Advertisement

Functions of G-Protein-Coupled Receptors and Ion Channels and the Downstream Cytoplasmic Signals in the Regulation of Toxicity of Environmental Toxicants or Stresses

  • Dayong Wang
Chapter

Abstract

It is an assumption that environmental toxicants or stresses will first activate or suppress certain G-protein-coupled receptors (GPCRs) and/or ion channels on the surface of targeted cells and then activate a subset of downstream cytoplasmic signaling cascades. Based on this assumption, we here first introduced and discussed the involvement of GPCRs (epidermal DCAR-1, intestinal FSHR-1, neuropeptide receptors, and neuronal SRH-220) and ion channels (cyclic nucleotide-gated ion channel, voltage-gated calcium ion channel, potassium ion channel, and chloride intracellular channel) in the regulation of toxicity of environmental toxicants or stresses and the underlying mechanisms. Moreover, we discussed the potential activation of cytoplasmic signaling cascade, containing ARR-1/arrestin, G-proteins, PLC-DAG-PKD signaling, and Ca2+ signaling, upon the exposure to environmental toxicants or stresses and the corresponding important functions.

Keywords

G-protein-coupled receptors (GPCRs) Ion channel Cytoplasmic signaling cascade Environmental exposure Caenorhabditis elegans 

References

  1. 1.
    Wang D-Y (2018) Nanotoxicology in Caenorhabditis elegans. Springer, SingaporeCrossRefGoogle Scholar
  2. 2.
    Ren M-X, Zhao L, Ding X-C, Krasteva N, Rui Q, Wang D-Y (2018) Developmental basis for intestinal barrier against the toxicity of graphene oxide. Part Fibre Toxicol 15:26PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Xiao G-S, Chen H, Krasteva N, Liu Q-Z, Wang D-Y (2018) Identification of interneurons required for the aversive response of Caenorhabditis elegans to graphene oxide. J Nanbiotechnol 16:45CrossRefGoogle Scholar
  4. 4.
    Ding X-C, Rui Q, Wang D-Y (2018) Functional disruption in epidermal barrier enhances toxicity and accumulation of graphene oxide. Ecotoxicol Environ Saf 163:456–464CrossRefGoogle Scholar
  5. 5.
    Zhao L, Kong J-T, Krasteva N, Wang D-Y (2018) Deficit in epidermal barrier induces toxicity and translocation of PEG modified graphene oxide in nematodes. Toxicol Res 7(6):1061–1070.  https://doi.org/10.1039/C8TX00136G CrossRefGoogle Scholar
  6. 6.
    Shao H-M, Han Z-Y, Krasteva N, Wang D-Y (2018) Identification of signaling cascade in the insulin signaling pathway in response to nanopolystyrene particles. Nanotoxicology in pressGoogle Scholar
  7. 7.
    Qu M, Xu K-N, Li Y-H, Wong G, Wang D-Y (2018) Using acs-22 mutant Caenorhabditis elegans to detect the toxicity of nanopolystyrene particles. Sci Total Environ 643:119–126PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Dong S-S, Qu M, Rui Q, Wang D-Y (2018) Combinational effect of titanium dioxide nanoparticles and nanopolystyrene particles at environmentally relevant concentrations on nematodes Caenorhabditis elegans. Ecotoxicol Environ Saf 161:444–450PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Li W-J, Wang D-Y, Wang D-Y (2018) Regulation of the response of Caenorhabditis elegans to simulated microgravity by p38 mitogen-activated protein kinase signaling. Sci Rep 8:857PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Xiao G-S, Zhao L, Huang Q, Yang J-N, Du H-H, Guo D-Q, Xia M-X, Li G-M, Chen Z-X, Wang D-Y (2018) Toxicity evaluation of Wanzhou watershed of Yangtze Three Gorges Reservoir in the flood season in Caenorhabditis elegans. Sci Rep 8:6734PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Xiao G-S, Zhao L, Huang Q, Du H-H, Guo D-Q, Xia M-X, Li G-M, Chen Z-X, Wang D-Y (2018) Biosafety assessment of water samples from Wanzhou watershed of Yangtze Three Gorges Reservoir in the quiet season in Caenorhabditis elegans. Sci Rep 8:14102CrossRefGoogle Scholar
  12. 12.
    Yin J-C, Liu R, Jian Z-H, Yang D, Pu Y-P, Yin L-H, Wang D-Y (2018) Di (2-ethylhexyl) phthalate-induced reproductive toxicity involved in DNA damage-dependent oocyte apoptosis and oxidative stress in Caenorhabditis elegans. Ecotoxicol Environ Saf 163:298–306CrossRefGoogle Scholar
  13. 13.
    Xiao G-S, Zhi L-T, Ding X-C, Rui Q, Wang D-Y (2017) Value of mir-247 in warning graphene oxide toxicity in nematode Caenorhabditis elegans. RSC Adv 7:52694–52701CrossRefGoogle Scholar
  14. 14.
    Zhao L, Wan H-X, Liu Q-Z, Wang D-Y (2017) Multi-walled carbon nanotubes-induced alterations in microRNA let-7 and its targets activate a protection mechanism by conferring a developmental timing control. Part Fibre Toxicol 14:27PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Zhao L, Rui Q, Wang D-Y (2017) Molecular basis for oxidative stress induced by simulated microgravity in nematode Caenorhabditis elegans. Sci Total Environ 607–608:1381–1390PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Wu Q-L, Han X-X, Wang D, Zhao F, Wang D-Y (2017) Coal combustion related fine particulate matter (PM2.5) induces toxicity in Caenorhabditis elegans by dysregulating microRNA expression. Toxicol Res 6:432–441CrossRefGoogle Scholar
  17. 17.
    Ruan Q-L, Qiao Y, Zhao Y-L, Xu Y, Wang M, Duan J-A, Wang D-Y. (2016) Beneficial effects of Glycyrrhizae radix extract in preventing oxidative damage and extending the lifespan of Caenorhabditis elegans. J Ethnopharmacol 177: 101–110CrossRefGoogle Scholar
  18. 18.
    Zhi L-T, Yu Y-L, Li X-Y, Wang D-Y, Wang D-Y (2017) Molecular control of innate immune response to Pseudomonas aeruginosa infection by intestinal let-7 in Caenorhabditis elegans. PLoS Pathog 13:e1006152PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Zhi L-T, Yu Y-L, Jiang Z-X, Wang D-Y (2017) mir-355 functions as an important link between p38 MAPK signaling and insulin signaling in the regulation of innate immunity. Sci Rep 7:14560PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Sun L-M, Liao K, Hong C-C, Wang D-Y (2017) Honokiol induces reactive oxygen species-mediated apoptosis in Candida albicans through mitochondrial dysfunction. PLoS ONE 12:e0172228PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Sun L-M, Liao K, Wang D-Y (2017) Honokiol induces superoxide production by targeting mitochondrial respiratory chain complex I in Candida albicans. PLoS ONE 12:e0184003PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Sun L-M, Zhi L-T, Shakoor S, Liao K, Wang D-Y (2016) microRNAs involved in the control of innate immunity in Candida infected Caenorhabditis elegans. Sci Rep 6:36036PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Sun L-M, Liao K, Li Y-P, Zhao L, Liang S, Guo D, Hu J, Wang D-Y (2016) Synergy between PVP-coated silver nanoparticles and azole antifungal against drug-resistant Candida albicans. J Nanosci Nanotechnol 16:2325–2335CrossRefGoogle Scholar
  24. 24.
    Wu Q-L, Cao X-O, Yan D, Wang D-Y, Aballay A (2015) Genetic screen reveals link between maternal-effect sterile gene mes-1 and P. aeruginosa-induced neurodegeneration in C. elegans. J Biol Chem 290:29231–29239PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Reboul J, Ewbank JJ (2016) GPCR in invertebrate innate immunity. Biochem Pharmacol 114:82–87PubMedCrossRefGoogle Scholar
  26. 26.
    Zugasti O, Bose N, Squiban B, Belougne J, Kurz CL, Schroeder FC, Pujol N, Ewbank JJ (2014) Activation of a G protein–coupled receptor by its endogenous ligand triggers the innate immune response of Caenorhabditis elegans. Nat Immunol 15:833–838PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Powell JR, Kim DH, Ausubel FM (2009) The G protein-coupled receptor FSHR-1 is required for the Caenorhabditis elegans innate immune response. Proc Natl Acad Sci U S A 106:2782–2787PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Styer KL, Singh V, Macosko E, Steele SE, Bargmann CI, Aballay A (2008) Innate immunity in Caenorhabditis elegans is regulated by neurons expressing NPR-1/GPCR. Science 322:460–464PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Yu Y-L, Zhi L-T, Guan X-M, Wang D-Y, Wang D-Y (2016) FLP-4 neuropeptide and its receptor in a neuronal circuit regulate preference choice through functions of ASH-2 trithorax complex in Caenorhabditis elegans. Sci Rep 6:21485PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Yu Y-L, Zhi L-T, Wu Q-L, Jing L-N, Wang D-Y (2018) NPR-9 regulates innate immune response in Caenorhabditis elegans by antagonizing activity of AIB interneurons. Cell Mol Immunol 15:27–37CrossRefGoogle Scholar
  31. 31.
    Sieburth D, Ch’ng Q, Dybbs M, Tavazoie M, Kennedy S, Wang D, Dupuy D, Rual JF, Hill DE, Vidal M, Ruvkun G, Kaplan JM (2005) Systematic analysis of genes required for synapse structure and function. Nature 436:510–517PubMedCrossRefGoogle Scholar
  32. 32.
    Sieburth D, Madison JM, Kaplan JM (2007) PKC-1 regulates secretion of neuropeptides. Nat Neurosci 10:49–57PubMedCrossRefGoogle Scholar
  33. 33.
    E L, Zhou T, Koh S, Chuang M, Sharma R, Pujol N, Chisholm AD, Eroglu C, Matsunami H, Yan D (2018) An antimicrobial peptide and its neuronal receptor regulate dendrite degeneration in aging and infection. Neuron 97:125–138PubMedCrossRefGoogle Scholar
  34. 34.
    Cho S, Choi KY, Park C (2004) A new putative cyclic nucleotide-gated channel gene, cng-3, is critical for thermotolerance in Caenorhabditis elegans. Biochem Biophys Res Commun 325:525–531PubMedCrossRefGoogle Scholar
  35. 35.
    Estevez M, Estevez AO, Cowie RH, Gardner KL (2004) The voltage-gated calcium channel UNC-2 is involved in stress-mediated regulation of tryptophan hydroxylase. J Neurochem 88:102–113PubMedCrossRefGoogle Scholar
  36. 36.
    Cai S, Sesti F (2009) Oxidation of a potassium channel causes progressive sensory function loss during ageing. Nat Neurosci 12:611–617PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Liang J, Shaulov Y, Savage-Dunn C, Boissinot S, Hoque T (2017) Chloride intracellular channel proteins respond to heat stress in Caenorhabditis elegans. PLoS ONE 12:e0184308PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Singh V, Aballay A (2012) Endoplasmic reticulum stress pathway required for immune homeostasis is neurally controlled by arrestin-1. J Biol Chem 287:33191–33197PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Lackner MR, Nurrish SJ, Kaplan JM (1999) Facilitation of synaptic transmission by EGL- 30 Gqα and EGL-8 PLCβ: DAG binding to UNC-13 is required to stimulate acetylcholine release. Neuron 24:335–346PubMedCrossRefGoogle Scholar
  40. 40.
    Kawli T, Wu C, Tan M (2010) Systemic and cell intrinsic roles of Gqα signaling in the regulation of innate immunity, oxidative stress, and longevity in Caenorhabditis elegans. Proc Natl Acad Sci U S A 107:13788–13793PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Los FCO, Ha C, Aroian RV (2013) Neuronal Goα and CAPS regulate behavioral and immune responses to bacterial pore-forming toxins. PLoS ONE 8:e54528PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Anderson A, Laurenson-Schafer H, Partridge FA, Hodgkin J, McMullan R (2013) Serotonergic chemosensory neurons modify the C. elegans immune response by regulating G-protein signaling in epithelial cells. PLoS Pathog 9:e1003787PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Najibi M, Labed SA, Visvikis O, Irazoqui JE (2016) An evolutionarily conserved PLC-PKD-TFEB pathway for host defense. Cell Rep 15:1728–1742PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Ren M, Feng H, Fu Y, Land M, Rubin CS (2009) Protein kinase D (DKF-2), a diacylglycerol effector, is an essential regulator of C. elegans innate immunity. Immunity 30:521–532PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Park B, Lee D, Yu J, Jung S, Choi K, Lee J, Lee J, Kim YS, Lee JI, Kwon JY, Lee J, Singson A, Song WK, Eom SH, Park C, Kim DH, Bandyopadhyay J, Ahnn J (2001) Calreticulin, a calcium-binding molecular chaperone, is required for stress response and fertility in Caenorhabditis elegans. Mol Biol Cell 12:2835–2845PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Dayong Wang
    • 1
  1. 1.School of MedicineSoutheast UniversityNanjingChina

Personalised recommendations