Functions of Insulin and the Related Signaling Pathways in the Regulation of Toxicity of Environmental Toxicants or Stresses

  • Dayong Wang


In nematodes, the insulin signaling pathway can potentially participate in the regulation of various biological processes. In this chapter, we further discussed the involvement and possible pivotal function of core insulin signaling pathway in the regulation of toxicity of environmental toxicants or stresses. Moreover, we introduced the related information on the potential targets for DAF-16 and the possible upregulators for the insulin signaling pathway in regulating the toxicity of environmental toxicants or stresses. The possible formation of a large physical interaction surrounding the DAF-16 in regulating the toxicity of environmental toxicants or stresses needs to be paid more attention in nematodes.


Insulin and the related signaling pathways Molecular regulation Environmental exposure Caenorhabditis elegans 


  1. 1.
    Wang D-Y (2018) Nanotoxicology in Caenorhabditis elegans. Springer, SingaporeGoogle Scholar
  2. 2.
    Wu Q-L, Zhi L-T, Qu Y-Y, Wang D-Y (2016) Quantum dots increased fat storage in intestine of Caenorhabditis elegans by influencing molecular basis for fatty acid metabolism. Nanomedicine 12:1175–1184PubMedGoogle Scholar
  3. 3.
    Shakoor S, Sun L-M, Wang D-Y (2016) Multi-walled carbon nanotubes enhanced fungal colonization and suppressed innate immune response to fungal infection in nematodes. Toxicol Res 5:492–499Google Scholar
  4. 4.
    Zhao L, Wan H-X, Liu Q-Z, Wang D-Y (2017) Multi-walled carbon nanotubes-induced alterations in microRNA let-7 and its targets activate a protection mechanism by conferring a developmental timing control. Part Fibre Toxicol 14:27PubMedPubMedCentralGoogle Scholar
  5. 5.
    Zhao L, Qu M, Wong G, Wang D-Y (2017) Transgenerational toxicity of nanopolystyrene particles in the range of μg/L in nematode Caenorhabditis elegans. Environ Sci Nano 4:2356–2366Google Scholar
  6. 6.
    Zhao L, Rui Q, Wang D-Y (2017) Molecular basis for oxidative stress induced by simulated microgravity in nematode Caenorhabditis elegans. Sci Total Environ 607–608:1381–1390PubMedGoogle Scholar
  7. 7.
    Yin J-C, Liu R, Jian Z-H, Yang D, Pu Y-P, Yin L-H, Wang D-Y (2018) Di (2-ethylhexyl) phthalate-induced reproductive toxicity involved in DNA damage-dependent oocyte apoptosis and oxidative stress in Caenorhabditis elegans. Ecotoxicol Environ Saf 163:298–306PubMedGoogle Scholar
  8. 8.
    Xiao G-S, Zhao L, Huang Q, Yang J-N, Du H-H, Guo D-Q, Xia M-X, Li G-M, Chen Z-X, Wang D-Y (2018) Toxicity evaluation of Wanzhou watershed of Yangtze Three Gorges Reservoir in the flood season in Caenorhabditis elegans. Sci Rep 8:6734PubMedPubMedCentralGoogle Scholar
  9. 9.
    Ding X-C, Wang J, Rui Q, Wang D-Y (2018) Long-term exposure to thiolated graphene oxide in the range of μg/L induces toxicity in nematode Caenorhabditis elegans. Sci Total Environ 616–617:29–37PubMedGoogle Scholar
  10. 10.
    Li W-J, Wang D-Y, Wang D-Y (2018) Regulation of the response of Caenorhabditis elegans to simulated microgravity by p38 mitogen-activated protein kinase signaling. Sci Rep 8:857PubMedPubMedCentralGoogle Scholar
  11. 11.
    Christopoulos PF, Corthay A, Koutsilieris M (2018) Aiming for the insulin-like growth factor-1 system in breast cancer therapeutics. Cancer Treat Rev 63:79–95PubMedGoogle Scholar
  12. 12.
    Haeusler RA, McGraw TE, Accili D (2018) Biochemical and cellular properties of insulin receptor signalling. Nat Rev Mol Cell Biol 19:31–44PubMedGoogle Scholar
  13. 13.
    Bryan MR, Bowman AB (2017) Manganese and the insulin-IGF signaling network in Huntington’s disease and other neurodegenerative disorders. Adv Neurobiol 18:113–142PubMedGoogle Scholar
  14. 14.
    Guo CA, Guo S (2017) Insulin receptor substrate signaling controls cardiac energy metabolism and heart failure. J Endocrinol 233:R131–R143PubMedGoogle Scholar
  15. 15.
    Das D, Arur S (2017) Conserved insulin signaling in the regulation of oocyte growth, development, and maturation. Mol Reprod Dev 84:444–459PubMedPubMedCentralGoogle Scholar
  16. 16.
    Stanley M, Macauley SL, Holtzman DM (2016) Changes in insulin and insulin signaling in Alzheimer’s disease: cause or consequence? J Exp Med 213:1375–1385PubMedPubMedCentralGoogle Scholar
  17. 17.
    Riera CE, Merkwirth C, De Magalhaes Filho CD, Dillin A (2016) Signaling networks determining life span. Annu Rev Biochem 85:35–64PubMedGoogle Scholar
  18. 18.
    Soultoukis GA, Partridge L (2016) Dietary protein, metabolism, and aging. Annu Rev Biochem 85:5–34PubMedGoogle Scholar
  19. 19.
    Kenyon C (2010) The genetics of ageing. Nature 464:504–512PubMedGoogle Scholar
  20. 20.
    Lapierre LR, Hansen M (2012) Lessons from C. elegans: signaling pathways for longevity. Trends Endocrinol Metab 23:637–644PubMedPubMedCentralGoogle Scholar
  21. 21.
    Xiao G-S, Zhi L-T, Ding X-C, Rui Q, Wang D-Y (2017) Value of mir-247 in warning graphene oxide toxicity in nematode Caenorhabditis elegans. RSC Adv 7:52694–52701Google Scholar
  22. 22.
    Qu M, Li Y-H, Wu Q-L, Xia Y-K, Wang D-Y (2017) Neuronal ERK signaling in response to graphene oxide in nematode Caenorhabditis elegans. Nanotoxicology 11:520–533PubMedGoogle Scholar
  23. 23.
    Chen H, Li H-R, Wang D-Y (2017) Graphene oxide dysregulates Neuroligin/NLG-1-mediated molecular signaling in interneurons in Caenorhabditis elegans. Sci Rep 7:41655PubMedPubMedCentralGoogle Scholar
  24. 24.
    Xiao G-S, Chen H, Krasteva N, Liu Q-Z, Wang D-Y (2018) Identification of interneurons required for the aversive response of Caenorhabditis elegans to graphene oxide. J Nanbiotechnol 16:45Google Scholar
  25. 25.
    Zhao L, Kong J-T, Krasteva N, Wang D-Y (2018) Deficit in epidermal barrier induces toxicity and translocation of PEG modified graphene oxide in nematodes. Toxicol Res 7(6):1061–1070. CrossRefGoogle Scholar
  26. 26.
    Ding X-C, Rui Q, Wang D-Y (2018) Functional disruption in epidermal barrier enhances toxicity and accumulation of graphene oxide. Ecotoxicol Environ Saf 163:456–464PubMedGoogle Scholar
  27. 27.
    Ren M-X, Zhao L, Ding X-C, Krasteva N, Rui Q, Wang D-Y (2018) Developmental basis for intestinal barrier against the toxicity of graphene oxide. Part Fibre Toxicol 15:26PubMedPubMedCentralGoogle Scholar
  28. 28.
    Zhao Y-L, Yang R-L, Rui Q, Wang D-Y (2016) Intestinal insulin signaling encodes two different molecular mechanisms for the shortened longevity induced by graphene oxide in Caenorhabditis elegans. Sci Rep 6:24024PubMedPubMedCentralGoogle Scholar
  29. 29.
    Gubert P, Puntel B, Lehmen T, Bornhorst J, Avila DS, Aschner M, Soares FAA (2016) Reversible reprotoxic effects of manganese through DAF-16 transcription factor activation and vitellogenin downregulation in Caenorhabditis elegans. Life Sci 151:218–223PubMedGoogle Scholar
  30. 30.
    Avila DS, Somlyai G, Somlyai I, Aschner M (2012) Anti-aging effects of deuterium depletion on Mn-induced toxicity in a C. elegans model. Toxicol Lett 211:319–324PubMedPubMedCentralGoogle Scholar
  31. 31.
    Yang R-L, Zhao Y-L, Yu X-M, Lin Z-Q, Xi Z-G, Rui Q, Wang D-Y (2015) Insulin signaling regulates toxicity of traffic-related PM2.5 on intestinal development and function in nematode Caenorhabditis elegans. Toxicol Res 4:333–343Google Scholar
  32. 32.
    Wang S, Teng X, Wang Y, Yu H, Luo X, Xu A, Wu L (2014) Molecular control of arsenite-induced apoptosis in Caenorhabditis elegans: roles of insulin-like growth factor-1 signaling pathway. Chemosphere 112:248–255PubMedGoogle Scholar
  33. 33.
    Barsyte D, Lovejoy DA, Lithgow GJ (2001) Longevity and heavy metal resistance in daf-2 and age-1 long-lived mutants of Caenorhabditis elegans. FASEB J 15:627–634PubMedGoogle Scholar
  34. 34.
    Liu P-D, He K-W, Li Y-X, Wu Q-L, Yang P, Wang D-Y (2012) Exposure to mercury causes formation of male-specific structural deficits by inducing oxidative damage in nematodes. Ecotoxicol Environ Saf 79:90–100PubMedGoogle Scholar
  35. 35.
    Wang D-Y, Liu P-D, Yang Y-C, Shen L-L (2010) Formation of combined Ca/Cd toxicity on lifespan of nematode Caenorhabditis elegans. Ecotoxicol Environ Saf 73:1221–1230PubMedGoogle Scholar
  36. 36.
    Scott BA, Avidan MS, Crowder MC (2002) Regulation of hypoxic death in C. elegans by the insulin/IGF receptor homolog DAF-2. Science 296:2388–2391PubMedGoogle Scholar
  37. 37.
    Jensen VL, Simonsen KT, Lee Y-H, Park D, Riddle DL (2010) RNAi screen of DAF-16/FOXO target genes in C. elegans links pathogenesis and dauer formation. PLoS ONE 5:e15902PubMedPubMedCentralGoogle Scholar
  38. 38.
    McElwee J, Bubb K, Thomas JH (2003) Transcriptional outputs of the Caenorhabditis elegans forkhead protein DAF-16. Aging Cell 2:111–121PubMedGoogle Scholar
  39. 39.
    Murphy CT, McGarroll SA, Bargmann CI, Fraser A, Kamath RS, Ahringer J, Kenyon C (2003) Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature 424:277–284PubMedGoogle Scholar
  40. 40.
    Tepper RG, Ashraf J, Kaletsky R, Kleemann G, Murphy CT, Bussemaker HJ (2013) PQM-1 complements DAF-16 as a key transcriptional regulator of DAF-2-mediated development and longevity. Cell 154:676–690PubMedPubMedCentralGoogle Scholar
  41. 41.
    Ren M-X, Zhao L, Lv X, Wang D-Y (2017) Antimicrobial proteins in the response to graphene oxide in Caenorhabditis elegans. Nanotoxicology 11:578–590PubMedGoogle Scholar
  42. 42.
    Yang R-L, Rui Q, Kong L, Zhang N, Li Y, Wang X-Y, Tao J, Tian P-Y, Ma Y, Wei J-R, Li G-J, Wang D-Y (2016) Metallothioneins act downstream of insulin signaling to regulate toxicity of outdoor fine particulate matter (PM2.5) during Spring Festival in Beijing in nematode Caenorhabditis elegans. Toxicol Res 5:1097–1105Google Scholar
  43. 43.
    Warnhoff K, Murphy JT, Kumar S, Schneider DL, Peterson M, Hsu S, Guthrie J, Robertson JD, Kornfeld K (2014) The DAF-16 FOXO transcription factor regulates natc-1 to modulate stress resistance in Caenorhabditis elegans, linking insulin/IGF-1 signaling to protein N-terminal acetylation. PLoS Genet 10:e1004703PubMedPubMedCentralGoogle Scholar
  44. 44.
    Yu Y-L, Zhi L-T, Wu Q-L, Jing L-N, Wang D-Y (2018) NPR-9 regulates innate immune response in Caenorhabditis elegans by antagonizing activity of AIB interneurons. Cell Mol Immunol 15:27–37PubMedGoogle Scholar
  45. 45.
    Zhi L-T, Yu Y-L, Li X-Y, Wang D-Y, Wang D-Y (2017) Molecular control of innate immune response to Pseudomonas aeruginosa infection by intestinal let-7 in Caenorhabditis elegans. PLoS Pathog 13:e1006152. (9)PubMedPubMedCentralGoogle Scholar
  46. 46.
    Zhi L-T, Yu Y-L, Jiang Z-X, Wang D-Y (2017) mir-355 functions as an important link between p38 MAPK signaling and insulin signaling in the regulation of innate immunity. Sci Rep 7:14560PubMedPubMedCentralGoogle Scholar
  47. 47.
    Yu Y-L, Zhi L-T, Guan X-M, Wang D-Y, Wang D-Y (2016) FLP-4 neuropeptide and its receptor in a neuronal circuit regulate preference choice through functions of ASH-2 trithorax complex in Caenorhabditis elegans. Sci Rep 6:21485PubMedPubMedCentralGoogle Scholar
  48. 48.
    Singh V, Aballay A (2006) Heat-shock transcription factor (HSF)-1 pathway required for Caenorhabditis elegans immunity. Proc Natl Acad Sci U S A 103:13092–13097PubMedPubMedCentralGoogle Scholar
  49. 49.
    Yang R-L, Ren M-X, Rui Q, Wang D-Y (2016) A mir-231-regulated protection mechanism against the toxicity of graphene oxide in nematode Caenorhabditis elegans. Sci Rep 6:32214PubMedPubMedCentralGoogle Scholar
  50. 50.
    Wu Q-L, Han X-X, Wang D, Zhao F, Wang D-Y (2017) Coal combustion related fine particulate matter (PM2.5) induces toxicity in Caenorhabditis elegans by dysregulating microRNA expression. Toxicol Res 6:432–441Google Scholar
  51. 51.
    Zhuang Z-H, Li M, Liu H, Luo L-B, Gu W-D, Wu Q-L, Wang D-Y (2016) Function of RSKS-1-AAK-2-DAF-16 signaling cascade in enhancing toxicity of multi-walled carbon nanotubes can be suppressed by mir-259 activation in Caenorhabditis elegans. Sci Rep 6:32409PubMedPubMedCentralGoogle Scholar
  52. 52.
    Zhao Y-L, Wu Q-L, Li Y-P, Nouara A, Jia R-H, Wang D-Y (2014) In vivo translocation and toxicity of multi-walled carbon nanotubes are regulated by microRNAs. Nanoscale 6:4275–4284PubMedGoogle Scholar
  53. 53.
    Nouara A, Wu Q-L, Li Y-X, Tang M, Wang H-F, Zhao Y-L, Wang D-Y (2013) Carboxylic acid functionalization prevents the translocation of multi-walled carbon nanotubes at predicted environmental relevant concentrations into targeted organs of nematode Caenorhabditis elegans. Nanoscale 5:6088–6096PubMedGoogle Scholar
  54. 54.
    Wu Q-L, Li Y-X, Li Y-P, Zhao Y-L, Ge L, Wang H-F, Wang D-Y (2013) Crucial role of biological barrier at the primary targeted organs in controlling translocation and toxicity of multi-walled carbon nanotubes in nematode Caenorhabditis elegans. Nanoscale 5:11166–11178PubMedGoogle Scholar
  55. 55.
    Wu Q-L, Zhao Y-L, Li Y-P, Wang D-Y (2014) Molecular signals regulating translocation and toxicity of graphene oxide in nematode Caenorhabditis elegans. Nanoscale 6:11204–11212PubMedGoogle Scholar
  56. 56.
    Wolf M, Nunes F, Henkel A, Heinick A, Paul RJ (2008) The MAP kinase JNK-1 of Caenorhabditis elegans: location, activation, and influences over temperature-dependent insulin-like signaling, stress responses, and fitness. J Cell Physiol 214:721–729PubMedGoogle Scholar
  57. 57.
    Li J, Ebata A, Dong Y, Rizki G, Iwata T, Lee SS (2008) Caenorhabditis elegans HCF-1 functions in longevity maintenance as a DAF-16 regulator. PLoS Biol 6:e233PubMedPubMedCentralGoogle Scholar
  58. 58.
    Rizki G, Iwata TN, Li J, Riedel CG, Picard CL, Jan M, Murphy CT, Lee SS (2011) The evolutionarily conserved longevity determinants HCF-1 and SIR-2.1/SIRT1 collaborate to regulate DAF-16/FOXO. PLoS Genet 7:e1002235PubMedPubMedCentralGoogle Scholar
  59. 59.
    Berdichevsky A, Viswanathan M, Horvitz HR, Guarente L (2006) C. elegans SIR-2.1 interacts with 14-3-3 proteins to activate DAF-16 and extend life span. Cell 125:1165–1177PubMedGoogle Scholar
  60. 60.
    Olahova M, Veal EA (2015) A peroxiredoxin, PRDX-2, is required for insulin secretion and insulin/IIS-dependent regulation of stress resistance and longevity. Aging Cell 14:558–568PubMedPubMedCentralGoogle Scholar
  61. 61.
    Zhao Y-L, Zhi L-T, Wu Q-L, Yu Y-L, Sun Q-Q, Wang D-Y (2016) p38 MAPK-SKN-1/Nrf signaling cascade is required for intestinal barrier against graphene oxide toxicity in Caenorhabditis elegans. Nanotoxicology 10:1469–1479PubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Dayong Wang
    • 1
  1. 1.School of MedicineSoutheast UniversityNanjingChina

Personalised recommendations