Advertisement

Neural Cognitive Computing Mechanisms

  • Wenfeng WangEmail author
  • Xiangyang Deng
  • Liang Ding
  • Limin Zhang
Chapter
Part of the Research on Intelligent Manufacturing book series (REINMA)

Abstract

In this chapter, a mobile robotic system is designed under the vision–brain hypothesis, taking the wheeled mobile robotic (WMR) system as an example. Based on the hypothesis and results of Chap.  3, robots can selectively detect and tracking objects and the robot path-planning problem have been solved. Therefore, an adaptive neural network (NN)-based tracking control algorithm is enough to design the full state constrained WMR system. To deal with the brain-inspired tracking task requirements of the WMR system, it is necessary to take the full state constraints problem into account and based on the assumptions and lemmas given in this chapter, the uniform ultimate boundedness for all signals in the WMR system can be guaranteed to ensure the tracking error converges to zero. Numerical experiments are presented to illustrate the good performance of our control algorithm. Moreover, a partial reinforcement learning neural network (PRLNN)-based tracking algorithm is proposed to enhance the WMR system performance. As the major neural cognitive computing mechanisms the enhanced WMR system, PRLNN adaptive control solve the WMR tracking problem with the time-varying advance angle. The critic NN and action NN adaptive laws for decoupled controllers are designed using the standard gradient-based adaptation method. The Lyapunov stability analysis theorem is employed to test whether the uniform ultimate boundedness of all signals in the system can be guaranteed, and in addition, a numerical simulation is also presented to verify the effectiveness of the proposed control algorithm.

References

  1. 1.
    P.F. Muir, C.P. Neuman, in Autonomous Robot Vehicles. Kinematic modeling for feedback control of an omnidirectional wheeled mobile robot (Springer, New York, 1990), pp. 25–31CrossRefGoogle Scholar
  2. 2.
    D. Chwa, Sliding-mode tracking control of nonholonomic wheeled mobile robots in polar coordinates. IEEE Trans. Control Syst. Technol. 12(4), 637–644 (2004)MathSciNetCrossRefGoogle Scholar
  3. 3.
    R. Martínez, O. Castillo, L.T. Aguilar, Optimization of interval type-2 fuzzy logic controllers for a perturbed autonomous wheeled mobile robot using genetic algorithms. Inf. Sci. 179(13), 2158–2174 (2009)zbMATHCrossRefGoogle Scholar
  4. 4.
    S.S. Ge, Y.J. Cui, New potential functions for mobile robot path planning. IEEE Trans. Robot. Autom. 16(5), 615–620 (2000)CrossRefGoogle Scholar
  5. 5.
    D. Liang, H.B. Gao, Z.Q. Deng et al., Three-layer intelligence of planetary exploration wheeled mobile robots:Robint, virtint, and humint. Sci China Technol. Sci. 58(8), 1299–1317 (2015)CrossRefGoogle Scholar
  6. 6.
    H.Q. Wang, X.P. Liu, K.F. Liu, Robust adaptive neural tracking control for a class of stochastic nonlinear interconnected systems. IEEE Trans. Neural Netw. Learn. Syst. 27(3), 510–523 (2016)MathSciNetCrossRefGoogle Scholar
  7. 7.
    W. He, Y.T. Dong, C.Y. Sun, Adaptive neural impedance control of a robotic manipulator with input saturation. IEEE Trans. Syst. Man, Cybern. Syst. 46(3), 334–344 (2016)CrossRefGoogle Scholar
  8. 8.
    T.P. Zhang, S.S. Ge, Adaptive neural network tracking control of MIMO nonlinear systems with unknown dead zones and control directions. IEEE Trans. Neural Netw. 20(3), 483–497 (2009)CrossRefGoogle Scholar
  9. 9.
    M. Chen, Disturbance attenuation tracking control for wheeled mobile robots with skidding and slipping. IEEE Trans. Industr. Electron. 64(4), 3359–3368 (2017)CrossRefGoogle Scholar
  10. 10.
    H.Q. Wang, B. Chen, C. Lin, Adaptive neural tracking control for a class of stochastic nonlinear systems with unknown dead-zone. Int. J. Innovative Comput. Inf. Control 9(8), 3257–3269 (2013)Google Scholar
  11. 11.
    F.G. Rossomando, C. Soria, R. Carelli, Sliding mode neuro adaptive control in trajectory tracking for mobile robots. J. Intell. Rob. Syst. 74(3-4), 931–994 (2014)CrossRefGoogle Scholar
  12. 12.
    H. Gao, X. Song, L. Ding, Z.Q. Deng, Adaptive tracking control of nonholonomic systems based on feedback error learning. Int. J. Robot. Autom. 28(4), 371–378 (2013)Google Scholar
  13. 13.
    H. Gao, X. Song, L. Ding, Z.Q. Deng, Adaptive motion control of wheeled mobile robot with unknown slippage. Int. J. Control 87(8), 1513–1522 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    L. Ding, H. Gao, Z. Deng, K. Yoshida, K Nagatani, in 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems. Slip ratio for lugged wheel of planetary rover in deformable soil: definition and estimation (2009), pp. 3343–3348Google Scholar
  15. 15.
    L. Ding, H. Gao, Z. Deng, K. Nagatani, K. Yoshida, Experimental study and analysis on driving wheels’ performance for planetary exploration rovers moving in deformable soil. J. Terrramech. 48(1), 27–45 (2011)CrossRefGoogle Scholar
  16. 16.
    Z.J. Li, J.X. Li, Y. Kang, Adaptive robust coordinated control of multiple mobile manipulators interacting with rigid environments. Automatica 46(12), 2028–2034 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    W. He, S. Zhang, Control design for nonlinear flexible wings of a robotic aircraft. IEEE Trans. Control Syst. Technol. 25(1), 351–357 (2017)MathSciNetCrossRefGoogle Scholar
  18. 18.
    H.Q. Wang, W.J. Sun, P.X. Liu, Adaptive intelligent control of nonaffine nonlinear time-delay systems with dynamic uncertainties. IEEE Trans. Syst. Man Cybern. Syst. 47(7), 1474–1485 (2017)CrossRefGoogle Scholar
  19. 19.
    M. Chen, G. Tao, B. Jiang, Dynamic surface control using neural networks for a class of uncertain nonlinear systems with input saturation. IEEE Trans. Neural Netw. Learn. Syst. 26(9), 2086–2097 (2015)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Z. Liu, G.Y. Lai, Y. Zhang, X. Chen, C.L.P. Chen, Adaptive neural control for a class of nonlinear time-varying delay systems with unknown hysteresis. IEEE Trans. Neural Netw. Learn. Syst. 25(12), 2129–2140 (2014)CrossRefGoogle Scholar
  21. 21.
    W. He, Y.T. Dong, Adaptive fuzzy neural network control for a constrained robot using impedance learning. IEEE Trans. Neural Netw. Learn. Syst. 29(4), 1174–1186 (2018)CrossRefGoogle Scholar
  22. 22.
    M. Chen, P. Shi, C.C. Lim, Adaptive neural fault-tolerant control of a 3-DOF model helicopter system. IEEE Trans. Syst. Man Cybern. Syst. 46(2), 260–270 (2016)CrossRefGoogle Scholar
  23. 23.
    S.S. Ge, C.C. Hang, T. Zhang, Adaptive neural network control of nonlinear systems by state and output feedback. IEEE Trans. Syst. Man Cybern. B Cybern. 29(6), 818–828 (1999)CrossRefGoogle Scholar
  24. 24.
    Y.J. Liu, S. Li, S. Tong, C.L.P. Chen, Neural approximation-based adaptive control for a class of nonlinear nonstrict feedback discrete-time systems. IEEE Trans. Neural Netw. Learning Syst. 28(7), 1531–1541 (2017)MathSciNetCrossRefGoogle Scholar
  25. 25.
    C.L.P. Chen, G.X. Wen, Y.J. Liu, Z. Liu, Observer-based adaptive backstepping consensus tracking control for high-order nonlinear semi-strict-feedback multiagent systems. IEEE Trans. Cybern. 46(7), 1591–1601 (2016)CrossRefGoogle Scholar
  26. 26.
    G.X. Wen, C.L.P. Chen, Y.J. Liu, Z. Liu, Neural-network-based adaptive leader-following consensus control for second-order nonlinear multi-agent systems. IET Control Theory Appl. 9(13), 1927–1934 (2015)MathSciNetCrossRefGoogle Scholar
  27. 27.
    C.L.P. Chen, G.X. Wen, Y.J. Liu, F.Y. Wang, Adaptive consensus control for a class of nonlinear multiagent time-delay systems using neural networks. IEEE Trans. Neural Netw. Learn. Syst. 25(6), 1217–1226 (2014)CrossRefGoogle Scholar
  28. 28.
    G.X. Wen, C.L.P. Chen, Y.J. Liu, Z. Liu, Neural network-based adaptive leader-following consensus control for a class of nonlinear multiagent state-delay systems. IEEE Trans. Cybern. 47(8), 2151–2160 (2017)CrossRefGoogle Scholar
  29. 29.
    C. Chen, C.Y. Wen, Z. Liu, K. Xie. Y. Zhang, C.L.P. Chen, Adaptive consensus of nonlinear multi-agent systems with non-identical partially unknown control directions and bounded modelling errors. IEEE Trans. Autom. Control 62(9), 4654–4659 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Y.J. Liu, S.C. Tong, Optimal control-based adaptive NN design for a class of nonlinear discrete-time block-triangular systems. IEEE Trans. Cybern. 46(11), 2670–2680 (2016)CrossRefGoogle Scholar
  31. 31.
    S. Jagannathan, P. He, Neural-network-based state feedback control of a nonlinear discrete-time system in nonstrict feedback form. IEEE Trans. Neural Netw. 19(12), 2073–2087 (2008)CrossRefGoogle Scholar
  32. 32.
    M. Chen, S.S. Ge, Adaptive neural output feedback control of uncertain nonlinear systems with unknown hysteresis using disturbance observer. IEEE Trans. Industr. Electron. 62(12), 7706–7716 (2015)MathSciNetCrossRefGoogle Scholar
  33. 33.
    C. Chen, Z. Liu, Y. Zhang, C.L.P. Chen, S.L. Xie, Saturated Nussbaum function based approach for robotic systems with unknown actuator dynamics. IEEE Trans. Cybern. 46(10), 2311–2322 (2016)CrossRefGoogle Scholar
  34. 34.
    Z. Li, H. Xiao, C. Yang, Y. Zhao, Model predictive control of nonholonomic chained systems using general projection neural networks optimization. IEEE Trans. Syst. Man Cybern. Syst. 45(10), 1313–1321 (2015)CrossRefGoogle Scholar
  35. 35.
    C. Chen, Z. Liu, Y. Zhang, S. Xie, Coordinated motion/force control of multiarm robot with unknown sensor nonlinearity and manipulated object’s uncertainty. IEEE Trans. Syst. Man Cybern. Syst. 47(7), 1123–1134 (2017)CrossRefGoogle Scholar
  36. 36.
    Y.J. Liu, S.C. Tong, Barrier Lyapunov functions-based adaptive control for a class of nonlinear pure-feedback systems with full state constraints. Automatica 64, 70–75 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    K.P. Tee, S.S. Ge, E.K. Tay, Barrier Lyapunov function for the control of output-constrained nonlinear systems. Automatica 45(4), 918–927 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    K.P. Tee, B.B. Ren, S.S. Ge, Control of nonlinear systems with time-varying output constraints. Automatica 47(11), 2511–2516 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Y.J. Liu, J. Li, S.C. Tong, C.L.P. Chen, Neural network control-based adaptive learning design for nonlinear systems with full state constraints. IEEE Trans. Neural Netw. Learn. Syst. 27(7), 1562–1571 (2016)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Z.L. Tang, S.S. Ge, K.P. Tee, W. He, Adaptive neural control for an uncertain robotic manipulator with joint space constraints. Int. J. Control 89(7), 1428–1446 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    M.E. Serrano, G.J.E. Scaglia, F.A. Cheein, V. Mut, O.A. Ortiz, Trajectory-tracking controller design with constraints in the control signals: a case study in mobile robots. Robotica 33(10), 2186–2203 (2015)CrossRefGoogle Scholar
  42. 42.
    W. He, A.O. David, Z. Yin, C. Sun, Neural network control of a robotic manipulator with input dead-zone and output constraint. IEEE Trans. Syst. Man Cybern. Syst. 46(6), 759–770 (2016)CrossRefGoogle Scholar
  43. 43.
    W. He, Y. Chen, Z. Yin, Adaptive neural network control of an uncertain robot with full state constraints. IEEE Trans. Cybern. 46(3), 620–629 (2016)CrossRefGoogle Scholar
  44. 44.
    L. Ding, C. Chen, Y.K. Li, G.J. Liu, H.B. Gao, Z.Q. Deng, Tracking control of nonholonomic wheeled mobile robots on slopes. Int. J. Rob. Autom. 33(4), 1–10 (2018)Google Scholar
  45. 45.
    M. Wang, S.Y. Zhang, B. Chen, F. Luo, Direct adaptive neural control for stabilization of nonlinear time-delay systems. Sci. China Inf. Sci. 53(4), 800–812 (2010)MathSciNetCrossRefGoogle Scholar
  46. 46.
    B. Ren, S.S. Ge, K.P. Tee, T.H. Lee, Adaptive neural control for output feedback nonlinear systems using a barrier Lyapunov function. IEEE Trans. Neural Netw. 21(8), 1339–1345 (2010)CrossRefGoogle Scholar
  47. 47.
    J.K. Liu, Design of Robot Control System and MATLAB Simulation (Tsinghua University Press, Peking, 2008), pp. 400–419Google Scholar
  48. 48.
    J. Bell, Mars exploration: roving the red planet. Nature 490(7418), 34–35 (2012)CrossRefGoogle Scholar
  49. 49.
    L. Ding, H.B. Gao, Z.Q. Deng, Z.J. Li, K.R. Xia, G.R. Duan, Path-following control of wheeled planetary exploration robots moving on deformable rough terrain. Sci. World J. 2014, 1–13 (2014)Google Scholar
  50. 50.
    K. Iagnemma, S. Kang, H. Shibly, S. Dubowsky, Online terrain parameter estimation for wheeled mobile robots with application to planetary rovers. IEEE Trans. Rob. 20(5), 921–927 (2004)CrossRefGoogle Scholar
  51. 51.
    L. Ding, Z.Q. Deng, H.B. Gao, J.L. Guo, D.P. Zhang, Experimental study and analysis of the wheels’ steering mechanics for planetary exploration wheeled mobile robots moving on deformable terrain. Int. J. Rob. Res. 32(6), 712–743 (2013)CrossRefGoogle Scholar
  52. 52.
    G. Horneck, The microbial case for Mars and its implication for human expeditions to Mars. Acta Astronaut. 63(7), 1015–1024 (2008)CrossRefGoogle Scholar
  53. 53.
    G. Ishigami, K. Nagatani, K. Yoshida, in 2007 IEEE International Conference on Robotics and Automation, IEEE. Path planning for planetary exploration rovers and its evaluation based on wheel slip dynamics (2007), pp. 2361–2366Google Scholar
  54. 54.
    R. Chatila, S. Lacroix, T. Simeon, M. Herrb, Planetary exploration by a mobile robot: mission teleprogramming and autonomous navigation. Auton. Robots 2(4), 333–344 (1995)CrossRefGoogle Scholar
  55. 55.
    S.R. Xie, J.Q. Chen, J. Luo, H.Y. Li, J.F. Yao, G. Jason, in 2013 IEEE International Conference on Robotics and Biomimetics, IEEE. Dynamic analysis and control system of spherical robot for polar region scientific research (2013), pp. 2540–2545Google Scholar
  56. 56.
    C.M. Gifford, E.L. Akers, R.S. Stansbury, A. Agah, in The Path to Autonomous Robots. Mobile robots for polar remote sensing (Springer, US, 2009), pp. 1–22Google Scholar
  57. 57.
    C. Yang, J. Luo, Y. Pan, Z. Liu, C.-Y. Su, Personalized variable gain control with tremor attenuation for robot teleoperation. IEEE Trans. Syst. Man Cybern. Syst. (2017).  https://doi.org/10.1109/tsmc.2017.2694020CrossRefGoogle Scholar
  58. 58.
    C. Yang, K. Huang, H. Cheng, Y. Li, C.-Y. Su, Haptic Identification by ELM Controlled Uncertain Manipulator. IEEE Trans. Syst. Man Cybern. Syst. 47(8), 2398–2409 (2017)CrossRefGoogle Scholar
  59. 59.
    D.H. Kim, J.H. Oh, Tracking control of a two-wheeled mobile robot using input–output linearization. Control Eng. Pract. 7(3), 369–373 (1999)CrossRefGoogle Scholar
  60. 60.
    J.M. Yang, J.H. Kim, Sliding mode control for trajectory tracking of nonholonomic wheeled mobile robots. IEEE Trans. Robot. Autom. 15(3), 578–587 (1999)CrossRefGoogle Scholar
  61. 61.
    Z.J. Li, Y. Zhang, Robust adaptive motion/force control for wheeled inverted pendulums. Automatica 46(8), 1346–1353 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  62. 62.
    Z.J. Li, C. Yang, Neural-adaptive output feedback control of a class of transportation vehicles based on wheeled inverted pendulum models. IEEE Trans. Control Syst. Technol. 20(6), 1583–1591 (2012)MathSciNetCrossRefGoogle Scholar
  63. 63.
    B.S. Park, S.J. Yoo, J.B. Park, Y.H. Choi, Adaptive neural sliding mode control of nonholonomic wheeled mobile robots with model uncertainty. IEEE Trans. Control Syst. Technol. 17(1), 207–214 (2009)CrossRefGoogle Scholar
  64. 64.
    Y.J. Liu, S.C. Tong, Barrier Lyapunov functions for Nussbaum gain adaptive control of full state constrained nonlinear systems. Automatica 76, 143–152 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  65. 65.
    Y.J. Liu, S.M. Lu, D.J. Li, S.C. Tong, Adaptive controller design-based ABLF for a class of nonlinear time-varying state constraint systems. IEEE Trans. Syst. Man Cybern. Syst. 47(7), 1546–1553 (2017)CrossRefGoogle Scholar
  66. 66.
    Y.J. Liu, S. Li, S.C. Tong, C.L.P. Chen, Neural approximation -based adaptive control for a class of nonlinear nonstrict feedback discrete-time systems. IEEE Trans. Neural Netw. Learn. Syst. 28(7), 1531–1541 (2017)MathSciNetCrossRefGoogle Scholar
  67. 67.
    R. Fierro, F.L. Lewis, Control of a nonholonomic mobile robot using neural networks. IEEE Trans. Neural Netw. 9(4), 589–600 (1998)CrossRefGoogle Scholar
  68. 68.
    C. Yang, C. Zeng, P. Liang, Z. Li, R. Li, C.-Y. Su, Interface design of a physical human robot interaction system for human impedance adaptive skill transfer. IEEE Trans. Autom. Sci. Eng. (2017).  https://doi.org/10.1109/tase.2017.2743000CrossRefGoogle Scholar
  69. 69.
    C. Yang, Y. Jiang, Z. Li, W. He, C.-Y. Su, Neural control of bimanual Robots with guaranteed global stability and motion precision. IEEE Trans. Ind. Inform. 13(3), 1162–1171 (2017)CrossRefGoogle Scholar
  70. 70.
    H. Wang, B. Yang, Y. Liu, W. Chen, X. Liang, R. Pfeifer, Visual servoing of soft robot manipulator in constrained environments with an adaptive controller. IEEE/ASME Trans. Mechatron. 22(1), 41–50 (2017)CrossRefGoogle Scholar
  71. 71.
    W. He, Z.C. Yan, C.Y. Sun, Y.N. Chen, Adaptive neural network control of a flapping wing micro aerial vehicle with disturbance observer. IEEE Trans. Cybern. 47(10), 3452–3465 (2017)CrossRefGoogle Scholar
  72. 72.
    Y.J. Liu, M.Z. Gong, S.C. Tong, C.L.P. Chen, D.J. Li, Adaptive fuzzy output feedback control for a class of nonlinear systems with full state constraints. IEEE Trans. Fuzzy Syst.  https://doi.org/10.1109/tfuzz.2018.2798577 (in press)CrossRefGoogle Scholar
  73. 73.
    W. He, Y.T. Dong, Adaptive fuzzy neural network control for a constrained robot using impedance learning. IEEE Trans. Neural Netw. Learn. Syst. (2017).  https://doi.org/10.1109/tnnls.2017.2665581CrossRefGoogle Scholar
  74. 74.
    W. He, A.O. David, Z. Yin, C. Sun, Neural network control of a robotic manipulator with input deadzone and output constraint. IEEE Trans. Man Cybern. Syst. 46(6), 759–770 (2016)CrossRefGoogle Scholar
  75. 75.
    C. Yang, X. Wang, Z. Li, Y. Li, C.-Y. Su, Teleoperation control based on combination of wave variable and neural networks. IEEE Trans. Syst. Man Cybern. Syst. 47(8), 2125–2136 (2017)CrossRefGoogle Scholar
  76. 76.
    Z. Li, S. Xiao, S.S. Ge, H. Su, Constrained multilegged robot system modeling and fuzzy control with uncertain kinematics and dynamics incorporating foot force optimization. IEEE Trans. Syst. Man Cybern. Syst. 46(1), 1–15 (2016)CrossRefGoogle Scholar
  77. 77.
    D.P. Li, D.J. Li, Adaptive neural tracking control for an uncertain state constrained robotic manipulator with unknown time-varying delays. IEEE Trans. Syst. Man Cybern. Syst.  https://doi.org/10.1109/tsmc.2017.2703921CrossRefGoogle Scholar
  78. 78.
    G. Lai, Z. Liu, Y. Zhang, C.L.P. Chen, Adaptive position/attitude tracking control of aerial robot with unknown inertial matrix based on a new robust neural identifier. IEEE Trans. Neural Netw. Learn. Syst. 27(1), 18–31 (2016)MathSciNetCrossRefGoogle Scholar
  79. 79.
    O. Mohareri, R. Dhaouadi, A.B. Rad, Indirect adaptive tracking control of a nonholonomic mobile robot via neural networks. Neurocomputing 88, 54–66 (2012)CrossRefGoogle Scholar
  80. 80.
    S.J. Yoo, Adaptive tracking control for a class of wheeled mobile robots with unknown skidding and slipping. IET Control Theory Appl. 4(10), 2109–2119 (2010)MathSciNetCrossRefGoogle Scholar
  81. 81.
    F.G. Rossomando, C. Soria, R. Carelli, Sliding mode neuro adaptive control in trajectory tracking for mobile robots. J. Intell. Rob. Syst. 74(3–4), 931–944 (2014)CrossRefGoogle Scholar
  82. 82.
    Y.J. Liu, Y. Gao, S.C. Tong, Y.M. Li, Fuzzy approximation-based adaptive backstepping optimal control for a class of nonlinear discrete-time systems with dead-zone. IEEE Trans. Fuzzy Syst. 24(1), 16–28 (2016)CrossRefGoogle Scholar
  83. 83.
    Y.J. Liu, L. Tang, S.C. Tong, C.L.P. Chen, D.J. Li, Reinforcement learning design-based adaptive tracking control with less learning parameters for nonlinear discrete-time MIMO systems. IEEE Trans. Neural Netw. Learn. Syst. 26(1), 165–176 (2015)MathSciNetCrossRefGoogle Scholar
  84. 84.
    Q. Yang, S. Jagannathan, Reinforcement learning controller design for affine nonlinear discrete-time systems using online approximators. IEEE Trans. Syst. Man Cybern. B Cybern. 42(2), 377–390 (2012)CrossRefGoogle Scholar
  85. 85.
    P. He, S. Jagannathan, Reinforcement learning neural-network- based controller for nonlinear discrete-time systems with input constraints. IEEE Trans. Syst. Man Cybern. B Cybern. 37(2), 425–436 (2007)CrossRefGoogle Scholar
  86. 86.
    Y.J. Liu, S.M. Lu, S.C. Tong, X.K. Chen, C.L.P. Chen, D.J. Li, Adaptive control-based Barrier Lyapunov Functions for a class of stochastic nonlinear systems with full state constraints. Automatica 87, 83–93 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  87. 87.
    L. Ding, S. Li, Y.J Liu et al. Adaptive neural network-based tracking control for full-state constrained wheeled mobile robotic system. IEEE Trans. Syst. Man Cybern. Syst. 1–10 (2017)Google Scholar
  88. 88.
    L. Ding, S. Li, H. Gao et al. Adaptive partial reinforcement learning neural network-based tracking control for wheeled mobile robotic systems. IEEE Trans. Syst. Man Cybern. Syst. 1–12 (2018)Google Scholar

Copyright information

© Huazhong University of Science and Technology Press, Wuhan and Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Wenfeng Wang
    • 1
    Email author
  • Xiangyang Deng
    • 2
  • Liang Ding
    • 3
  • Limin Zhang
    • 2
  1. 1.CNITECH, Chinese Academy of SciencesInstitute of Advanced Manufacturing TechnologyNingboChina
  2. 2.Naval Aeronautical UniversityYantaiChina
  3. 3.Harbin Institute of TechnologyHarbinChina

Personalised recommendations