CS-MRI Reconstruction Problem

  • Bhabesh DekaEmail author
  • Sumit Datta
Part of the Springer Series on Bio- and Neurosystems book series (SSBN, volume 9)


Compressed sensing MRI (CS-MRI) seeks good quality MR image reconstruction from relatively less number of measurements than the traditional Nyquist sampling theorem. This in return increases the computational effort for reconstruction which may be dealt with some efficient solvers based on convex optimization. To reconstruct MR image from undersampled Fourier data, an underdetermined system of equations is needed to be solved with some additional information as regularization priors, like, compressibility of MR images in the spatial as well as wavelet domains.


  1. 1.
    Candes, E.J., Romberg, J.K., Tao, T.: Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math. 59(8), 1207–1223 (2006)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Candes, E., Wakin, M., Boyd, S.: Enhancing sparsity by reweighted L1 minimization. J. Fourier Anal. Appl. 14(5), 877–905 (2008)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit. SIAM J. Sci. Comput. 20, 33–61 (1998)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Davis, G., Mallat, S., Avellaneda, M.: Adaptive greedy approximations. Constr. Approx. 13(1), 57–98 (1997)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Deka, B., Datta, S.: High throughput MR image reconstruction using compressed sensing. In: Proceedings of the 2014 Indian Conference on Computer Vision Graphics and Image Processing, ICVGIP14, pp. 89:1–89:6. ACM, Bangalore, India (2014)Google Scholar
  6. 6.
    Donoho, D.L., Tsaig, Y., Drori, I., Starck, J.L.: Sparse solution of underdetermined systems of linear equations by stagewise orthogonal matching pursuit. IEEE Trans. Inf. Theory 58(2), 1094–1121 (2012)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Efron, B., Hastie, T., Johnstone, I., Tibshirani, R.: Least angle regression. Ann. Stat. 32(2), 407–451 (2004)Google Scholar
  8. 8.
    Eldar, Y.C., Kuppinger, P., Bolcskei, H.: Block-sparse signals: uncertainty relations and efficient recovery. IEEE Trans. Signal Process. 58(6), 3042–3054 (2010)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Gamper, U., Boesiger, P., Kozerke, S.: Compressed sensing in dynamic MRI. Magn. Reson. Med. 59(2), 365–373 (2008)CrossRefGoogle Scholar
  10. 10.
    Huang, J., Zhang, S., Metaxas, D.N.: Efficient MR image reconstruction for compressed MR imaging. Med. Image Anal. 15(5), 670–679 (2011)CrossRefGoogle Scholar
  11. 11.
    Lustig, M., Donoho, D., Pauly, J.M.: Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn. Reson. Med. 58, 1182–1195 (2007)CrossRefGoogle Scholar
  12. 12.
    Ma, S., Yin, W., Zhang, Y., Chakraborty, A.: An efficient algorithm for compressed MR imaging using total variation and wavelets. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2008), pp. 1–8. Anchorage, AK (2008)Google Scholar
  13. 13.
    Majumdar, A.: Compressed Sensing for Magnetic Resonance Image Reconstruction. Cambridge University Press, Delhi (2015)Google Scholar
  14. 14.
    Majumdar, A., Ward, R.K.: Fast group sparse classification. Can. J. Electr. Comput. Eng. 34(4), 136–144 (2009)CrossRefGoogle Scholar
  15. 15.
    Mallat, S., Zhang, Z.: Matching pursuits with time-frequency dictionaries. IEEE Trans. Signal Process. 41, 3397–3415 (1993)CrossRefGoogle Scholar
  16. 16.
    Murphey, M., Keutzer, K., Vasanawala, S., Lustig, M.: Clinically feasible reconstruction time for \(L_1\)-SPIRiT parallel imaging and compressed sensing MRI. In: Proceedings of the International Society for Magnetic Resonance in Medicine, pp. 48–54 (2010)Google Scholar
  17. 17.
    Murphey, M., Alley, M., Demmel, J., Keutzer, K., Vasanawala, S., Lustig, M.: Fast \(L_1\)-SPIRiT compressed sensing parralel imaging MRI: scalable parallel implementation and clinically feasible runtime. IEEE Trans. Med. Imaging 31(6), 1250–1262 (2012)CrossRefGoogle Scholar
  18. 18.
    Needell, D., Tropp, J.: CoSaMP: iterative signal recovery from incomplete and inaccurate samples. Appl. Comput. Harmon. Anal. 26(3), 301–321 (2009)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Needell, D., Vershynin, R.: Signal recovery from incomplete and inaccurate measurements via regularized orthogonal matching pursuit. IEEE J. Sel. Top. Signal Process. 4(2), 310–316 (2010)CrossRefGoogle Scholar
  20. 20.
    Pati, Y.C., Rezaiifar, R., Rezaiifar, Y.C.P.R., Krishnaprasad, P.S.: Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition. In: Proceedings of the 27th Annual Asilomar Conference on Signals, Systems, and Computers, pp. 40–44 (1993)Google Scholar
  21. 21.
    Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D 60, 259–268 (1992)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Tropp, J.A., Gilbert, A.C., Strauss, M.J.: Algorithms for simultaneous sparse approximation. part i. Signal Process. 86(3), 572–588 (2006)Google Scholar
  23. 23.
    Usman, M., Prieto, C., Odille, F., Atkinson, D., Schaeffter, T., Batchelor, P.G.: A computationally efficient OMP-based compressed sensing reconstruction for dynamic MRI. Phys. Med. Biol. 56(7), N99–N114 (2011)CrossRefGoogle Scholar
  24. 24.
    Vasanawala, S., Murphy, M., Alley, M., Lai, P., Keutzer, K., Pauly, J., Lustig, M.: Practical parallel imaging compressed sensing MRI: summary of two years of experience in accelerating body MRI of pediatric patients. In: IEEE International Symposium on Biomedical Imaging: From Nano to Macro 2011, pp. 1039-1043. Chicago, IL (2011)Google Scholar
  25. 25.
    Vasanawala, S., Alley, M., Hargreaves, B., Barth, R., Pauly, J., Lustig, M.: Improved pediatric MR imaging with compressed sensing. Radiology 256(2), 607–616 (2010)CrossRefGoogle Scholar
  26. 26.
    Wang, J., Kwon, S., Shim, B.: Generalized orthogonal matching pursuit. IEEE Trans. Signal Process. 60(12), 6202–6216 (2012)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Yang, A.Y., Ganesh, A., Zhou, Z., Sastry, S., Ma, Y.: A review of fast \(L_1\)-minimization algorithms for robust face recognition (2010) CoRR arXiv:abs/1007.3753
  28. 28.
    Yang, J., Zhang, Y., Yin, W.: A fast alternating direction method for TV\(L_1\)-\(L_2\) signal reconstruction from partial Fourier data. IEEE J. Sel. Top. Signal Process. 4(2), 288–297 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringTezpur UniversityTezpurIndia

Personalised recommendations