistry and temporal variability of seafloor hydrothermal fluids. In: Humphris SE, Zierenberg RA, Mullineaux LS, Thomson RE (eds) Seafloor hydrothermal systems: physical, chemical, biological, and geological interactions, Geophysical Monograph 91. American Geophysical Union, Washington, DC, pp 222–247Google Scholar
  104. Vreeland RH, Rosenzweig WD, Powers DW (2000) Isolation of a 250 million-year-old halotolerant bacterium from a primary salt crystal. Nature 407:897–900PubMedGoogle Scholar
  105. Wilcock WSD, Fisher AT (2004) Geophysical constraints on the subseafloor environment near Mid-Ocean Ridge. In: Wilcock WSD, Delong EF, Kelley DS, Baross JA, Cary SC (eds) The subseafloor biosphere at mid-ocean ridges, Geophysical Monograph 144. American Geophysical Union, Washington, DC, pp 51–74Google Scholar
  106. Yanagawa K, Ijiri A, Breuker A, Sakai S, Miyoshi Y, Kawagucci S, Noguchi T, Hirai M, Schippers A, Ishibashi J, Takaki Y, Sunamura M, Urabe T, Nunoura T, Takai K (2017) Defining boundaries for the distribution of microbial communities beneath the sediment-buried, hydrothermally active seafloor. ISME J 11:529–542PubMedGoogle Scholar
  107. Yayanos AA (1986) Evolutional and ecological implications of the properties of deep-sea barophilic bacteria. Proc Natl Acad Sci U S A 83:9542–9546PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Subsurface Geobiological Analysis and Research (D-SUGAR)Japan Agency for Marine-Earth Science & Technology (JAMSTEC)YokosukaJapan

Personalised recommendations