• Guangyuan Gao


This chapter briefly reviews Bayesian statistics, Markov chain Monte Carlo methods, and non-life insurance claims reserving methods. Some of the most influential literature are listed in this chapter. Two Bayesian inferential engines, BUGS and Stan, are introduced. At the end the monograph structure is given and the general notation is introduced.


  1. Bayes, T. (1763). An essay towards solving a problem in the doctrine of chances. Philosophical Transactions of the Royal Society, 330–418.Google Scholar
  2. Bornhuetter, R. L., & Ferguson, R. E. (1972). The actuary and IBNR. Proceedings of the Casualty Actuarial Society, 59, 181–195.Google Scholar
  3. Box, G. E., & Tiao, G. C. (1973). Bayesian inference in statistical analysis. New York: Wiley Classics.zbMATHGoogle Scholar
  4. Brehm, P. J., Gluck, S., Kreps, R., Major, J., Mango, D., & Shaw, R., et al. (2007). Enterprise risk analysis for property and liability insurance companies: A practical guide to standard models and emerging solutions. New York: Guy Carpenter & Company.Google Scholar
  5. Bühlmann, H. (1967). Experience rating and credibility. ASTIN Bulletin, 4, 199–207.CrossRefGoogle Scholar
  6. Christiansen, M. C., & Niemeyer, A. (2014). The fundamental definition of the solvency capital requirement in Solvency II. ASTIN Bulletin, 44, 501–533.MathSciNetCrossRefGoogle Scholar
  7. Duane, S., Kennedy, A. D., Pendleton, B. J., & Roweth, D. (1987). Hybrid Monte Carlo. Physics Letters B, 195, 216–222.CrossRefGoogle Scholar
  8. England, P. D., & Verrall, R. J. (2002). Stochastic claims reserving in general insurance. British Actuarial Journal, 8, 443–518.CrossRefGoogle Scholar
  9. England, P. D., Verrall, R. J., & Wüthrich, M. V. (2012). Bayesian over-dispersed poisson model and the Bornhuetter-Ferguson claims reserving method. Annals of Actuarial Science, 6, 258–283.CrossRefGoogle Scholar
  10. Gelfand, A. E., & Smith, A. F. M. (1990). Sampling-based approaches to calculating marginal densities. Journal of the American Statistical Association, 85, 398–409.MathSciNetCrossRefGoogle Scholar
  11. Gelfand, A. E., Hills, S. E., Racinepoon, A., & Smith, A. F. M. (1990). Illustration of Bayesian-inference in normal data models using Gibbs sampling. Journal of the American Statistical Association, 85, 972–985.CrossRefGoogle Scholar
  12. Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (2014). Bayesian data analysis (3rd ed.). Boca Raton: Chapman & Hall.zbMATHGoogle Scholar
  13. Geman, S., & Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6, 721–741.CrossRefGoogle Scholar
  14. Green, P. J. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika, 82, 711–732.MathSciNetCrossRefGoogle Scholar
  15. Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: Data mining, inference, and prediction (2nd ed.). Springer, New York.Google Scholar
  16. Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57, 97–109.MathSciNetCrossRefGoogle Scholar
  17. Jeffreys, H. (1961). Theory of probability (3rd ed.). London: Oxford University Press.zbMATHGoogle Scholar
  18. Joe, H., & Xu, J. J. (1996). The estimation method of inference functions for margins for multivariate models.
  19. Joe, H. (2014). Dependence modeling with copulas. New York: Chapman & Hall.CrossRefGoogle Scholar
  20. Jordan, M. I., Ghahramani, Z., Jaakkola, T. S., & Saul, L. K. (1999). An introduction to variational methods for graphical models. Machine Learning, 37, 183–233.CrossRefGoogle Scholar
  21. Laplace, P. S. (1785). Memoire sur les approximations des formules qui sont fonctions de tres grands nombres. In Memoires de l’Academie Royale des Sciences.Google Scholar
  22. Laplace, P. S. (1810). Memoire sur les approximations des formules qui sont fonctions de tres grands nombres, et sur leur application aux probabilites. In Memoires de l’Academie des Science de Paris.Google Scholar
  23. Lindley, D. V. (1965). Introduction to probability and statistics from Bayesian viewpoint (Vol. 2). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  24. Longley-Cook, L. H. (1962). An introduction to credibility theory. Proceedings of the Casualty Actuarial Society, 49, 194–221.Google Scholar
  25. Lunn, D., Jackson, C., Best, N., Thomas, A., & Spiegelhalter, D. (2012). The BUGS book: A practical introduction to Bayesian analysis. Boca Raton: Chapman & Hall.Google Scholar
  26. Mack, T. (1993). Distribution-free calculation of the standard error of chain ladder reserve estimates. ASTIN Bulletin, 23, 213–225.CrossRefGoogle Scholar
  27. Mack, T. (1999). The standard error of chain-ladder reserve estimates, recursive calculation and inclusion of a tail factor. ASTIN Bulletin, 29, 361–366.CrossRefGoogle Scholar
  28. Mack, T. (2008). The prediction error of Bornhuetter-Ferguson. ASTIN Bulletin, 38, 87.MathSciNetCrossRefGoogle Scholar
  29. Mayerson, A. L. (1964). A Bayesian view of credibility. Proceedings of the Casualty Actuarial Society, 51, 7–23.Google Scholar
  30. Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953). Equation of state calculations by fast computing machines. Journal of Chemical Physics, 21, 1087–1092.CrossRefGoogle Scholar
  31. Neal, R. M. (1994). An improved acceptance procedure for the hybrid Monte Carlo algorithm. Journal of Computational Physics, 111, 194–203.MathSciNetCrossRefGoogle Scholar
  32. Simpson, L., & McCourt, P. (2012). Worksafe Victoria actuarial valuation of outstanding claims liability for the scheme as at 30 June 2012, Technical report. PricewaterhouseCoopers Actuarial Pty Ltd.Google Scholar
  33. Taylor, G. (2000). Loss reserving: An actuarial perspective. Boston: Kluwer Academic Publishers.Google Scholar
  34. Whitney, A. W. (1918). The theory of experience rating. Proceedings of the Casualty Actuarial Society, 4, 274–292.Google Scholar
  35. Wüthrich, M. V., & Merz, M. (2008). Stochastic claims reserving methods in insurance. Chichester: Wiley & Sons.zbMATHGoogle Scholar
  36. Wüthrich, M. V., & Merz, M. (2015). Stochastic claims reserving manual: Advances in dynamic modelling. SSRN, ID 2649057.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.School of StatisticsRenmin University of ChinaBeijingChina

Personalised recommendations