Advertisement

Craniocaudal Migration/Neurocristopathy

  • Hisayoshi Kawahara
  • Hiroomi OkuyamaEmail author
Chapter

Abstract

Craniocaudal migration theory was presented as a classical pathogenesis of Hirschsprung’s disease (HD) by Okamoto and Ueda in 1967, showing that the human myenteric plexus was formed by neuroblasts which were distributed to the alimentary tract by craniocaudal direction during the fifth to the twelfth week of gestation. Later, it had long been accepted that neural crest cells (NCCs) either enter the foregut mesenchyme proximally and migrate down its length in a rostral to caudal fashion (vagal NCCs) or they enter the gut at the distal end and migrate caudal to rostral (sacral NCCs). Recently, it has been proposed that transmesenteric NCCs constituted a large part of the hindgut enteric nervous system by taking a shortcut to the colon. The maldevelopment of vagal or transmesenteric NCCs is considered to be a pathogenesis of HD. The term “neurocristopathy” was presented for a category of neural crest maldevelopment by Bolande in 1974. HD is a simple neurocristopathy. There have been reported various simple nonneoplastic and neoplastic neurocristopathies. Complex neurocristopathies associated with HD include Waardenburg syndrome type 4 (Waardenburg-Shah syndrome), neuroblastoma, multiple endocrine neoplasia type 2, congenital central hyperventilation, and others. It is important to screen an association of nonneoplastic and neoplastic neurocristopathies in patients who have a neurocristopathy.

Keywords

Craniocaudal migration Neural crest cell (NCC) Vagal NCC Transmesenteric NCC Sacral NCC Neurocristopathy 

References

  1. 1.
    Okamoto E, Ueda T. Embryogenesis of intramural ganglia of the gut and its relation to Hirschsprung’s disease. J Pediatr Surg. 1967;2:437–43.CrossRefGoogle Scholar
  2. 2.
    Burns AJ. Migration of neural crest-derived enteric nervous system precursor cells to and within the gastrointestinal tract. Int J Dev Biol. 2005;49:143–50.CrossRefGoogle Scholar
  3. 3.
    Musser MA, Michelle Southard-Smith E. Balancing on the crest – evidence for disruption of the enteric ganglia via inappropriate lineage segregation and consequences for gastrointestinal function. Dev Biol. 2013;382:356–64.CrossRefGoogle Scholar
  4. 4.
    O’Donnell AM, Puri P. Skip segment Hirschsprung’s disease: a systematic review. Pediatr Surg Int. 2010;26:1065–9.CrossRefGoogle Scholar
  5. 5.
    Nishiyama C, Uesaka T, Manabe T, Yonekura Y, Nagasawa T, Newgreen DF, Young HM, Enomoto H. Trans-mesenteric neural crest cells are the principal source of the colonic enteric nervous system. Nat Neurosci. 2012;15:1211–8.CrossRefGoogle Scholar
  6. 6.
    Obermayr F, Hotta R, Enomoto H, Young HM. Development and developmental disorders of the enteric nervous system. Nat Rev Gastroenterol Hepatol. 2013;10:43–57.CrossRefGoogle Scholar
  7. 7.
    Butler Tjaden NE, Trainor PA. The developmental etiology and pathogenesis of Hirschsprung disease. Transl Res. 2013;162:1–15.CrossRefGoogle Scholar
  8. 8.
    Druckenbrod NR, Epstein ML. Age-dependent changes in the gut environment restrict the invasion of the hindgut by enteric neural progenitors. Development. 2009;136:3195–203.CrossRefGoogle Scholar
  9. 9.
    Barlow AJ, Dixon J, Dixon MJ, Trainor PA. Balancing neural crest cell intrinsic processes with those of the microenvironment in Tcof1 haploinsufficient mice enables complete enteric nervous system formation. Hum Mol Genet. 2012;21:1782–93.CrossRefGoogle Scholar
  10. 10.
    Bolande R. The neurocristopathies. A unifying concept of disease arising in neural crest maldevelopment. Hum Pathol. 1974;5:409–20.CrossRefGoogle Scholar
  11. 11.
    Horstadius S. The neural crest. Its properties and derivatives in the light of experimental methods. London: Oxford University Press; 1950. p. 1–12.Google Scholar
  12. 12.
    Bolande RP. Neurocristopathy: its growth and development in 20 years. Pediatr Pathol Lab Med. 1997;17:1–25.CrossRefGoogle Scholar
  13. 13.
    Martucciello G. Hirschsprung’s disease as a neurochristopathy. Pediatr Surg Int. 1997;12:2–10.CrossRefGoogle Scholar
  14. 14.
    Amiel J, Sproat-Emison E, Garcia-Barcelo M, Lantieri F, Burzynski G, Borrego S, Pelet A, Arnold S, Miao X, Griseri P, Brooks AS, Antinolo G, de Pontual L, Clement-Ziza M, Munnich A, Kashuk C, West K, Wong KK, Lyonnet S, Chakravarti A, Tam PK, Ceccherini I, Hofstra RM, Fernandez R, Hirschsprung Disease Consortium. Hirschsprung disease, associated syndromes and genetics: a review. J Med Genet. 2008;45(1):1–14.CrossRefGoogle Scholar
  15. 15.
    Kniffin CL. Waardenburg syndrome, type 4A; WS4A. Online Mendelian inheritance of man. Updated: 5/24/2016; https://www.omim.org/entry/277580.
  16. 16.
    Song J, Feng Y, Acke FR, Coucke P, Vleminckx K, Dhooge IJ. Hearing loss in Waardenburg syndrome: a systematic review. Clin Genet. 2016;89(4):416–25.CrossRefGoogle Scholar
  17. 17.
    Hansford JR, Mulligan LM. Multiple endocrine neoplasia type 2 and RET: from neoplasia to neurogenesis. J Med Genet. 2000;37:817–27.CrossRefGoogle Scholar
  18. 18.
    Kniffin CL. Multiple endocrine neoplasia, type IIA; MEN 2A. Online Mendelian inheritance of man. Updated: 4/3/2014; https://www.omim.org/entry/171400.
  19. 19.
    Kniffin CL. Multiple endocrine neoplasia, type IIB; MEN 2B. Online Mendelian inheritance of man. Updated: 8/22/2012; https://www.omim.org/entry/162300.
  20. 20.
    Kniffin CL. Thyroid carcinoma, familial medullary; MTC. Online Mendelian inheritance of man. Updated: 5/2/2006; https://www.omim.org/entry/155240.
  21. 21.
    Moore SW, Zaahl M. The Hirschsprung’s-multiple endocrine neoplasia connection. Clinics. 2012;67(Suppl 1):63–7.CrossRefGoogle Scholar
  22. 22.
    Coyle D, Friedmacher F, Puri P. The association between Hirschsprung’s disease and multiple endocrine neoplasia type 2a: a systematic review. Pediatr Surg Int. 2014;30:751–6.CrossRefGoogle Scholar
  23. 23.
    Romeo G, Ceccherini I, Celli J, Priolo M, Betsos N, Bonardi G, Seri M, Yin L, Lerone M, Jasonni V, Martucciello G. Association of multiple endocrine neoplasia type 2 and Hirschsprung disease. J Intern Med. 1998;243:515–20.CrossRefGoogle Scholar
  24. 24.
    Rakover Y, Dharan M, Luboshitsky R. Hirschsprung’s disease associated with isolated familial medullary carcinoma of the thyroid. J Pediatr Endocrinol. 1994;7:373–7.PubMedGoogle Scholar
  25. 25.
    Armstrong AE, Weese-Mayer DE, Mian A, Maris JM, Batra V, Gosiengfiao Y, Reichek J, Madonna MB, Bush JW, Shore RM, Walterhouse DO. Treatment of neuroblastoma in congenital central hypoventilation syndrome with a PHOX2B polyalanine repeat expansion mutation: new twist on a neurocristopathy syndrome. Pediatr Blood Cancer. 2015;62:2007–10.CrossRefGoogle Scholar
  26. 26.
    Haddad GG, Mazza NM, Defendini R, Blanc WA, Driscoll JM, Epstein MA, Epstein RA, Mellins RB. Congenital failure of automatic control of ventilation, gastrointestinal motility and heart rate. Medicine. 1978;57:517–26.CrossRefGoogle Scholar
  27. 27.
    Trang H, Dehan M, Beaufils F, Zaccaria I, Amiel J, Gaultier C, French CCHS Working Group. The French Congenital Central Hypoventilation Syndrome Registry: general data, phenotype, and genotype. Chest. 2005;127:72–9.CrossRefGoogle Scholar
  28. 28.
    Croaker GD, Shi E, Simpson E, Cartmill T, Cass DT. Congenital central hypoventilation syndrome and Hirschsprung’s disease. Arch Dis Child. 1998;78:316–22.CrossRefGoogle Scholar
  29. 29.
    Tsoutsinos A, Karanasios E, Chatzis AC. Haddad syndrome. Hell J Cardiol. 2016;57:45–7.CrossRefGoogle Scholar
  30. 30.
    Rohrer T, Trachsel D, Engelcke G, Hammer J. Congenital central hypoventilation syndrome associated with Hirschsprung’s disease and neuroblastoma: case of multiple neurocristopathies. Pediatr Pulmonol. 2002;33:71–6.CrossRefGoogle Scholar
  31. 31.
    Szymońska I, Borgenvik TL, Karlsvik TM, Halsen A, Malecki BK, Saetre SE, Jagła M, Kruczek P, Talowska AM, Drabik G, Zasada M, Malecki M. Novel mutation-deletion in the PHOX2B gene of the patient diagnosed with Neuroblastoma, Hirschsprung’s Disease, and Congenital Central Hypoventilation Syndrome (NB-HSCR-CCHS) Cluster. J Genet Syndr Gene Ther. 2015;6:269.  https://doi.org/10.4172/2157-7412.1000269.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Pediatric SurgeryHamamatsu University School of MedicineHamamatsuJapan
  2. 2.Department of Pediatric SurgeryOsaka University Graduate School of MedicineSuitaJapan

Personalised recommendations