Advertisement

Role of Stress and Hormones of the Hypothalamic-Pituitary-Adrenal (HPA) Axis in Aging

  • Ankush GuptaEmail author
Chapter

Abstract

The hypothalamic-pituitary-adrenal (HPA) axis is one of the most important allostatic systems that allow a person to respond and adapt against diverse stresses by upregulating the glucocorticoids and adrenal androgens. However, its inhibition is equally important to prevent against deleterious effect of its overexposure to neuroendocrine and inflammatory stresses. This chapter aims to examine the effect of stress and aging on the dysregulation of the HPA axis. Chronic stress and aging are phenomenons that have complex interaction at the level of HPA axis; while chronic stress promotes aging, consequently aging leads to dysregulated stress management. The effects of the terminal regulators of the HPA axis like glucocorticosteroids (GCs; cortisol) and adrenal androgens (DHEA and its sulfate; DHEAS) are drastically opposite; while cortisol promotes neuronal cell death and degeneration, DHEAS plays protective role against neuronal impairment. With age there is a marked increase in the nocturnal as well as 24 h circulating cortisol secretion accompanied by clear flattening of the diurnal rhythm of cortisol secretion evident from both animal and human studies. Also, there is a clear dysregulation of the negative feedback inhibition of the GC secretion in chronic stress and aging. Besides, the androgenic steroids like DHEA/DHEAS secreted in response to ACTH also undergo marked depreciation in elderly subjects. Consequently, there is a marked increase in the cortisol/DHEAS molar ratio with physiological and pathological aging. Hence, the dysregulation in these two classes of steroids with aging and chronic stress and their manifestations are examined in detail in this chapter.

Keywords

Chronic stress Aging HPA axis Cortisol DHEA(S) Glucocorticosteroids 

Notes

Acknowledgments

I would sincerely acknowledge Prof. Pramod C. Rath for the kind support and inspiration provided by him in compiling this chapter on the role of stress on the dysregulation of the HPA axis. I would also acknowledge the assistance provided by Mr. Lav Jaiswal in collection of the materials and literature necessary to compile this chapter. Finally, I would like to thank my family members, my mother Mrs. Chitralekha, my wife Mrs. Varsha, and my children Ishaan and Vaibhavi for their patience, cooperation, and support without which it would have been difficult to compile this chapter. Financial support by the DST-SERB in the form of DST Fast Track Young Scientist Project (Sanction Order No. SB/YS/LS-39/2013) is highly acknowledged.

References

  1. 1.
    Hall JE. (2011) Guyton and Hall text book of medical physiology, 12th ed. Saunders Elsevier, chapters 74 & 75, pp 881–904Google Scholar
  2. 2.
    Johnson G, Singer S, Losos J and Raven P. (2003) Raven Johnson biology, 6th ed. The McGraw-Hill Companies, chapter 56, pp 1125–1146Google Scholar
  3. 3.
    Dunn JH, Koo J (2013) Psychological stress and skin aging: a review of possible mechanisms and potential therapies. Dermatol Online J 19(6):1Google Scholar
  4. 4.
    Shagan BP (1976) Is diabetes a model for aging? Med Clin North Am 60(6):1209–1211PubMedCrossRefGoogle Scholar
  5. 5.
    Cerami A (1985) Hypothesis. Glucose as a mediator of aging. J Am Geriatr Soc 33(9):626–634PubMedCrossRefGoogle Scholar
  6. 6.
    Mooradian AD (1988) Tissue specificity of premature aging in diabetes mellitus. The role of cellular replicative capacity. J Am Geriatr Soc 36(9):831–839PubMedCrossRefGoogle Scholar
  7. 7.
    Goto M (2008) Inflammaging [inflammation + aging]: a driving force for human aging based on an evolutionarily antagonistic pleiotropy theory? Biosci Trends 2(6):218–230PubMedGoogle Scholar
  8. 8.
    Pincus T, Sokka T, Wolfe F (2001) Premature mortality in patients with rheumatoid arthritis: evolving concepts. Arthritis Rheum 44(6):1234–1236PubMedCrossRefGoogle Scholar
  9. 9.
    Navarro-Cano G, Del Rincón I, Pogosian S, Roldán JF, Escalante A (2003) Association of mortality with disease severity in rheumatoid arthritis, independent of comorbidity. Arthritis Rheum 48(9):2425–2433PubMedCrossRefGoogle Scholar
  10. 10.
    Sokka T, Abelson B, Pincus T (2008) Mortality in rheumatoid arthritis: 2008 update. Clin Exp Rheumatol 26(5 Suppl 51):S35–S61PubMedPubMedCentralGoogle Scholar
  11. 11.
    Gonzalez A, Maradit Kremers H, Crowson CS, Nicola PJ, Davis JM, Therneau TM, Roger VL, Gabriel SE (2007) The widening mortality gap between rheumatoid arthritis patients and the general population. Arthritis Rheum 56(11):3583–3587PubMedCrossRefGoogle Scholar
  12. 12.
    Gupta D, Morley JE (2014) Hypothalamic-Pituitary-Adrenal (HPA) axis and aging. Compr Physiol 4:1495–1510PubMedCrossRefGoogle Scholar
  13. 13.
    McClintock D, Ratner D, Lokuge M, Owens DM, Gordon LB, Collins FS and Djabali K. (2007) The mutant form of lamin A that causes Hutchinson-Gilford progeria is a biomarker of cellular aging in human skin. PLoS One 2(12):e1269. PubMed PMID: 18060063; PubMed Central PMCID: PMCPMC2092390PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Korf B (2008) Hutchinson-Gilford progeria syndrome, aging, and the nuclear lamina. N Engl J Med 358(6):552–555PubMedCrossRefGoogle Scholar
  15. 15.
    Ulrich-Lai YM, Ryan KK (2013) PPARγ and stress: implications for aging. Exp Gerontol 48(7):671–676PubMedCrossRefGoogle Scholar
  16. 16.
    Lu T, Pan Y, Kao SY, Li C, Kohane I, Chan J, Yankner BA (2004) Gene regulation and DNA damage in the ageing human brain. Nature 429(6994):883–891PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Groeschel M, Braam B (2011) Connecting chronic and recurrent stress to vascular dysfunction: no relaxed role for the renin-angiotensin system. Am J Physiol Renal Physiol 300(1):F1–F10PubMedCrossRefGoogle Scholar
  18. 18.
    Flint MS, Budiu RA, Teng PN, Sun M, Stolz DB, Lang M, Hood BL, Vlad AM, Conrads TP (2011) Restraint stress and stress hormones significantly impact T lymphocyte migration and function through specific alterations of the actin cytoskeleton. Brain Behav Immun 25(6):1187–1196PubMedCrossRefGoogle Scholar
  19. 19.
    Wise PM, Herman JP, Landfield PW (1997) Neuroendocrine aspects of the aging brain. In: Timiras PS, Bittar EE, Mattson MP, Geddes JW (eds) Advances in cell aging and gerontology. JAI Press Inc., London, pp 193–241Google Scholar
  20. 20.
    Aguilera G (2011) HPA axis responsiveness to stress: implications for healthy aging. Exp Gerontol 46:90–95. [PubMed: 20833240]PubMedCrossRefGoogle Scholar
  21. 21.
    Garrido P (2011) Aging and stress: past hypotheses, present approaches and perspectives. Aging Dis 2:80–99. [PubMed: 22396868]PubMedPubMedCentralGoogle Scholar
  22. 22.
    Chung HY, Sung B, Jung KJ, Zou Y, Yu BP (2006) The molecular inflammatory process in aging. Antioxid Redox Signal 8(3–4):572–581PubMedCrossRefGoogle Scholar
  23. 23.
    Plotsky PM, Otto S, Sapolsky RM (1986) Inhibition of immunoreactive corticotropin-releasing factor secretion into the hypophysial-portal circulation by delayed glucocorticoid feedback. Endocrinology 119(3):1126–1130PubMedCrossRefGoogle Scholar
  24. 24.
    Antoni FA (1986) Hypothalamic control of adrenocorticotropin secretion: advances since the discovery of 41-residue corticotropin-releasing factor. Endocr Rev 7:351–378PubMedCrossRefGoogle Scholar
  25. 25.
    Taylor AL, Fishman LM (1988) Cortocotropin-releasing hormone. N Engl J Med 319:213–222PubMedCrossRefGoogle Scholar
  26. 26.
    Donald RA (1980) ACTH and related peptides. Clin Endocrinol 12:491–524CrossRefGoogle Scholar
  27. 27.
    Smith AI, Funder JW (1988) Proopiomelanocortin processing in the pituitary, central nervous system, and peripheral tissues. Endocr Rev 9:159–179PubMedCrossRefGoogle Scholar
  28. 28.
    Chen R, Lewis KA, Perrin MH, Vale WW (1993) Expression cloning of a human corticotropin-releasing-factor receptor. Proc Natl Acad Sci U S A 90:8967–8971PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Hauger RL, Aguilera G (1993) Regulation of pituitary corticotropin releasing hormone (CRH) receptors by CRH: interaction with vasopressin. Endocrinology 133:1708–1714PubMedCrossRefGoogle Scholar
  30. 30.
    Bateman A, Singh A, Kral T, Solomon S (1989) The immune-hypothalamic-pituitary-adrenal axis. Endocr Rev 10:92–112PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Chrousos GP (1995) The hypothalamic-pituitary-adrenal axis and immunemediated inflammation. N Engl J Med 332:1351–1362PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Mountjoy KG, Robbins LS, Mortrud MT, Cone RD (1992) The cloning of a family of genes that encode the melanocortin receptors. Science 257:1248–1251PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Simpson ER, Waterman MR (1988) Regulation of the synthesis of steroidogenic enzymes in adrenal cortical cells by ACTH. Annu Rev Physiol 50:427–440PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Stocco DM, Clark BJ (1996) Regulation of the acute production of steroids in steroidogenic cells. Endocr Rev 17:221–244PubMedPubMedCentralGoogle Scholar
  35. 35.
    Waterman MR, Bishoff LJ (1997) Cytochromes P450 12: diversity of ACTH (cAMP)-dependent transcription of bovine steroid hydroxylase genes. FASEB J 11:419–427PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Veldhuis JD (2013) Changes in pituitary function with aging and implications for patient care. Nat Rev Endocrinol 9(4):205–215PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Reiter RJ (1995) The pineal gland and melatonin in relation to aging: a summary of the theories and of the data. Exp Gerontol 30(3/4):199–212PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Hoehn K, Marieb EN (2010) Human Anatomy & Physiology, 8th edn. Benjamin Cummings, San Francisco. ISBN 0-321-60261-7Google Scholar
  39. 39.
    Coderre L, Srivastava AK, Chiasson JL (1991) Role of glucocorticoid in the regulation of glycogen metabolism in skeletal muscle. Am J Phys 260(6 Pt 1):E927–E932Google Scholar
  40. 40.
    Simmons PS, Miles JM, Gerich JE, Haymond MW (1984) Increased proteolysis. An effect of increases in plasma cortisol within the physiologic range. J Clin Invest 73(2):412–420PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Hornsby PJ (1997) DHEA: a biologist’s perspective. J Am Geriatr Soc 45:1395–1401PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Guillemette C, Hum DW, Belanger A (1996) Levels of plasma C19 steroids and 5-alpha-reduced C19 steroid glucuronides in primates, rodents, and domestic animals. Am J Physiol 271:E348–E353PubMedPubMedCentralGoogle Scholar
  43. 43.
    Endoh A, Kristiansen SB, Casson PR, Busters JE, Hornsby PJ (1996) The zona reticularis is the site of biosynthesis of dehydroepiandrosterone and dehydroepiandrosterone sulfate in the adult human adrenal cortex, resulting from its low expression of 3 beta-hydroxysteroid dehydrogenase. J Clin Endocrinol Metab 81:3558–3565PubMedPubMedCentralGoogle Scholar
  44. 44.
    Pescovitz OH, Eugster EA (2004) Pediatric endocrinology: mechanisms, manifestations, and management. Lippincott Williams & Wilkins, pp 362–. ISBN 978-0-7817-4059-3Google Scholar
  45. 45.
    Lifshitz F (2006) Pediatric endocrinology: growth, adrenal, sexual, thyroid, calcium, and fluid balance disorders. CRC Press, pp 289–. ISBN 978-1-4200-4272-6Google Scholar
  46. 46.
    Salhan S (2011) Textbook of gynecology. JP Medical Ltd., pp 94–. ISBN 978-93-5025-369-4Google Scholar
  47. 47.
    Ferrari E, Cravello L, Muzzoni B, Casarotti D, Paltro M, Solerte SB, Fioravanti M, Cuzzoni G, Pontiggia B, Magri F (2001) Age-related changes of the hypothalamic-pituitary-adrenal axis: pathophysiological correlates. Eur J Endocrinol 144:319–329. [PubMed: 11275940]PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Thomas G, Frenoy N, Legrain S, Sebag-Lanoe R, Baulieu EE, Debuire B (1994) Serum dehydroepiandrosterone sulfate levels as an individual marker. J Clin Endocrinol Metab 79:1273–1276PubMedGoogle Scholar
  49. 49.
    Labrie F, Belanger A, Cusan L, Gomez JL, Candas B (1997) Marked decline in serum concentrations of adrenal C19 sex steroid precursors and conjugated androgen metabolites during aging. J Clin Endocrinol Metab 82:2396–2402PubMedCrossRefGoogle Scholar
  50. 50.
    Labrie F, Belanger A, Simard J, Luu-The V, Labrie C (1995) DHEA and peripheral androgen and estrogen formation: Intracrinology. Ann N Y Acad Sci 774:16–28PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Labrie F, Dupont A, Belanger A (1985) Complete androgen blockade for the treatment of prostate cancer. Important Adv Oncol 1985:193–217Google Scholar
  52. 52.
    Labrie F (1991) Intracrinology. Mol Cell Endocrinol 78:C113–C118PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Chen F, Knecht K, Birzin E, Fisher J, Wilkinson H, Mojena M, Moreno CT, Schmidt A, Harada S, Freedman LP, Reszka AA (2005) Direct agonist/antagonist functions of dehydroepiandrosterone. Endocrinology 146(11):4568–4576PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Gao W, Bohl CE, Dalton JT (2005) Chemistry and structural biology of androgen receptor. Chem Rev 105(9):3352–3370. PMC 2096617PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Webb SJ, Geoghegan TE, Prough RA, Michael Miller KK (2006) The biological actions of dehydroepiandrosterone involves multiple receptors. Drug Metab Rev 38(1–2):89–116. PMC 2423429PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Peters JM, Zhou YC, Ram PA, Lee SS, Gonzales FJ, Waxman DJ (1996) Peroxisome proliferator-activated receptor alpha required for gene induction by dehydroepiandrosterone-3beta-sulfate. Mol Pharmacol 50:67–74PubMedPubMedCentralGoogle Scholar
  57. 57.
    Abadie J, Wright B, Correa G, Browne ES, Porter JR, Swec F (1993) Effects of dehydroepiandrosterone on neurotransmitter levels and appetite regulation of the obese Zucker rat. Diabetes 42:662–669PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Yoo A, Harris J, Dubrovsky B (1996) Dose-response study of dehydroepiandrosterone sulfate on dentate gyrus long-term potentiation. Exp Neurol 137:151–156PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    McGaugh JL (2004) The amygdala modulates the consolidation of memories of emotionally arousing experiences. Annu Rev Neurosci 27:1–28PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Phelps EA, LeDoux JE (2005) Contributions of the amygdala to emotion processing: from animal models to human behavior. Neuron 48:175–187PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Sanders MJ, Siltgen BJ, Fanselow MS (2003) The place of the hippocampus in fear conditioning. Eur J Pharmacol 463:217–223PubMedCrossRefGoogle Scholar
  62. 62.
    Leproult R, Copinschi G, Buxton O, Van Cauter E (1997) Sleep loss results in an elevation of cortisol levels the next evening. Sleep 20(10):865–870PubMedPubMedCentralGoogle Scholar
  63. 63.
    Silverman MN, Pearce BD, Biron CA, Miller AH (2005) Immune modulation of the hypothalamic-pituitary-adrenal (HPA) axis during viral infection. Viral Immunol 18(1):41–78PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Fuchs E, Flugge G (2003) Chronic social stress effects on limbic brain structures. Physiol Behav 79:417–427PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Herman JP, Seroogy K (2006) Hypothalamic-pituitary-adrenal axis glucocorticoids and neurologic disease. Neurol Clin 24:461–481PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    de Kloet ER, Joels M, Holsboer F (2005) Stress and the brain: from adaptation to disease. Nat Rev Neurosci 6:463–475PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Dek Michalska AG, Spyrka J, Rachwalska P, Tadeusz J, Bugajski J (2013) Influence of chronic stress on brain corticosteroid receptors and HPA axis activity. Pharmacol Rep 65:1163–1175CrossRefGoogle Scholar
  68. 68.
    Silverman MN, Sternberg EM (2012) Glucocorticoid regulation of inflammation and its functional correlates: from HPA axis to glucocorticoid receptor dysfunction. Ann N Y Acad Sci 1261:55–63PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Dallman MF, Levin N, Cascio CS, Akana SF, Jacobson L, Kuhn RW (1989) Pharmacological evidence that the inhibition of diurnal adrenocorticotropin secretion by corticosteroids is mediated via type I corticosterone-preferring receptors. Endocrinology 124:2844–2850PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    de Kloet ER, Vreugdehil E, Oitzl MS, Joels M (1998) Brain corticosteroid receptor balance in health and disease. Endocr Rev 9:269–301CrossRefGoogle Scholar
  71. 71.
    Reul JMHM, de Kloet ER (1985) Two receptor systems for corticosterone in rat brain: microdistribution and differential occupation. Endocrinology 117:2505–2511PubMedCrossRefGoogle Scholar
  72. 72.
    Noordam R, Jansen SW, Akintola AA, Oei NY, Maier AB, Pijl H, Slagboom PE, Westendorp RG, van der Goud J, de Craen AJ, van Heemst D (2012) Leiden longevity study group. Familial longevity is marked by lower diurnal salivary cortisol levels: the Leiden longevity study. PLoS ONE 7:e31166PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Mikics E, Kruk MR, Haller J (2004) Genomic and non-genomic effects of glucocorticoids on aggressive behavior in male rats. Psychoneuroendocrinology 29:618–635PubMedCrossRefGoogle Scholar
  74. 74.
    Sandi C, Venero C, Guaza C (1996) Novelty-related rapid locomotor effects of corticosterone in rats. Eur J Neurosci 8:794–800PubMedCrossRefGoogle Scholar
  75. 75.
    Joels M, Karst H, de Rijk RH, de Kloet ER (2008) The coming out of the brain mineralocorticoid receptor. Trends Neurosci 31:1–7PubMedCrossRefGoogle Scholar
  76. 76.
    Karst H, Berger S, Turiault M, Tronche F, Schutz G, Joels M (2005) Mineralocorticoid receptors are indispensable for nongenomic modulation of hippocampal glutamate transmission by corticosterone. Proc Natl Acad Sci 102:19204–19207PubMedCrossRefGoogle Scholar
  77. 77.
    Tasker JG, Di S, Malcher-Lopes R (2006) Minireview: rapid glucocorticoid signaling via membrane-associated receptors. Endocrinology 147:5549–5556PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Dong Y, Poellinger L, Okret S, Hoog JO, von Bahr-Lindstrom H, Jornvall H, Gustafsson JA (1988) Regulation of gene expression of class I alcohol dehydrogenase by glucocorticoids. Proc Natl Acad Sci U S A 85:767–771PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Jun SS, Chen Z, Pace MC, Shaul PW (1999) Glucocorticoids downregulate cyclooxygenase-1 gene expression and prostacyclin synthesis in fetal pulmonary artery endothelium. Circ Res 84:193–200PubMedCrossRefGoogle Scholar
  80. 80.
    Morsink MC, Joels M, Sarabdjitsingh RA, Meijer OC, de Kloet ER, Datson NA (2006) The dynamic pattern of glucocorticoid receptor-mediated transcriptional responses in neuronal PC12 cells. J Neurochem 99:1282–1298PubMedCrossRefGoogle Scholar
  81. 81.
    Morsink MC, Steenbergen PJ, Vos JB, Karst H, Joels M, de Kloet ER, Datson NA (2006) Acute activation of hippocampal glucocorticoid receptors results in different waves of gene expression throughout time. J Neuroendocrinol 18:239–252PubMedCrossRefGoogle Scholar
  82. 82.
    Lundblad JR, Roberts JL (1988) Regulation of proopiomelanocortin gene expression in pituitary. Endocr Rev 9:135–158PubMedCrossRefGoogle Scholar
  83. 83.
    Davis LG, Arentzen R, Reid JM, Manning RW, Wolfson B, Lawrence KL, Baldino F Jr (1986) Glucocorticoid sensitivity of vasopressin mRNA levels in the paraventricular nucleus of the rat. Proc Natl Acad Sci U S A 83: 1145–1149CrossRefGoogle Scholar
  84. 84.
    Keller-Wood ME, Dallman MF. (1984) Corticosteroid inhibition of ACTH secretion. Endocr Rev 5: 1–24PubMedCrossRefGoogle Scholar
  85. 85.
    Mizoguchi K, Ikeda R, Shoji H, Tanaka Y, Maruyama W, Tabira T (2009) Aging attenuates glucocorticoid negative feedback in rat brain. Neuroscience 159:259–270. [PubMed: 19141312]PubMedCrossRefGoogle Scholar
  86. 86.
    Oitzl MS, Reichardt HM, Joels M, de Kloet ER (2001) Point mutation in the mouse glucocorticoid receptor preventing DNA binding impairs spatial memory. Proc Natl Acad Sci U S A 98:12790–12795PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Ridder S, Chourbaji S, Hellweg R, Urani A, Zacher C, Schmid W, Zink M, Hortnagl H, Flor H, Henn FA, Schutz G, Gass P (2005) Mice with genetically altered glucocorticoid receptor expression show altered sensitivity for stress-induced depressive reactions. J Neurosci 25: 6245–6250PubMedCrossRefGoogle Scholar
  88. 88.
    Berger S, Wolfer Dp, Selbach O, Alter H, Erdmann G, Reichardt HM, Chepkova AN, Welzl H, Haas HL, Lipp HP, Schutz G (2006) Loss of the limbic mineralocorticoid receptor impairs behavioral plasticity. Proc Natl Acad Sci USA 103: 95–200CrossRefGoogle Scholar
  89. 89.
    Lai M, Horsburgh K, Bae SE, Carter RN, Stenvers DJ, Fowler JH, Yau CE, Gomez-Sanchez CE, Holmes MC, Kenyon CJ, Seckl JR, MacLeod MR (2007) Forebrain mineralocorticoid receptor overexpression enhances memory, reduces anxiety and attenuates neuronal loss in cerebral ischemia. Eur J Neurosci 25:1832–1842PubMedCrossRefGoogle Scholar
  90. 90.
    Rozeboom AM, Akil H, Seasholtz AF (2007) Mineralocorticoid receptor overexpression in forebrain decreases anxiety-like behavior and alters the stress response in mice. Proc Natl Acad Sci U S A 104:4688–4693PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Kasckow J, Xiao C, Herman JP (2009) Glial glucocorticoid receptors in aged Fisher 344 (F344) and F344/Brown Norway rats. Exp Gerontol 44:335–343PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Lee SY, Hwang YK, Yun HS, Han JS (2012) Decreased levels of nuclear glucocorticoid receptor protein in the hippocampus of aged Long-Evans rats with cognitive impairment. Brain Res 1478:48–54PubMedCrossRefGoogle Scholar
  93. 93.
    Murphy EK, Spencer RL, Sipe KJ, Herman JP (2002) Decrements in nuclear glucocorticoid receptor (GR) protein levels and DNA binding in aged rate hippocampus. Endocrinology 143:1362–1370PubMedCrossRefGoogle Scholar
  94. 94.
    Bizon JL, Helm KA, Han JS, Chun HJ, Pucilowska J, Lund PK, Gallagher M (2001) Hypothalamic-pituitary-adrenal axis function and corticosterone receptor expression in behaviourally characterized young and aged Long-Evans rats. Eur J Neurosci 14:1739–1751PubMedCrossRefGoogle Scholar
  95. 95.
    Brudieux R, Ait Chaoui A, Rakotondrazafy J (1995) Age-related decreases in plasma adrenocorticotropic hormone, corticosterone, and aldosterone responses to exogenous corticotropin-releasing hormone in the rat. Gerontology 41:308–314PubMedCrossRefGoogle Scholar
  96. 96.
    Dalm S, Enthoven L, Meijer OC, Van der Mark MH, Karssen AM, de Kloet ER, Oitzl MS (2005) Age-related changes in hypothalamic-pituitary-adrenal axis activity of male C57BL/6J mice. Neuroendocrinology 81:372–380PubMedCrossRefGoogle Scholar
  97. 97.
    Hauger RLM, Thrivikraman KV, Plotsky PM (1994) Age-related alterations of hypothalamic-pituitary-adrenal axis function in male Fischer 344 rats. Endocrinology 134:1528–1536PubMedCrossRefGoogle Scholar
  98. 98.
    Herman JP, Schafer MK, Young EA, Thompson R, Douglass J, Akil H, Watson SJ (1989) Evidence for hippocampal regulation of neuroendocrine neurons of the hypothalamo-pituitary-adrenocortical axis. J Neurosci 9:3072–3082PubMedCrossRefGoogle Scholar
  99. 99.
    Jӧels M, Krugers H, Karst H (2008) Stress-induced changes in hippocampal function. Prog Brain Res 167:3–15CrossRefGoogle Scholar
  100. 100.
    Kant GF, Meyerhoff JL, Jarrard LE (1984) Biochemical indices of reactivity and habituation in rats with hippocampal lesions. Pharmacol Biochem Behav 20:793–797PubMedCrossRefGoogle Scholar
  101. 101.
    Sapolsky RM, Romero LM, Munck AU (2000) How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr Rev 21:55–89PubMedGoogle Scholar
  102. 102.
    Gardner MP, Lightman SL, Gallacher J, Hardy R, Kuh D, Ebrahim S, Boyer A, Ben-Shlomo Y (2011) Halcyon study team. Diurnal cortisol patterns are associated with physical performance in the Caerphilly prospective study. Int J Epidemiol 40:1693–1702PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Gardner MP, Lightman S, Sayer AA, Coopoer C, Cooper R, Deeg D, Ebrahim S, Gallacher J, Kivimaki M, Kumari M, Kuh D, Rm M, Peeters G, Ben-Schlomo Y (2013) Halcyon study team. Dysregulation of the hypothalamic pituitary adrenal (HPA) axis and physical performance at older ages: an individual participant meta-analysis. Psychoneuroendocrinology 38:40–49PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Hatzinger M, Reul JM, Landgraf R, Holsboer F, Neumann I (1996) Combined dexamethasone/CRH test in rats: hypothalamo-pituitary-adrenocortical system alterations in aging. Neuroendocrinology 64:349–356PubMedCrossRefGoogle Scholar
  105. 105.
    Meaney MJ, Aitken DH (1985) Dexamethasone binding in rat frontal cortex. Brain Res 328:176–180PubMedCrossRefGoogle Scholar
  106. 106.
    Veldhuis JD, Sharma A, Roelfsema F (2013) Age-dependent and genderdependent regulation of hypothalamic-adrenocorticotropic-adrenal axis. Endocrinol Metab Clin N Am 42:201–225CrossRefGoogle Scholar
  107. 107.
    Purnell JQ, Brandon DD, Isabelle LM, Loriaux DL, Samuels MH (2004) Association of 24-hour cortisol production rates, cortisol-binding globulin, and plasma-free cortisol levels with body composition, leptin levels, and aging in adult men and women. J Clin Endocrinol Metab 89:281–287CrossRefGoogle Scholar
  108. 108.
    Milcu SM, Bogdan C, Nicolau GY, Cristea A (1978) Cortisol circadian rhythm in 70–100-year-old subjects. Endocrinologie 16: 29–39Google Scholar
  109. 109.
    Van Cauter E, Leproult R, Kupfer DJ (1996) Effects of gender and age on the levels and circadian rhythmicity of plasma cortisol. J Clin Endocrinol Metab 81:2468–2473Google Scholar
  110. 110.
    Barton RN, Horan MA, Clague JE, Rose JG (1999) The effect of aging on the metabolic clearance rate and distribution of cortisol in man. Arch Gerontol Geriatr 29:95–105PubMedCrossRefGoogle Scholar
  111. 111.
    Barton RN, Horan MA, Weijers JW, Sakkee AN, Roberts NA, van Bezooijen CF (1993) Cortisol production rate and the urinary excretion of 17-hydroxycorticosteroids, free cortisol, and 6 beta-hydroxycortisol in healthy elderly men and women. J Gerontol 48:M213–M218PubMedCrossRefGoogle Scholar
  112. 112.
    Nicolson N, Storms C, Ponds R, Sulon J (1997) Salivary cortisol levels and stress reactivity in human aging. Gerontol A Biol Sci Med Sci 52: M68–M75CrossRefGoogle Scholar
  113. 113.
    Lupien S, Lecours AR, Lussoer I, Schwartz G, Nair NP, Meaney M (1994) Basal cortisol levels and cognitive deficits in human aging. J Neurosci 14:2893–2903PubMedCrossRefGoogle Scholar
  114. 114.
    Lupien SJ, Fiocco A, Wan N, Maheu F, Lord C, Schramek T, Tu MT (2005) Stress hormones and human memory function across the lifespan. Psychoneuroendocrinology 30:225–242PubMedCrossRefGoogle Scholar
  115. 115.
    Giordono R, Bo M, Pallegrino M, Vessari M, Baldi M, Pieu A, Balbo M, Bonelli L, Migliaretti G, Ghigo E, Arvat E (2005) Hypothalamus-pituitary adrenal hyperactivity in human aging is partially refractory to stimulation by mineral corticoid receptor blockade. J Clin Endocrniol Metab 90:5656–5662Google Scholar
  116. 116.
    Buckley TM, Mullen BC, Schatzberg AF (2007) The acute effects of a mineralocorticoid receptor (MR) agonist on nocturnal hypo- thalamic adrenal-pituitary (HPA) axis activity in healthy controls. Psychoneuroendocrinology 32:859–864PubMedCrossRefGoogle Scholar
  117. 117.
    Otte C, Jahn H, Yassourids A, Arlt J, Stober N, Maass P, Wiedemann K, Kellner M (2003) The mineral corticoid receptor agonist, fludrocortisone, inhibits pituitary-adrenal activity in humans after pre-treatment with metyrapone. Life Sci 73:1835–1845PubMedCrossRefGoogle Scholar
  118. 118.
    Otte C, Yassouridis A, Jahn H, Maass P, Stober N, Wiedemann K, Kellner M (2003) Mineralocorticoid receptor-mediated inhibition of the hypothalamic-pituitary-adrenal axis in aged humans. J Gerontol A Biol Sci Med Sci 58:900–905CrossRefGoogle Scholar
  119. 119.
    Morley JE. (2009) Developing novel therapeutic approaches to frailty. Curr Pharm Des 15:3384–3395PubMedCrossRefGoogle Scholar
  120. 120.
    Morley JE, Vellas B, van Kan GA, Anker SD, Bauer JM, Bernabei R, Cesari M, Chumlea WC, Doehner W, Evans J, Fried LP, Guralnik JM, Katz PR, Malmstrom TK, McCarter RJ, Gutierrez-Robledo LM, Rockwood K, von Haehling S, Vandewoude MF, Walston J (2013) Frailty consensus: a call to action. J Am Med Dir Assoc 14:392–397PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Fried LP, Tangen CM, Walston J, Newman AB, Hirsch C, Gottdiener J, Seeman T, Tracy R, Kop WJ, Burke G, McBurnie MA. (2001) Cardiovascular Health Study Collaborative Research Group. Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci 56:M146–M156CrossRefGoogle Scholar
  122. 122.
    Varadhan R, Walston J, Cappola AR, Carlson MC, Wand GS, Fried LP (2008) Higher levels and blunted diurnal variation of cortisol in frail older women. J Gerontol A Biol Sci Med Sci 63:190–195CrossRefGoogle Scholar
  123. 123.
    Holanda CM, Guerra RO, Nobrega PV, Costa HF, Piuvezam MR, Maciel AC (2012) Salivary cortisol and frailty syndrome in elderly residents of long-stay institutions: a cross-sectional study. Arch Gerontol Geriatr 54:e146–e151PubMedCrossRefGoogle Scholar
  124. 124.
    Gardner MP, Lightman SL, Gallacher J, Hardy R, Kuh D, Ebrahim S, Boyer A, Ben-Shlomo Y (2011) Halcyon study team. Diurnal cortisol patterns are associated with physical performance in the Caerphilly prospective study. Int J Epidemiol 40:1693–1702PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Kumari M, Badrick E, Sacker A, Kirschbaum C, Marmot M, Chandola T (2010) Identifying patterns in cortisol secretion in an older population. Findings from the Whitehall II study. Psychoneuroendocrinology 35:1091–1099PubMedCrossRefGoogle Scholar
  126. 126.
    Peeters GM, van Schoor NM, Visser M, Knol DL, Eekhoff EM, de Ronde W, Lips P (2007) Relationship between cortisol and physical performance in older persons. Clin Endocrinol 67:398–406CrossRefGoogle Scholar
  127. 127.
    Heaney JL, Phillips AC, Carroll D (2012) Ageing, physical function, and the diurnal rhythms of cortisol and dehydroepiandrosterone. Psychoneuroendocrinology 37:341–349PubMedCrossRefGoogle Scholar
  128. 128.
    Belanger A, Candas B, Dupont A, Cusan L, Diamond P, Gomez JL, Labrie F (1994) Changes in serum concentrations of conjugated and unconjugated steroids in 40- to 80-year-old men. J Clin Endocrinol Metab 79:1086–1090PubMedGoogle Scholar
  129. 129.
    Labrie F, Belanger A, Cusan L, Gomez JL, Candas B (1997) Marked decline in serum concentrations of adrenal C19 sex steroid precursors and conjugated androgen metabolites during aging. J Clin Endocrinol Metab 82:2396–2402CrossRefGoogle Scholar
  130. 130.
    Havlikova H, Hill M, Hampl R and Starka L. (2002) Sex- and age-related changes in epitestosterone in relation to pregnenolone sulfate and testosterone in normal subjects. J Clin Endocrinol Metab 87: 2225–2231CrossRefGoogle Scholar
  131. 131.
    Heaney JL, Phillips AC, Carroll D (2012) Ageing, physical function, and the diurnal rhythms of cortisol and dehydroepiandrosterone. Psychoneuroendocrinology 37(3):341–349PubMedCrossRefGoogle Scholar
  132. 132.
    Ahn RS, Lee YJ, Choi JY, Kwon HB, Chun SI (2007) Salivary cortisol and DHEA levels in the Korean population: age-related differences, diurnal rhythm, and correlations with serum levels. Yonsei Med J 48:379–438PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Parker CR, Mixon RL, Brissie RM, Grizzle WE (1997) Aging alters zonation in the adrenal cortex of men. J Clin Endocrinol Metab 82:3898–3901CrossRefGoogle Scholar
  134. 134.
    Robel P, Baulieu EE (1995) Dehydroepiandrosterone (DHEA) is a neuractive neurosteroid. Annal New York Acad Sci 774:82–110PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Baulieu EE. (1996) Dehydroepiandrosterone (DHEA): fountain of youth? J Clin Endocrinol Metab 81:3147–3151CrossRefGoogle Scholar
  136. 136.
    McEwen BS (2003) Mood disorders and allostatic load. Biol Psychiatry 54:200–207PubMedCrossRefPubMedCentralGoogle Scholar
  137. 137.
    Morley JE, Kaiser F, Raum WJ, Perry HM III, Flood JF, Jensen J, Silver AJ, Roberts E (1997) Potentially predictive and manipulable blood serum correlates of aging in the healthy human male: progressive decreases in bioavailable testosterone, dehydroepiandrosterone sulfate, and the ratio of insulin-like growth factor 1 to growth hormone. Proc Natl Acad Sci U S A 94: 7537–7542CrossRefGoogle Scholar
  138. 138.
    Liu D, Dillon JS (2002) Dehydroepiandrosterone activates endothelial cell nitric-oxide synthase by a specific plasma membrane receptor coupled to Galpha(i2,3). J Biol Chem 277:21379–21388PubMedCrossRefPubMedCentralGoogle Scholar
  139. 139.
    Liu D, Dillon JS (2004) Dehydroepiandrosterone stimulates nitric oxide release in vascular endothelial cells: evidence for a cell surface receptor. Steroids 69:279–289PubMedCrossRefPubMedCentralGoogle Scholar
  140. 140.
    Simoncini T, Mannella P, Fornari L, Varone G, Caruso A, Genazzani AR (2003) Dehydroepiandrosterone modulates endothelial nitric oxide synthesis via direct genomic and nongenomic mechanisms. Endocrinology 144:3449–3455PubMedCrossRefPubMedCentralGoogle Scholar
  141. 141.
    Traish AM, Kang HP, Saad F, Guay AT (2011) Dehydroepiandrosterone (DHEA) a precursor steroid or an active hormone in human physiology. J Sex Med 8:2960–2982PubMedCrossRefPubMedCentralGoogle Scholar
  142. 142.
    Goodwin B, Redinbo MR, Kliewer SA (2002) Regulation of cyp3a gene transcription by the pregnane X receptor. Annu Rev Pharmacol Toxicol 42:1–23PubMedCrossRefGoogle Scholar
  143. 143.
    Kliewer SA, Goodwin B, Willson TM (2002) The nuclear pregnane X receptor: a key regulator of xenobiotic metabolism. Endocr Rev 23:687–702PubMedCrossRefGoogle Scholar
  144. 144.
    Moore LB, Parks DJ, Jones SA, Bledsoe RK, Consler TG, Stimmel JB, Goodwin B, Liddle C, Blanchard SG, Willson TM, Collins JL, Kliewer SA (2000) Orphan nuclear receptors constitutive androstane receptor and pregnane X receptor share xenobiotic and steroid ligands. J Biol Chem 275:15122–15127PubMedCrossRefGoogle Scholar
  145. 145.
    Ripp SL, Fitzpatrick JL, Peters JM, Prough RA (2002) Induction of CYP3A expression by dehydroepiandrosterone: involvement of the pregnane X receptor. Drug Metab Dispos 30:570–575PubMedCrossRefGoogle Scholar
  146. 146.
    Straub RH, Konecna L, Hrach S, Rothe G, Kreutz M, Schölmerich J, Falk W, Lang B (1998) Serum dehydroepiandrosterone (DHEA) and DHEA sulfate are negatively correlated with serum interleukin-6 (IL-6), and DHEA inhibits IL-6 secretion from mononuclear cells in man in vitro: possible link between endocrinosenescence and immunosenescence. J Clin Endocrinol Metab 83:2012–2017PubMedCrossRefPubMedCentralGoogle Scholar
  147. 147.
    Peters JM, Zhou YC, Ram PA, Lee SS, Gonzales FJ, Waxman DJ (1996) Peroxisome proliferator-activated receptor alpha required for gene induction by dehydroepiandrosterone-3 beta-sulfate. Mol Pharmacol 50:67–74Google Scholar
  148. 148.
    Poynter ME, Daynes RA (1998) Peroxisome proliferator-activated receptor alpha activation modulates cellular redox status, represses nuclear factor-kappaB signaling, and reduces inflammatory cytokine production in aging. J Biol Chem 273(32):833–841Google Scholar
  149. 149.
    Maurice T, Gregoire C, Espallergues J (2006) Neuro(active)steroids actions at the neuromodulatory sigma1 (sigma1) receptor: biochemical and physiological evidences, consequences in neuroprotection. Pharmacol Biochem Behav 84:581–597PubMedCrossRefPubMedCentralGoogle Scholar
  150. 150.
    Cheng ZX, Lan DM, Wu PY, Zhu YH, Dong Y, Ma L, Zheng P (2008) Neurosteroid dehydroepiandrosterone sulphate inhibits persistent sodium currents in rat medial prefrontal cortex via activation of sigma-1 receptors. Exp Neurol 210:128–136PubMedCrossRefPubMedCentralGoogle Scholar
  151. 151.
    Tagashira H, Bhuiyan S, Shioda N, Fukunaga K (2011) Distinct cardioprotective effects of 17beta-estradiol and dehydroepiandrosterone on pressure overload-induced hypertrophy in ovariectomized female rats. Menopause 18:1317–1326PubMedCrossRefPubMedCentralGoogle Scholar
  152. 152.
    Bhuiyan MS, Tagashira H, Fukunaga K (2011) Dehydroepiandrosterone-mediated stimulation of sigma-1 receptor activates Akt–eNOS signaling in the thoracic aorta of ovariectomized rats with abdominal aortic banding. Cardiovasc Ther 29:219–230PubMedCrossRefPubMedCentralGoogle Scholar
  153. 153.
    Bhuiyan S, Fukunaga K (2010) Stimulation of Sigma-1 receptor by dehydroepiandrosterone ameliorates hypertension-induced kidney hypertrophy in ovariectomized rats. Exp Biol Med (Maywood) 235:356–564CrossRefGoogle Scholar
  154. 154.
    Levy HR (1979) Glucose-6-phosphate dehydrogenases. Adv Enzymol Relat Areas Mol Biol 48:97–192PubMedGoogle Scholar
  155. 155.
    Schwartz AG, Pashko LL (2004) Dehydroepiandrosterone, glucose-6-phosphate dehydrogenase, and longevity. Ageing Res Rev 3:171–187PubMedCrossRefPubMedCentralGoogle Scholar
  156. 156.
    Camporez JP, Akamine EH, Davel AP, Franci CR, Rossoni LV, Carvalho CR (2011) Dehydroepiandrosterone protects against oxidative stress-induced endothelial dysfunction in ovariectomized rats. J Physiol 589:2585–2596PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Nheu L, Nazareth L, Xu GY, Xiao FY, Luo RZ, Komesaroff P, Ling S (2011) Physiological effects of androgens on human vascular endothelial and smooth muscle cells in culture. Steroids 76:1590–1596PubMedCrossRefPubMedCentralGoogle Scholar
  158. 158.
    Jacob MH, Janner Dda R, Bello-Klein A, Llesuy SF, Ribeiro MF (2008) Dehydroepiandrosterone modulates antioxidant enzymes and Akt signaling in healthy Wistar rat hearts. J Steroid Biochem Mol Biol 112:138–144PubMedCrossRefPubMedCentralGoogle Scholar
  159. 159.
    Jia C, Chen X, Li X, Li M, Miao C, Sun B, Fan Z, Ren L (2011) The effect of DHEA treatment on the oxidative stress and myocardial fibrosis induced by Keshan disease pathogenic factors. J Trace Elem Med Biol 25:154–159PubMedCrossRefPubMedCentralGoogle Scholar
  160. 160.
    Lasley BL, Crawford SL, Laughlin GA, Santoro N, McConnell DS, Crandall C, Greendale GA, Polotsky AJ, Vuga M (2011) Circulating dehydroepiandrosterone levels in women with bilateral Salpingo-oophorectomy during the menopausal transition. Menopause 18:494–498PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Crawford S, Santoro N, Laughlin GA, Sowers MF, McConnell D, Sutton-Tyrrell K, Weiss G, Vuga M, Randolph J, Lasley B (2009) Circulating dehydroepiandrosterone sulfate concentrations during the menopausal transition. J Clin Endocrinol Metab 94:2945–2951PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Valenti G, Denti L, Maggio M, Ceda G, Volpato S, Bandinelli S, Ceresini G, Cappola A, Guralnik JM, Ferrucci L (2004) Effect of DHEAS on skeletal muscle over the life span: the InCHIANTI study. J Gerontol Ser A Biol Sci Med Sci 59:466–472CrossRefGoogle Scholar
  163. 163.
    Kostka T, Arsac LM, Patricot MC, Berthouze SE, Lacour JR, Bonnefoy M (2000) Leg extensor power and dehydroepiandrosterone sulfate, insulin-like growth factor-I and testosterone in healthy active elderly people. Eur J Appl Physiol 82:83–90PubMedCrossRefPubMedCentralGoogle Scholar
  164. 164.
    Ravaglia G, Forti P, Maioli F, Boschi F, Cicognani A, Bernardi M, Pratelli L, Pizzoferrato A, Porcu S, Gasbarrini G (1997) Determinants of functional status in healthy Italian nonagenarians and centenarians: a comprehensive functional assessment by the instruments of geriatric practice. J Am Geriatr Soc 45:1196–1202PubMedCrossRefPubMedCentralGoogle Scholar
  165. 165.
    Leng SX, Cappola AR, Anderson RE, Blackman MR, Koenig K, Blair M, Walston JD (2004) Serum levels of insulin-like growth factor-I (IGF-I) and dehydroepiandrosterone sulfate (DHEA-S), and their relationships with serum interleukin-6, in the geriatric syndrome of frailty. Aging Clin Exp Res 16:153–157PubMedCrossRefPubMedCentralGoogle Scholar
  166. 166.
    Voznesensky M, Walsh S, Dauser D, Brindisi J, Kenny AM (2009) The association between dehydroepiandosterone and frailty in older men and women. Age Ageing 38:401–406PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Baulieu EE, Thomas G, Legrain S, Lahlou N, Roger M, Debuire B, Faucounau V, Girard L, Hervy MP, Latour F, Leaud MC, Mokrane A, Pitti-Ferrandi H, Trivalle C, de Lacharrière O, Nouveau S, Rakoto-Arison B, Souberbielle JC, Raison J, Le Bouc Y, Raynaud A, Girerd X, Forette F (2000) Dehydroepiandrosterone (DHEA), DHEA sulfate, and aging: contribution of the DHEAge study to a sociobiomedical issue. Proc Nat Acad Natl Sci 97:4279–4284CrossRefGoogle Scholar
  168. 168.
    Ohlsson C, Labrie F, Barrett-Connor E, Karlsson MK, Ljunggren O, Vandenput L, Mellström D, Tivesten A (2010) Low serum levels of dehydroepiandrosterone sulfate predict all-cause and cardiovascular mortality in elderly Swedish men. J Clin Endocrinol Metab 95:4406–4414PubMedCrossRefPubMedCentralGoogle Scholar
  169. 169.
    Kroboth PD, Salek FS, Pittenger AL, Fabian TJ, Frye RF (1999) DHEA and DHEA-S: a review. J Clin Pharmacol 39:327–348PubMedCrossRefGoogle Scholar
  170. 170.
    Lois K, Kassi E, Prokopiou M, Chrousos GP (2014, June 18) Adrenal androgens and aging. In: De Groot LJ, Chrousos G, Dungan K, Feingold KR, Grossman A, Hershman JM, Koch C, Korbonits M, McLachlan R, New M, Purnell J, Rebar R, Singer F, Vinik A (eds) Endotext [Internet]. MDText.com, Inc., South Dartmouth (MA), 2000-Google Scholar
  171. 171.
    McEwen BS, Albeck D, Cameron H, Chao HM, Gould E, Hastings N (1995) Stress and the brain: a paradoxical role for adrenal steroids. In: Litwack GD (ed) Vitamins and hormones. Academic Press, New York, pp 371–402Google Scholar
  172. 172.
    Galea LA, McEwen BS (1999) Sex and seasonal differences in the rate of cell proliferation in the dentate gyrus of adult meadow voles. Neuroscience 83:955–964PubMedCrossRefPubMedCentralGoogle Scholar
  173. 173.
    Gould E, McEwen BS, Tanapat P, Galea LAM, Fuchs E (1997) Neurogenesis in the dentate gyrus of the adult tree shrew is regulated by psychosocial stress and NMDA. J Neurosci 17:2492–2498Google Scholar
  174. 174.
    Raz N, Rodrigue KM (2006) Differential aging of the brain: patterns, cognitive correlates and modifiers. Neurosci Biobehav Rev 30:730–748. [PubMed: 16919333]PubMedPubMedCentralCrossRefGoogle Scholar
  175. 175.
    Garrido P, Blas M. De, Gine E, Santos A and Mora F. (2012) Aging impairs the control of prefrontal cortex on the release of corticosterone in response to stress and on memory consolidation. Neurobiol Aging 33:827, e821–e829. [PubMed: 21794953]CrossRefGoogle Scholar
  176. 176.
    Qu T, Uz T, Manev H (2000) Inflammatory 5-LOX mRNA and protein are increased in brain of aging rats. Neurobiol Aging 21:647–652PubMedCrossRefGoogle Scholar
  177. 177.
    Zhang W, Lei ZM, Rao CV (1999) Immortalized hippocampal cells contain functional luteinizing hormone/human chorionic gonadotropin receptors. Life Sci 65:2083–2098PubMedCrossRefGoogle Scholar
  178. 178.
    Sapolsky RM, Krey LC, McEwen BS (1986) The neuroendocrinology of stress and aging: the glucocorticoid cascade hypothesis. Endocr Rev 7:284–301PubMedCrossRefGoogle Scholar
  179. 179.
    Conrad CD (2008) Chronic stress-induced hippocampal vulnerability: the glucocorticoid vulnerability hypothesis. Rev Neurosci 19:395–411PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Biochemistry, Institute of ScienceBanaras Hindu UniversityVaranasiIndia

Personalised recommendations