Advertisement

Mitophagy, Diseases, and Aging

  • Sujit K. BhutiaEmail author
  • Prajna P. Naik
  • Debasna P. Panigrahi
  • Chandra S. Bhol
  • Kewal K. Mahapatra
Chapter

Abstract

Mitochondrial dysfunction contributes to age-associated disease phenotypes and aging. With age, mitochondria show change in morphology, mutation and change in mtDNA, increase in oxidative stress, epigenetic change in mitochondrial proteins, and defect in mitochondrial quality control leading to accumulation of dysfunctional mitochondria. Mitophagy, a specified form of autophagy, regulates the turnover of damaged and dysfunctional mitochondria to govern energy homeostasis. The age-dependent impairment of mitophagy inhibits removal of superfluous or dysfunctional mitochondria as well as weakens the biogenesis of mitochondria resulting in the aggregation of reactive mitochondrial mass and consequently leads to the deterioration of cellular function. Novel therapeutic strategies have been articulated for maintaining healthy mitophagy level which could delay aging and extend health span. This chapter provides an updated mechanistic overview of mitophagy pathways and discusses the effect of mitophagy in aging.

Keywords

Mitochondria Mitophagy Aging Senescence mtDNA ROS 

Notes

Acknowledgments

Research support was partly provided by the Department of Biotechnology (DBT) [Number: BT/PR7791/BRB/10/1187/2013] and Science and Engineering Research Board (SERB) [Number: EMR/2016/001246], Department of Science and Technology.

Conflict of Interest Statement

The authors have declared no conflict of interest.

References

  1. 1.
    López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013) The hallmarks of aging. Cell 153(6):1194–1217CrossRefGoogle Scholar
  2. 2.
    Diot A, Morten K, Poulton J (2016) Mitophagy plays a central role in mitochondrial ageing. Mamm Genome 27(7–8):381–395CrossRefGoogle Scholar
  3. 3.
    Fivenson EM, Lautrup S, Sun N, Scheibye-Knudsen M, Stevnsner T, Nilsen H, Bohr VA, Fang EF (2017) Mitophagy in neurodegeneration and aging. Neurochem Int S0197-0186(17):30095–30095Google Scholar
  4. 4.
    Bhatia-Dey N, Kanherkar RR, Stair SE, Makarev EO, Csoka AB (2016) Cellular senescence as the causal nexus of aging. Front Genet 7:13CrossRefGoogle Scholar
  5. 5.
    van Deursen JM (2014) The role of senescent cells in ageing. Nature 509(7501):439–446CrossRefGoogle Scholar
  6. 6.
    Payne BAI, Chinnery PF (2015) Mitochondrial dysfunction in aging: much progress but many unresolved questions. Biochim Biophys Acta 1847(11):1347–1353CrossRefGoogle Scholar
  7. 7.
    Viña J, Borrás C, Miquel J (2007) Theories of ageing. IUBMB Life 59(4–5):249–254CrossRefGoogle Scholar
  8. 8.
    Sun N, Yun J, Liu J, Malide D, Liu C, Rovira II, Holmström KM, Fergusson MM, Yoo YH, Combs CA, Finkel T (2015) Measuring in vivo mitophagy. Mol Cell 60(4):685–696CrossRefGoogle Scholar
  9. 9.
    Palikaras K, Tavernarakis N (2012) Mitophagy in neurodegeneration and aging. Front Genet 3:297CrossRefGoogle Scholar
  10. 10.
    Wickens AP (2001) Ageing and the free radical theory. Respir Physiol 128(3):379–391CrossRefGoogle Scholar
  11. 11.
    Gladyshev VN (2014) The free radical theory of aging is dead. Long live the damage theory! Antioxid Redox Signal 20(4):727–731CrossRefGoogle Scholar
  12. 12.
    Martinez-Lopez N, Athonvarangkul D, Singh R (2015) Autophagy and aging. Adv Exp Med Biol 847:73–87CrossRefGoogle Scholar
  13. 13.
    Kauppila TE, Kauppila JH, Larsson NG (2017) Mammalian mitochondria and aging: an update. Cell Metab 25(1):57–71CrossRefGoogle Scholar
  14. 14.
    Trifunovic A, Wredenberg A, Falkenberg M, Spelbrink JN, Rovio AT, Bruder CE, Bohlooly-Y M, Gidlöf S, Oldfors A, Wibom R, Törnell J, Jacobs HT, Larsson NG (2004) Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 429(6990):417–423CrossRefGoogle Scholar
  15. 15.
    Zhang C, Baumer A, Maxwell RJ, Linnane AW, Nagley P (1992) Multiple mitochondrial DNA deletions in an elderly human individual. FEBS Lett 297(1–2):34–38CrossRefGoogle Scholar
  16. 16.
    Lee HC, Pang CY, Hsu HS, Wei YH (1994) Differential accumulations of 4,977 bp deletion in mitochondrial DNA of various tissues in human ageing. Biochim Biophys Acta 1226(1):37–43CrossRefGoogle Scholar
  17. 17.
    Korolchuk VI, Miwa S, Carroll B, von Zglinicki T (2017) Mitochondria in cell senescence: is mitophagy the weakest link? EBioMedicine 21:7–13. In pressCrossRefGoogle Scholar
  18. 18.
    Sohal RS, Ku HH, Agarwal S, Forster MJ, Lal H (1994) Oxidative damage, mitochondrial oxidant generation and antioxidant defenses during aging and in response to food restriction in the mouse. Mech Ageing Dev 74(1–2):121–133CrossRefGoogle Scholar
  19. 19.
    Knuppertz L, Warnsmann V, Hamann A, Grimm C, Osiewacz HD (2017) Stress-dependent opposing roles for mitophagy in aging of the ascomycete Podospora anserina. Autophagy 13(6):1037–1052CrossRefGoogle Scholar
  20. 20.
    Sohal RS, Dubey A (1994) Mitochondrial oxidative damage, hydrogen peroxide release, and aging. Free Radic Biol Med 16(5):621–626CrossRefGoogle Scholar
  21. 21.
    Pal S, Tyler JK (2016) Epigenetics and aging. Sci Adv 2(7):e1600584CrossRefGoogle Scholar
  22. 22.
    Berdyshev GD, Korotaev GK, Boiarskikh GV, Vaniushin BF (1967) Nucleotide composition of DNA and RNA from somatic tissues of humpback and its changes during spawning. Biokhimiia 32(5):988–993PubMedGoogle Scholar
  23. 23.
    Ashapkin VV, Kutueva LI, Vanyushin BF (2015) Aging epigenetics: accumulation of errors or realization of a specific program? Biochemistry (Mosc) 80(11):1406–1417CrossRefGoogle Scholar
  24. 24.
    Shmookler Reis RJ, Goldstein S (1983) Mitochondrial DNA in mortal and immortal human cells. Genome number, integrity, and methylation. J Biol Chem 258(15):9078–9085PubMedGoogle Scholar
  25. 25.
    Kim SC, Sprung R, Chen Y, Xu Y, Ball H, Pei J, Cheng T, Kho Y, Xiao H, Xiao L, Grishin NV, White M, Yang XJ, Zhao Y (2006) Substrate and functional diversity of lysine acetylation revealed by a proteomics survey. Mol Cell 23(4):607–618CrossRefGoogle Scholar
  26. 26.
    Sack MN, Finkel T (2012) Mitochondrial metabolism, sirtuins, and aging. Cold Spring Harb Perspect Biol 4(12):pii: a013102CrossRefGoogle Scholar
  27. 27.
    Bai XY, Ma Y, Ding R, Fu B, Shi S, Chen XM (2011) miR-335 and miR-34a promote renal senescence by suppressing mitochondrial antioxidative enzymes. J Am Soc Nephrol 22(7):1252–1261CrossRefGoogle Scholar
  28. 28.
    Lang A, Grether-Beck S, Singh M, Kuck F, Jakob S, Kefalas A, Altinoluk-Hambüchen S, Graffmann N, Schneider M, Lindecke A, Brenden H, Felsner I, Ezzahoini H, Marini A, Weinhold S, Vierkötter A, Tigges J, Schmidt S, Stühler K, Köhrer K, Uhrberg M, Haendeler J, Krutmann J, Piekorz RP (2016) MicroRNA-15b regulates mitochondrial ROS production and the senescence-associated secretory phenotype through sirtuin 4/SIRT4. Aging (Albany NY) 8(3):484–505CrossRefGoogle Scholar
  29. 29.
    Zhang J (2013) Autophagy and mitophagy in cellular damage control. Redox Biol 1(1):19–23CrossRefGoogle Scholar
  30. 30.
    Geisler S, Holmström KM, Treis A, Skujat D, Weber SS, Fiesel FC, Kahle PJ, Springer W (2010) The PINK1/Parkin-mediated mitophagy is compromised by PD-associated mutations. Autophagy 6(7):871–878CrossRefGoogle Scholar
  31. 31.
    Kazlauskaite A, Kelly V, Johnson C, Baillie C, Hastie CJ, Peggie M, Macartney T, Woodroof HI, Alessi DR, Pedrioli PG, Muqit MM (2014) Phosphorylation of Parkin at Serine65 is essential for activation: elaboration of a Miro1 substrate-based assay of Parkin E3 ligase activity. Open Biol 4:130213CrossRefGoogle Scholar
  32. 32.
    Koyano F, Okatsu K, Kosako H, Tamura Y, Go E, Kimura M, Kimura Y, Tsuchiya H, Yoshihara H, Hirokawa T, Endo T, Fon EA, Trempe JF, Saeki Y, Tanaka K, Matsuda N (2014) Ubiquitin is phosphorylated by PINK1 to activate parkin. Nature 510(7503):162–166CrossRefGoogle Scholar
  33. 33.
    Kane LA, Lazarou M, Fogel AI, Li Y, Yamano K, Sarraf SA, Banerjee S, Youle RJ (2014) PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity. J Cell Biol 205(2):143–153CrossRefGoogle Scholar
  34. 34.
    Sarraf SA, Raman M, Guarani-Pereira V, Sowa ME, Huttlin EL, Gygi SP, Harper JW (2013) Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization. Nature 496(7445):372–376CrossRefGoogle Scholar
  35. 35.
    Hollville E, Carroll RG, Cullen SP, Martin SJ (2014) Bcl-2 family proteins participate in mitochondrial quality control by regulating Parkin/PINK1-dependent mitophagy. Mol Cell 55(3):451–466CrossRefGoogle Scholar
  36. 36.
    Sandoval H, Thiagarajan P, Dasgupta SK, Schumacher A, Prchal JT, Chen M, Wang J (2008) Essential role for Nix in autophagic maturation of erythroid cells. Nature 454(7201):232–235CrossRefGoogle Scholar
  37. 37.
    Glick D, Zhang W, Beaton M, Marsboom G, Gruber M, Simon MC, Hart J, Dorn GW 2nd, Brady MJ, Macleod KF (2012) BNip3 regulates mitochondrial function and lipid metabolism in the liver. Mol Cell Biol 32(13):2570–2584CrossRefGoogle Scholar
  38. 38.
    Otsu K, Murakawa T, Yamaguchi O (2015) BCL2L13 is a mammalian homolog of the yeast mitophagy receptor Atg32. Autophagy 11(10):1932–1933CrossRefGoogle Scholar
  39. 39.
    Lokireddy S, Wijesoma IW, Teng S, Bonala S, Gluckman PD, McFarlane C, Sharma M, Kambadur R (2012) The ubiquitin ligase Mul1 induces mitophagy in skeletal muscle in response to muscle-wasting stimuli. Cell Metab 16(5):613–624CrossRefGoogle Scholar
  40. 40.
    Wei Y, Chiang WC, Sumpter R Jr, Mishra P, Levine B (2017) Prohibitin 2 is an inner mitochondrial membrane mitophagy receptor. Cell 168(1–2):224–238.e10CrossRefGoogle Scholar
  41. 41.
    Camougrand N, Kissová I, Velours G, Manon S (2004) Uth1p: a yeast mitochondrial protein at the crossroads of stress, degradation and cell death. FEMS Yeast Res 5(2):133–140CrossRefGoogle Scholar
  42. 42.
    Journo D, Mor A, Abeliovich H (2009) Aup1-mediated regulation of Rtg3 during mitophagy. J Biol Chem 284(51):35885–35895CrossRefGoogle Scholar
  43. 43.
    Mao K, Wang K, Liu X, Klionsky DJ (2013) The scaffold protein Atg11 recruits fission machinery to drive selective mitochondria degradation by autophagy. Dev Cell 26(1):9–18CrossRefGoogle Scholar
  44. 44.
    Luce K, Osiewacz HD (2009) Increasing organismal healthspan by enhancing mitochondrial protein quality control. Nat Cell Biol 11(7):852–858CrossRefGoogle Scholar
  45. 45.
    Chang JT, Kumsta C, Hellman AB, Adams LM, Hansen M (2017) Spatiotemporal regulation of autophagy during Caenorhabditis elegans aging. elife 6:e18459CrossRefGoogle Scholar
  46. 46.
    Shaik A, Schiavi A, Ventura N (2016) Mitochondrial autophagy promotes healthy aging. Cell Cycle 15(14):1805–1806CrossRefGoogle Scholar
  47. 47.
    Palikaras K, Lionaki E, Tavernarakis N (2015) Coordination of mitophagy and mitochondrial biogenesis during ageing in C. elegans. Nature 521(7553):525–528CrossRefGoogle Scholar
  48. 48.
    Vincow ES, Merrihew G, Thomas RE, Shulman NJ, Beyer RP, MacCoss MJ, Pallanck LJ (2013) The PINK1-Parkin pathway promotes both mitophagy and selective respiratory chain turnover in vivo. Proc Natl Acad Sci U S A 110(16):6400–6405CrossRefGoogle Scholar
  49. 49.
    Clark IE, Dodson MW, Jiang C, Cao JH, Huh JR, Seol JH, Yoo SJ, Hay BA, Guo M (2006) Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature 441:1162–1166CrossRefGoogle Scholar
  50. 50.
    Fang EF, Scheibye-Knudsen M, Brace LE, Kassahun H, SenGupta T, Nilsen H, Mitchell JR, Croteau DL, Bohr VA (2014) Defective mitophagy in XPA via PARP-1 hyperactivation and NAD(+)/SIRT1 reduction. Cell 157(4):882–896CrossRefGoogle Scholar
  51. 51.
    Lin S, Wang Y, Zhang X, Kong Q, Li C, Li Y, Ding Z, Liu L (2016) HSP27 alleviates cardiac aging in mice via a mechanism involving antioxidation and mitophagy activation. Oxidative Med Cell Longev 2016:2586706Google Scholar
  52. 52.
    Schiavi A, Maglioni S, Palikaras K, Shaik A, Strappazzon F, Brinkmann V, Torgovnick A, Castelein N, De Henau S, Braeckman BP, Cecconi F, Tavernarakis N, Ventura N (2015) Iron-starvation-induced mitophagy mediates lifespan extension upon mitochondrial stress in C. elegans. Curr Biol 25(14):1810–1822CrossRefGoogle Scholar
  53. 53.
    DallePezze P, Nelson G, Otten EG, Korolchuk VI, Kirkwood TB, von Zglinicki T, Shanley DP (2014) Dynamic modelling of pathways to cellular senescence reveals strategies for targeted interventions. PLoS Comput Biol 10(8):e1003728CrossRefGoogle Scholar
  54. 54.
    Ahmad T, Sundar IK, Lerner CA, Gerloff J, Tormos AM, Yao H, Rahman I (2015) Impaired mitophagy leads to cigarette smoke stress-induced cellular senescence: implications for chronic obstructive pulmonary disease. FASEB J 29(7):2912–2929CrossRefGoogle Scholar
  55. 55.
    Lee S, Jeong SY, Lim WC, Kim S, Park YY, Sun X, Youle RJ, Cho H (2007) Mitochondrial fission and fusion mediators, hFis1 and OPA1, modulate cellular senescence. J Biol Chem 282(31):22977–22983CrossRefGoogle Scholar
  56. 56.
    Hara H, Araya J, Ito S, Kobayashi K, Takasaka N, Yoshii Y, Wakui H, Kojima J, Shimizu K, Numata T, Kawaishi M, Kamiya N, Odaka M, Morikawa T, Kaneko Y, Nakayama K, Kuwano K (2013) Mitochondrial fragmentation in cigarette smoke-induced bronchial epithelial cell senescence. Am J Phys Lung Cell Mol Phys 305(10):L737–L746Google Scholar
  57. 57.
    Ito S, Araya J, Kurita Y, Kobayashi K, Takasaka N, Yoshida M, Hara H, Minagawa S, Wakui H, Fujii S, Kojima J, Shimizu K, Numata T, Kawaishi M, Odaka M, Morikawa T, Harada T, Nishimura SL, Kaneko Y, Nakayama K, Kuwano K (2015) PARK2-mediated mitophagy is involved in regulation of HBEC senescence in COPD pathogenesis. Autophagy 11(3):547–559CrossRefGoogle Scholar
  58. 58.
    Yoon YS, Yoon DS, Lim IK, Yoon SH, Chung HY, Rojo M, Malka F, Jou MJ, Martinou JC, Yoon G (2006) Formation of elongated giant mitochondria in DFO-induced cellular senescence: involvement of enhanced fusion process through modulation of Fis1. J Cell Physiol 209(2):468–480CrossRefGoogle Scholar
  59. 59.
    Mai S, Klinkenberg M, Auburger G, Bereiter-Hahn J, Jendrach M (2010) Decreased expression of Drp1 and Fis1 mediates mitochondrial elongation in senescent cells and enhances resistance to oxidative stress through PINK1. J Cell Sci 123(Pt 6):917–926CrossRefGoogle Scholar
  60. 60.
    Park YY, Lee S, Karbowski M, Neutzner A, Youle RJ, Cho H (2010) Loss of MARCH5 mitochondrial E3 ubiquitin ligase induces cellular senescence through dynamin-related protein 1 and mitofusin 1. J Cell Sci 123(Pt 4):619–626CrossRefGoogle Scholar
  61. 61.
    Luo H, Chiang HH, Louw M, Susanto A, Chen D (2017) Nutrient sensing and the oxidative stress response. Trends Endocrinol Metab 28(6):449–460CrossRefGoogle Scholar
  62. 62.
    Cui J, Shi S, Sun X, Cai G, Cui S, Hong Q, Chen X, Bai XY (2013) Mitochondrial autophagy involving renal injury and aging is modulated by caloric intake in aged rat kidneys. PLoS One 8(7):e69720CrossRefGoogle Scholar
  63. 63.
    Luo L, Dai JR, Guo SS, Lu AM, Gao XF, Gu YR, Zhang XF, Xu HD, Wang Y, Zhu Z, Wood LJ, Qin ZH (2017) Lysosomal proteolysis is associated with exercise-induced improvement of mitochondrial quality control in aged Hippocampus. J Gerontol A Biol Sci Med Sci 72(10):1342–1351CrossRefGoogle Scholar
  64. 64.
    Ma L, Zhu J, Gao Q, Rebecchi MJ, Wang Q, Liu L (2017) Restoring pharmacologic preconditioning in the aging heart: role of mitophagy/autophagy. J Gerontol A Biol Sci Med Sci 72(4):489–498PubMedGoogle Scholar
  65. 65.
    Hertz NT, Berthet A, Sos ML, Thorn KS, Burlingame AL, Nakamura K, Shokat KM (2013) Aneo-substrate that amplifies catalytic activity of Parkinson’s-disease-related kinase PINK1. Cell 154(4):737–747CrossRefGoogle Scholar
  66. 66.
    Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R, Yokoyama M, Mishima K, Saito I, Okano H, Mizushima N (2006) Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441(7095):885–889CrossRefGoogle Scholar
  67. 67.
    Hasson SA, Fogel AI, Wang C, MacArthur R, Guha R, Heman-Ackah S, Martin S, Youle RJ, Inglese J (2015) Chemogenomic profiling of endogenous PARK2 expression using a genome-edited coincidence reporter. ACS Chem Biol 10(5):1188–1197CrossRefGoogle Scholar
  68. 68.
    Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, Wood JG, Zipkin RE, Chung P, Kisielewski A, Zhang LL, Scherer B, Sinclair DA (2003) Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425(6954):191–196CrossRefGoogle Scholar
  69. 69.
    Zhao H, Chen S, Gao K, Zhou Z, Wang C, Shen Z, Guo Y, Li Z, Wan Z, Liu C, Mei X (2017) Resveratrol protects against spinal cord injury by activating autophagy and inhibiting apoptosis mediated by the SIRT1/AMPK signaling pathway. Neuroscience 348:241–251CrossRefGoogle Scholar
  70. 70.
    Moiseeva O, Deschênes-Simard X, St-Germain E, Igelmann S, Huot G, Cadar AE, Bourdeau V, Pollak MN, Ferbeyre G (2013) Metformin inhibits the senescence-associated secretory phenotype by interfering with IKK/NF-κB activation. Aging Cell 12(3):489–498CrossRefGoogle Scholar
  71. 71.
    Foretz M, Guigas B, Bertrand L, Pollak M, Viollet B (2014) Metformin: from mechanisms of action to therapies. Cell Metab 20(6):953–966CrossRefGoogle Scholar
  72. 72.
    Howell JJ, Hellberg K, Turner M, Talbott G, Kolar MJ, Ross DS, Hoxhaj G, Saghatelian A, Shaw RJ, Manning BD (2017) Metformin inhibits hepatic mTORC1 signaling via dose-dependent mechanisms involving AMPK and the TSC complex. Cell Metab 25(2):463–471CrossRefGoogle Scholar
  73. 73.
    Saisho Y (2015) Metformin and inflammation: its potential beyond glucose-lowering effect. Endocr Metab Immune Disord Drug Targets 15(3):196–205CrossRefGoogle Scholar
  74. 74.
    Mills KF, Yoshida S, Stein LR, Grozio A, Kubota S, Sasaki Y, Redpath P, Migaud ME, Apte RS, Uchida K, Yoshino J, Imai SI (2016) Long-term administration of nicotinamide mononucleotide mitigates age-associated physiological decline in mice. Cell Metab 24(6):795–806CrossRefGoogle Scholar
  75. 75.
    Eisenberg T, Abdellatif M, Zimmermann A, Schroeder S, Pendl T, Harger A, Stekovic S, Schipke J, Magnes C, Schmidt A, Ruckenstuhl C, Dammbrueck C, Gross AS, Herbst V, Carmona-Gutierrez D, Pietrocola F, Pieber TR, Sigrist SJ, Linke WA, Mühlfeld C, Sadoshima J, Dengjel J, Kiechl S, Kroemer G, Sedej S, Madeo F (2017) Dietary spermidine for lowering high blood pressure. Autophagy 13(4):767–769CrossRefGoogle Scholar
  76. 76.
    Ryu D, Mouchiroud L, Andreux PA, Katsyuba E, Moullan N, Nicolet-Dit-Félix AA, Williams EG, Jha P, Lo Sasso G, Huzard D, Aebischer P, Sandi C, Rinsch C, Auwerx J (2016) Urolithin A induces mitophagy and prolongs lifespan in C. elegans and increases muscle function in rodents. Nat Med 22(8):879–888CrossRefGoogle Scholar
  77. 77.
    Fang EF, Waltz TB, Kassahun H, Lu Q, Kerr JS, Morevati M, Fivenson EM, Wollman BN, Marosi K, Wilson MA, Iser WB, Eckley DM, Zhang Y, Lehrmann E, Goldberg IG, Scheibye-Knudsen M, Mattson MP, Nilsen H, Bohr VA, Becker KG (2017) Tomatidine enhances lifespan and healthspan in C. elegans through mitophagy induction via the SKN-1/Nrf2 pathway. Sci Rep 7:46208CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Sujit K. Bhutia
    • 1
    Email author
  • Prajna P. Naik
    • 2
  • Debasna P. Panigrahi
    • 1
  • Chandra S. Bhol
    • 1
  • Kewal K. Mahapatra
    • 1
  1. 1.Department of Life ScienceNational Institute of TechnologyRourkelaIndia
  2. 2.Department of ZoologyVikram Deb (Autonomous) CollegeJeypore (K)India

Personalised recommendations