Photothermal Heating Study Using Er2O3 Photoluminescence Nanothermometry

  • Susil BaralEmail author
  • Ali Rafiei Miandashti
  • Hugh H. Richardson
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)


A new optical probe technique using a laser-trapped erbium oxide nanoparticle (~150 nm) can measure absolute temperature with a spatial resolution on the size of the nanoparticle. This technique (scanning optical probe thermometry) is used to collect the thermal image of an optically excited gold nanostructures. The thermal profile has a Gaussian line shape that is a convolution of the point spread function of the scanning optical probe thermometer and the true thermal profile. A convolution analysis reveals that the point spread function of our measurement is a Gaussian with a FWHM of 165 nm. We attribute the width of this function to clustering of Er2O3 nanoparticles in solution. Also, the scanning optical probe thermometer is used to measure the temperature where vapor nucleation occurs. Subsequently, the temperature inside the vapor bubble rises to the melting point of the gold nanostructure (~1300) where a temperature plateau is observed. The rise in temperature is attributed to inhibition of thermal transfer to the surrounding liquid by the thermal insulating vapor cocoon. This chapter is reprinted (adapted) with permission from Applied Physics A. (2016) 122: 340. Copyright 2016 Springer.


  1. 1.
    Boyer D, Tamarat P, Maali A, Lounis B, Orrit M (2002) Photothermal imaging of nanometer-sized metal particles among scatterers. Science 297(5584):1160–1163CrossRefGoogle Scholar
  2. 2.
    Cognet L, Tardin C, Boyer D, Choquet D, Tamarat P, Lounis B (2003) Single metallic nanoparticle imaging for protein detection in cells. Proc Natl Acad Sci USA 100(20):11350–11355CrossRefGoogle Scholar
  3. 3.
    Berciaud S, Cognet L, Blab GA, Lounis B (2004) Photothermal heterodyne imaging of individual nonfluorescent nanoclusters and nanocrystals. Phys Rev Lett 93:(25)CrossRefGoogle Scholar
  4. 4.
    Baffou G, Kreuzer MP, Kulzer F, Quidant R (2009) Temperature mapping near plasmonic nanostructures using fluorescence polarization anisotropy. Opt Express 17(5):3291–3298CrossRefGoogle Scholar
  5. 5.
    Baffou G, Bon P, Savatier J, Polleux J, Zhu M, Merlin M, Rigneault H, Monneret S (2012) Thermal imaging of nanostructures by quantitative optical phase analysis. ACS Nano 6(3):2452–2458CrossRefGoogle Scholar
  6. 6.
    Pollock HM, Hammiche A (2001) Micro-thermal analysis: techniques and applications. J Phys D-Appl Phys 34(9):R23–R53CrossRefGoogle Scholar
  7. 7.
    Sadat S, Tan A, Chua YJ, Reddy P (2010) Nanoscale thermometry using point contact thermocouples. Nano Lett 10(7):2613–2617CrossRefGoogle Scholar
  8. 8.
    Carlson MT, Khan A, Richardson HH (2011) Local temperature determination of optically excited nanoparticles and nanodots. Nano Lett 11(3):1061–1069CrossRefGoogle Scholar
  9. 9.
    Loew P, Kim B, Takama N, Bergaud C (2008) High-spatial-resolution surface-temperature mapping using fluorescent thermometry. Small 4(7):908–914CrossRefGoogle Scholar
  10. 10.
    Vetrone F, Naccache R, Zamarron A, Juarranz de la Fuente A, Sanz-Rodriguez F, Martinez Maestro L, Martin Rodriguez E, Jaque D, Garcia Sole J, Capobianco JA (2010) Temperature sensing using fluorescent nanothermometers. ACS Nano 4(6):3254–3258CrossRefGoogle Scholar
  11. 11.
    Li S, Zhang K, Yang J, Lin L, Yang H (2007) Single quantum dots as local temperature markers. Nano LettGoogle Scholar
  12. 12.
    Van de Broek B, Grandjean D, Trekker J, Ye J, Verstreken K, Maes G, Borghs G, Nikitenko S, Lagae L, Bartic C, Temst K, Van Bael MJ (2011) Temperature determination of resonantly excited plasmonic branched gold nanoparticles by X-ray absorption spectroscopy. Small 7(17):2498–2506Google Scholar
  13. 13.
    Setoura K, Werner D, Hashimoto S (2012) Optical scattering spectral thermometry and refractometry of a single gold nanoparticle under CW laser excitation. J Phys Chem C 116(29):15458–15466CrossRefGoogle Scholar
  14. 14.
    Bendix PM, Nader S, Reihani S, Oddershede LB (2010) Direct measurements of heating by electromagnetically trapped gold nanoparticles on supported lipid bilayers. ACS Nano 4(4):2256–2262CrossRefGoogle Scholar
  15. 15.
    Lee J, Govorov AO, Kotov NA (2005) Bioconjugated superstructures of CdTe nanowires and nanoparticles: multistep cascade forster resonance energy transfer and energy channeling. Nano Lett 5(10):2063–2069CrossRefGoogle Scholar
  16. 16.
    Govorov AO, Zhang W, Skeini T, Richardson H, Lee J, Kotov NA (2006) Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances. Nanoscale Res Lett 1(1):84–90CrossRefGoogle Scholar
  17. 17.
    Garter MJ, Steckl AJ (2002) Temperature behavior of visible and infrared electroluminescent devices fabricated on erbium-doped GaN. IEEE Trans Electron Device 49(1):48–54CrossRefGoogle Scholar
  18. 18.
    Govorov AO, Richardson HH (2007) Generating heat with metal nanoparticles. Nano Today 2(1):30–38CrossRefGoogle Scholar
  19. 19.
    Liang Z, Sasikumar K, Keblinski P (2014) Thermal transport across a substrate-thin-film interface: effects of film thickness and surface roughness. Phys Rev Lett 113:(6)Google Scholar
  20. 20.
    Carlson MT, Green AJ, Khan A, Richardson HH (2012) Optical measurement of thermal conductivity and absorption cross-section of gold nanowires. J Phys Chem C 116(15):8798–8803CrossRefGoogle Scholar
  21. 21.
    Baral S, Green AJ, Livshits MY, Govorov AO, Richardson HH (2014) Comparison of vapor formation of water at the solid/water interface to colloidal solutions using optically excited gold nanostructures. ACS Nano 8(2):1439–1448CrossRefGoogle Scholar
  22. 22.
    Kotaidis V, Plech A (2005) Cavitation dynamics on the nanoscale. Appl Phys Lett 87(21):3CrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Susil Baral
    • 1
    Email author
  • Ali Rafiei Miandashti
    • 2
  • Hugh H. Richardson
    • 3
  1. 1.Department of Chemistry and Chemical BiologyCornell UniversityIthacaUSA
  2. 2.Department of Chemistry and BiochemistryOhio UniversityAthensUSA
  3. 3.Department of Chemistry and BiochemistryOhio UniversityAthensUSA

Personalised recommendations