Near Field Nanoscale Temperature Measurement Using AlGaN:Er3+ Film via Photoluminescence Nanothermometry

  • Susil BaralEmail author
  • Ali Rafiei Miandashti
  • Hugh H. Richardson
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)


In this chapter we present a new optical temperature measurement and thermal imaging technique combining near-field microscopy and Er3+ photoluminescence spectroscopy. The technique is used with two different approaches towards local temperature measurement and thermal imaging. In the first approach, gold nanostructures on top of Al0.94 Ga0.06 N thin film embedded with Er3+ ions are optically excited through the SNOM tip with 532 nm CW laser to generate thermal images with the spatial resolution comparable to the true size of the nanostructures. In the second approach, nanostructures on top of thermal sensor film are excited with 532 nm CW laser through the substrate with a large spot size (FWHM ~ 10 µm). The Er3+ emission from the film is collected in transmission mode through the SNOM tip. In this chapter the steady state temperature change under optical illumination is measured for different sized clusters made from 40 nm diameter gold nanoparticles and it is found that the maximum temperature change and temperature decay length (r1/2) into the surrounding medium increases linearly with cluster radius. Based upon this observation, we can conclude that if a large cell is embedded with optical heaters with a distance between heaters that allows for collective heating, then the thermal profile outside of the cell decays with a decay constant that is dependent upon the size of the cell. This chapter is reprinted (adapted) with permission from Nanoscale, 2017, 4(7), pp 18641869. Copyright 2017 Royal Society of Chemistry.


  1. 1.
    Fang Z, Zhen Y-R, Neumann O, Polman A, Garcia Javier, de Abajo F, Nordlander P, Halas NJ (2013) Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle. Nano Lett 13(4):1736–1742CrossRefGoogle Scholar
  2. 2.
    Polman A (2013) Solar steam nanobubbles. ACS Nano 7(1):15–18CrossRefGoogle Scholar
  3. 3.
    El-Sayed IH, Huang XH, El-Sayed MA (2006) Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Lett 239(1):129–135CrossRefGoogle Scholar
  4. 4.
    Hirsch LR, Stafford RJ, Bankson JA, Sershen SR, Rivera B, Price RE, Hazle JD, Halas NJ, West JL (2003) Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci USA 100(23):13549–13554CrossRefGoogle Scholar
  5. 5.
    Huang XH, Jain PK, El-Sayed IH, El-Sayed MA (2008) Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med Sci 23(3):217–228CrossRefGoogle Scholar
  6. 6.
    Park JH, von Maltzahn G, Ong LL, Centrone A, Hatton TA, Ruoslahti E, Bhatia SN, Sailor MJ (2010) Cooperative nanoparticles for tumor detection and photothermally triggered drug delivery. Adv Mater 22(8):880–885CrossRefGoogle Scholar
  7. 7.
    Alkilany AM, Thompson LB, Boulos SP, Sisco PN, Murphy CJ (2012) Gold nanorods: their potential for photothermal therapeutics and drug delivery, tempered by the complexity of their biological interactions. Adv Drug Deliv Rev 64(2):190–199CrossRefGoogle Scholar
  8. 8.
    Alvarez-Puebla RA, Liz-Marzan LM (2012) Traps and cages for universal SERS detection. Chem Soc Rev 41(1):43–51CrossRefGoogle Scholar
  9. 9.
    Govorov AO, Zhang W, Skeini T, Richardson H, Lee J, Kotov NA (2006) Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances. Nanoscale Res Lett 1(1):84–90CrossRefGoogle Scholar
  10. 10.
    Govorov AO, Richardson HH (2007) Generating heat with metal nanoparticles. Nano Today 2(1):30–38CrossRefGoogle Scholar
  11. 11.
    Rodriguez-Sevilla P, Zhang YH, Haro-Gonzalez P, Sanz-Rodriguez F, Jaque F, Sole JG, Liu XG, Jaque D (2016) Thermal scanning at the cellular level by an optically trapped upconverting fluorescent particle. Adv Mater 28(12):2421–2426CrossRefGoogle Scholar
  12. 12.
    Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313(5793):1642–1645CrossRefGoogle Scholar
  13. 13.
    Hell SW, Wichmann J (1994) Breaking the diffraction resolution limit by stimulated-emission—stimulated-emission-depletion fluorescence microscopy. Opt Lett 19(11):780–782CrossRefGoogle Scholar
  14. 14.
    Moerner WE, Fromm DP (2003) Methods of single-molecule fluorescence spectroscopy and microscopy. Rev Sci Instrum 74(8):3597–3619CrossRefGoogle Scholar
  15. 15.
    Xiong Y, Liu Z, Sun C, Zhang X (2007) Two-dimensional Imaging by far-field superlens at visible wavelengths. Nano Lett 7(11):3360–3365CrossRefGoogle Scholar
  16. 16.
    Carlson MT, Khan A, Richardson HH (2011) Local temperature determination of optically excited nanoparticles and nanodots. Nano Lett 11(3):1061–1069CrossRefGoogle Scholar
  17. 17.
    Gurumurugan K, Chen H, Harp GR, Jadwisienczak WM, Lozykowski HJ (1999) Visible cathodoluminescence of Er-doped amorphous AlN thin films. Appl Phys Lett 74(20):3008–3010CrossRefGoogle Scholar
  18. 18.
    Garter MJ, Steckl AJ (2002) Temperature behavior of visible and infrared electroluminescent devices fabricated on erbium-doped GaN. IEEE Trans Elect Dev 49(1):48–54CrossRefGoogle Scholar
  19. 19.
    Baral S, Johnson SC, Alaulamie AA, Richardson HH (2016) Nanothermometry using optically trapped erbium oxide nanoparticle. Appl Phys Mater Sci Process 122:(4)CrossRefGoogle Scholar
  20. 20.
    Hecht B, Sick B, Wild UP, Deckert V, Zenobi R, Martin OJF, Pohl DW (2000) Scanning near-field optical microscopy with aperture probes: fundamentals and applications. J Chem Phys 112(18):7761–7774CrossRefGoogle Scholar
  21. 21.
    Baffou G, Quidant R, de Abajo FJG (2010) Nanoscale control of optical heating in complex plasmonic systems. ACS Nano 4(2):709–716CrossRefGoogle Scholar
  22. 22.
    Specht E The best known packings of equal circles in a circle (complete up to N = 2600).
  23. 23.
    Graham RL, Lubachevsky BD, Nurmela KJ, Ostergard PRJ (1998) Dense packings of congruent circles in a circle. Discret Math 181(1–3):139–154CrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Susil Baral
    • 1
    Email author
  • Ali Rafiei Miandashti
    • 2
  • Hugh H. Richardson
    • 3
  1. 1.Department of Chemistry and Chemical BiologyCornell UniversityIthacaUSA
  2. 2.Department of Chemistry and BiochemistryOhio UniversityAthensUSA
  3. 3.Department of Chemistry and BiochemistryOhio UniversityAthensUSA

Personalised recommendations