Introduction to Compressed Sensing Magnetic Resonance Imaging

  • Bhabesh DekaEmail author
  • Sumit Datta
Part of the Springer Series on Bio- and Neurosystems book series (SSBN, volume 9)


Magnetic resonance imaging (MRI) is a widely used medical imaging tool where data acquisition is performed in the k-space, i.e., the Fourier transform domain. However, it has a fundamental limitation of being slow or having a long data acquisition time. Due to this, MRI is restricted in some clinical applications. Compressed sensing in MRI demonstrates that it is possible to reconstruct good quality MR images from a fewer k-space measurements. In this regard, convex optimization based \(\ell _1\)-norm minimization techniques are able to reconstruct MR images from undersampled k-space measurements with some computational overheads compared to the conventional MRI where inverse Fourier transform is sufficient to get images from the fully acquired k-space. A few practical implementations of compressed sensing in clinical MRI demonstrate that they are able to significantly reduce the imaging time of traditional MRI. This is a very significant development in the field of medical imaging as it would improve both the patient care and the healthcare economy.


  1. 1.
    Bushberg, J.T., Seibert, A.J., Leidholdt, E.M., Boone, J.M.: The Essential Physics of Medical Imaging. Lippincott Williams and Wilkins, PA (2012)Google Scholar
  2. 2.
    Candes, E.J., Romberg, J.K.: Signal recovery from random projections. In: Proceedings of SPIE Computational Imaging III, vol. 5674, pp. 76-86. San Jose (2005)Google Scholar
  3. 3.
    Candes, E., Wakin, M.: An introduction to compressive sampling. IEEE Signal Process. Mag. 25(2), 21–30 (2008)CrossRefGoogle Scholar
  4. 4.
    Candes, E.J., Romberg, J.K., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Candes, E.J., Romberg, J.K., Tao, T.: Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math. 59(8), 1207–1223 (2006)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Chelu, R.G., van den Bosch, A.E., van Kranenburg, M., Hsiao, A., van den Hoven, A.T., Ouhlous, M., Budde, R.P.J., Beniest, K.M., Swart, L.E., Coenen, A., Lubbers, M.M., Wielopolski, P.A., Vasanawala, S.S., Roos-Hesselink, J.W., Nieman, K.: Qualitative grading of aortic regurgitation: a pilot study comparing CMR 4D flow and echocardiography. Int. J. Cardiovasc. Imaging 32, 301–307 (2016)CrossRefGoogle Scholar
  7. 7.
    Chelu, R.G., Wanambiro, K.W., Hsiao, A., Swart, L.E., Voogd, T., van den Hoven, A.T., van Kranenburg, M., Coenen, A., Boccalini, S., Wielopolski, P.A., Vogel, M.W., Krestin, G.P., Vasanawala, S.S., Budde, R.P., Roos-Hesselink, J.W., Nieman, K.: Cloud-processed 4D CMR flow imaging for pulmonary flow quantification European. J. Radiol. 85, 1849–1856 (2016)CrossRefGoogle Scholar
  8. 8.
    Cheng, J.Y., Zhang, T., Pauly, J.M., Vasanawala, S.S.: Feasibility of ultra-high-dimensional flow imaging for rapid pediatric cardiopulmonary MRI. J. Cardiovasc. Magn. Reson. 18(Suppl 1), 217 (2016)CrossRefGoogle Scholar
  9. 9.
    Deka, B., Datta, S.: A practical under-sampling pattern for compressed sensing MRI. In: Advances in Communication and Computing. Lecture Notes in Electrical Engineering, vol. 347, chap. 9, pp. 115–125. Springer, India (2015)Google Scholar
  10. 10.
    Hsiao, A., Lustig, M., Alley, M.T., Murphy, M.J., Vasanawala, S.S.: Evaluation of valvular insufficiency and shunts with parallel-imaging compressed-sensing 4D phase-contrast MR imaging with stereoscopic 3D velocity-fusion volume-rendered visualization. Radiology 265, 87–95 (2012)CrossRefGoogle Scholar
  11. 11.
    Lustig, M., Alley, M.T., Vasanawala, S., Donoho, D., Pauly, J.: \(L_1\)-SPIRiT: autocalibrating parallel imaging compressed sensing. In: 17th Annual Meeting of ISMRM, p. 379. Honolulu, Hawaii (2009)Google Scholar
  12. 12.
    Lustig, M., Keutzer, K., Vasanawala, S.: Introduction to parallelizing compressed sensing magnetic resonance imaging. In: Patterson, D., Gannon, D., Wrinn, M. (eds.) The Berkeley Par Lab: Progress in the Parallel Computing Landscape, pp. 105–139. Microsoft Corporation (2013)Google Scholar
  13. 13.
    Lustig, M., Pauly, J.: SPIRiT: iterative self-consistent parallel imaging reconstruction from arbitrary k-space. Magn. Reson. Med. 64(2), 457–471 (2010)Google Scholar
  14. 14.
    Lustig, M., Donoho, D., Pauly, J.M.: Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn. Reson. Med. 58, 1182–1195 (2007)CrossRefGoogle Scholar
  15. 15.
    Lustig, M., Donoho, D., Santos, J., Pauly, J.: Compressed sensing MRI. IEEE Signal Process. Mag. 25(2), 72–82 (2008)CrossRefGoogle Scholar
  16. 16.
    Majumdar, A.: Compressed Sensing for Magnetic Resonance Image Reconstruction. Cambridge University Press, New York (2015)Google Scholar
  17. 17.
    McRobbie, D.W., Moore, E.A., Graves, M.J., Prince, M.R.: MRI from Picture to Proton, 2nd edn. Cambridge University Press, Cambridge (2006)Google Scholar
  18. 18.
    Murphey, M., Keutzer, K., Vasanawala, S., Lustig, M.: Clinically feasible reconstruction time for \(L_1\)-SPIRiT parallel imaging and compressed sensing MRI. In: Proceedings of the International Society for Magnetic Resonance in Medicine, pp. 48–54 (2010)Google Scholar
  19. 19.
    Murphey, M., Alley, M., Demmel, J., Keutzer, K., Vasanawala, S., Lustig, M.: Fast \(L_1\)-SPIRiT compressed sensing parralel imaging MRI: scalable parallel implementation and clinically feasible runtime. IEEE Trans. Med. Imaging 31(6), 1250–1262 (2012)CrossRefGoogle Scholar
  20. 20.
    Saru, R.G., Wanambiro, K., Hsiao, A., Boccalini, S., Coenen, A., Budde, R., Wielopolski, P., Vasanawala, S., Roos-Hesselink, J., Nieman, K.: Global left ventricular function quantification with CMR 4D Flow. J. Cardiovasc. Magn. Reson. 18, 308 (2016)CrossRefGoogle Scholar
  21. 21.
    Saru, R.G., Wanambiro, K., Hsiao, A., Swart, L.E., Boccalini, S., Vogel, M., Budde, R., Vasanawala, S., Roos-Hesselink, J., Nieman, K.: Remote CMR 4D flow quantification of pulmonary flow. J. Cardiovasc. Magn. Reson. 18, 307 (2016)CrossRefGoogle Scholar
  22. 22.
    Usman, M., Batchelor, P.G.: Optimized Sampling Patterns for Practical Compressed MRI. Marseille, France (2009)Google Scholar
  23. 23.
    Vasanawala, S., Murphy, M., Alley, M., Lai, P., Keutzer, K., Pauly, J., Lustig, M.: Practical parallel imaging compressed sensing MRI: summary of two years of experience in accelerating body MRI of pediatric patients. In: IEEE International Symposium on Biomedical Imaging: From Nano to Macro 2011, pp. 1039–1043. Chicago, IL (2011)Google Scholar
  24. 24.
    Vasanawala, S.S., Lustig, M.: Advances in pediatric body MRI. Pediatr Radiol. 41(Suppl 2), S549–S554 (2011)CrossRefGoogle Scholar
  25. 25.
    Vasanawala, S., Alley, M., Hargreaves, B., Barth, R., Pauly, J., Lustig, M.: Improved pediatric MR imaging with compressed sensing. Radiology 256(2), 607–616 (2010)CrossRefGoogle Scholar
  26. 26.
    Yang, J., Zhang, Y., Yin, W.: A fast alternating direction method for TVL1-L2 signal reconstruction from partial Fourier data. IEEE J. Sel. Top. Signal Process. 4(2), 288–297 (2010)CrossRefGoogle Scholar
  27. 27.
    Zhang, T., Yousaf, U., Hsiao, A., Cheng, J.Y., Alley, M.T., Lustig, M., Pauly, J.M., Vasanawala, S.S.: Clinical performance of a free-breathing spatiotemporally accelerated 3-D time-resolved contrast-enhanced pediatric abdominal MR angiography. Pediatr Radiol. 45(11), 1635–1643 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringTezpur UniversityTezpurIndia

Personalised recommendations