Advertisement

Molecular Basis for Adaptive Response to Environmental Toxicants or Stresses

  • Dayong Wang
Chapter

Abstract

In nematodes, pretreatment with a mild stress or toxicant will induce an adaptive response to the following severe environmental toxicant or stress. In this chapter, we introduced the molecular alterations during the formation of adaptive response and the relevant molecular signaling pathways involved in the regulation of adaptive response induction. The future research focuses were further suggested and discussed.

Keywords

Molecular basis Adaptive response Caenorhabditis elegans 

References

  1. 1.
    Wang D-Y (2018) Nanotoxicology in Caenorhabditis elegans. Springer, SingaporeCrossRefGoogle Scholar
  2. 2.
    Ren M-X, Zhao L, Ding X-C, Krasteva N, Rui Q, Wang D-Y (2018) Developmental basis for intestinal barrier against the toxicity of graphene oxide. Part Fibre Toxicol 15:26PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Xiao G-S, Chen H, Krasteva N, Liu Q-Z, Wang D-Y (2018) Identification of interneurons required for the aversive response of Caenorhabditis elegans to graphene oxide. J Nanbiotechnol 16:45CrossRefGoogle Scholar
  4. 4.
    Ding X-C, Rui Q, Wang D-Y (2018) Functional disruption in epidermal barrier enhances toxicity and accumulation of graphene oxide. Ecotoxicol Environ Saf 163:456–464CrossRefGoogle Scholar
  5. 5.
    Zhao L, Kong J-T, Krasteva N, Wang D-Y (2018) Deficit in epidermal barrier induces toxicity and translocation of PEG modified graphene oxide in nematodes. Toxicol Res 7(6):1061–1070.  https://doi.org/10.1039/C8TX00136G CrossRefGoogle Scholar
  6. 6.
    Shao H-M, Han Z-Y, Krasteva N, Wang D-Y (2018) Identification of signaling cascade in the insulin signaling pathway in response to nanopolystyrene particles. Nanotoxicology in pressGoogle Scholar
  7. 7.
    Qu M, Xu K-N, Li Y-H, Wong G, Wang D-Y (2018) Using acs-22 mutant Caenorhabditis elegans to detect the toxicity of nanopolystyrene particles. Sci Total Environ 643:119–126PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Dong S-S, Qu M, Rui Q, Wang D-Y (2018) Combinational effect of titanium dioxide nanoparticles and nanopolystyrene particles at environmentally relevant concentrations on nematodes Caenorhabditis elegans. Ecotoxicol Environ Saf 161:444–450PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Li W-J, Wang D-Y, Wang D-Y (2018) Regulation of the response of Caenorhabditis elegans to simulated microgravity by p38 mitogen-activated protein kinase signaling. Sci Rep 8:857PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Xiao G-S, Zhao L, Huang Q, Yang J-N, Du H-H, Guo D-Q, Xia M-X, Li G-M, Chen Z-X, Wang D-Y (2018) Toxicity evaluation of Wanzhou watershed of Yangtze Three Gorges Reservoir in the flood season in Caenorhabditis elegans. Sci Rep 8:6734PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Xiao G-S, Zhao L, Huang Q, Du H-H, Guo D-Q, Xia M-X, Li G-M, Chen Z-X, Wang D-Y (2018) Biosafety assessment of water samples from Wanzhou watershed of Yangtze Three Gorges Reservoir in the quiet season in Caenorhabditis elegans. Sci Rep 8:14102CrossRefGoogle Scholar
  12. 12.
    Yin J-C, Liu R, Jian Z-H, Yang D, Pu Y-P, Yin L-H, Wang D-Y (2018) Di (2-ethylhexyl) phthalate-induced reproductive toxicity involved in DNA damage-dependent oocyte apoptosis and oxidative stress in Caenorhabditis elegans. Ecotoxicol Environ Saf 163:298–306CrossRefGoogle Scholar
  13. 13.
    Xiao G-S, Zhi L-T, Ding X-C, Rui Q, Wang D-Y (2017) Value of mir-247 in warning graphene oxide toxicity in nematode Caenorhabditis elegans. RSC Adv 7:52694–52701CrossRefGoogle Scholar
  14. 14.
    Wu Q-L, Han X-X, Wang D, Zhao F, Wang D-Y (2017) Coal combustion related fine particulate matter (PM2.5) induces toxicity in Caenorhabditis elegans by dysregulating microRNA expression. Toxicol Res 6:432–441CrossRefGoogle Scholar
  15. 15.
    Zhao Y-L, Wang D-Y (2012) Formation and regulation of adaptive response in nematode Caenorhabditis elegans. Oxidat Med Cell Longev 2012:564093CrossRefGoogle Scholar
  16. 16.
    Wang D-Y, Liu P-D, Xing X-J (2010) Pretreatment with mild UV irradiation increases the resistance of nematode Caenorhabditis elegans to toxicity on locomotion behavior from metal exposure. Environ Toxicol Pharmacol 29:213–222PubMedCrossRefGoogle Scholar
  17. 17.
    Wang D-Y, Xing X-J (2010) Pre-treatment with mild UV irradiation suppresses reproductive toxicity induced by subsequent cadmium exposure in nematodes. Ecotoxicol Environ Saf 73:423–429PubMedCrossRefGoogle Scholar
  18. 18.
    Wang D-Y, Xing X-J (2009) Pre-treatment with mild metal exposure suppresses the neurotoxicity on locomotion behavior induced by the subsequent severe metal exposure in Caenorhabditis elegans. Environ Toxicol Pharmacol 28:459–464PubMedCrossRefGoogle Scholar
  19. 19.
    Helmcke K, Aschner M (2010) Hormetic effect of methylmercury on Caenorhabditis elegans. Toxicol Appl Pharmacol 248:156–164PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Yanase S, Ishii N (2008) Hypoxia exposure induced hormesis decreases mitochondrial superoxide radical levels via Ins/IGF-1 signaling pathway in a long-lived age-1 mutant of Caenorhabditis elegans. J Radiat Res 49:211–218PubMedCrossRefGoogle Scholar
  21. 21.
    Webster CM, Deline ML, Watts JL (2013) Stress response pathways protect germ cells from omega-6 polyunsaturated fatty acid-mediated toxicity in Caenorhabditis elegans. Dev Biol 373:14–25PubMedCrossRefGoogle Scholar
  22. 22.
    Kurino C, Furuhashi T, Sudoh K, Sakamoto K (2017) Isoamyl alcohol odor promotes longevity and stress tolerance via DAF-16 in Caenorhabditis elegans. Biochem Biophys Res Commun 485:395–399PubMedCrossRefGoogle Scholar
  23. 23.
    Pickering AM, Staab TA, Tower J, Sieburth D, Davies KJ (2013) A conserved role for the 20S proteasome and Nrf2 transcription factor in oxidative stress adaptation in mammals, Caenorhabditis elegans and Drosophila melanogaster. J Exp Biol 216:543–553PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Ermolaeva MA, Segref A, Dakhovnik A, Ou HL, Schneider JI, Utermöhlen O, Hoppe T, Schumacher B (2013) DNA damage in germ cells induces an innate immune response that triggers systemic stress resistance. Nature 501:416–420PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Yee C, Yang W, Hekimi S (2014) The intrinsic apoptosis pathway mediates the pro-longevity response to mitochondrial ROS in C. elegans. Cell 157:897–909PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Spiro Z, Arslan MA, Somogyvari M, Nguyen MT, Smolders A, Dancso B, Nemeth N, Elek Z, Braeckman BP, Csermely P, Soti C (2012) RNA interference links oxidative stress to the inhibition of heat stress adaptation. Antioxid Redox Signal 17:890–901PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Yanase S, Hartman PS, Ito A, Ishii N (1999) Oxidative stress pretreatment increases the X-radiation resistance of the nematode Caenorhabditis elegans. Mutat Res 426:31–39PubMedCrossRefGoogle Scholar
  28. 28.
    Ye B-P, Rui Q, Wu Q-L, Wang D-Y (2010) Metallothioneins are required for formation of cross-adaptation response to neurobehavioral toxicity from lead and mercury exposure in nematodes. PLoS ONE 5:e14052PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Kozlowski L, Garvis S, Bedet C, Palladino F (2014) The Caenorhabditis elegans HP1 family protein HPL-2 maintains ER homeostasis through the UPR and hormesis. Proc Natl Acad Sci U S A 111:5956–5961PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Wu Q-L, Cao X-O, Yan D, Wang D-Y, Aballay A (2015) Genetic screen reveals link between maternal-effect sterile gene mes-1 and P. aeruginosa-induced neurodegeneration in C. elegans. J Biol Chem 290:29231–29239PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Sun L-M, Zhi L-T, Shakoor S, Liao K, Wang D-Y (2016) microRNAs involved in the control of innate immunity in Candida infected Caenorhabditis elegans. Sci Rep 6:36036PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Yu Y-L, Zhi L-T, Guan X-M, Wang D-Y, Wang D-Y (2016) FLP-4 neuropeptide and its receptor in a neuronal circuit regulate preference choice through functions of ASH-2 trithorax complex in Caenorhabditis elegans. Sci Rep 6:21485PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Zhi L-T, Yu Y-L, Jiang Z-X, Wang D-Y (2017) mir-355 functions as an important link between p38 MAPK signaling and insulin signaling in the regulation of innate immunity. Sci Rep 7:14560PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Zhi L-T, Yu Y-L, Li X-Y, Wang D-Y, Wang D-Y (2017) Molecular control of innate immune response to Pseudomonas aeruginosa infection by intestinal let-7 in Caenorhabditis elegans. PLoS Pathog 13:e1006152PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Yu Y-L, Zhi L-T, Wu Q-L, Jing L-N, Wang D-Y (2018) NPR-9 regulates innate immune response in Caenorhabditis elegans by antagonizing activity of AIB interneurons. Cell Mol Immunol 15:27–37CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Dayong Wang
    • 1
  1. 1.School of MedicineSoutheast UniversityNanjingChina

Personalised recommendations