Advertisement

The Vision–Brain Hypothesis

  • Wenfeng WangEmail author
  • Xiangyang Deng
  • Liang Ding
  • Limin Zhang
Chapter
Part of the Research on Intelligent Manufacturing book series (REINMA)

Abstract

In this chapter, the vision–brain hypothesis is illustrated in three steps. First, we hypothesize that vision decides the robots’ attention and the attention could be regulated without brain-inspired objects detection and tracking. This could be highlighted by the difference in attention mechanisms between the manned and unmanned systems. Regulated attention in unmanned systems has a significant implication to the robots’ cognition accuracy and response speed. Therefore, the current learning systems must be optimized. Such optimization can be interpreted as an integration of deep learning with other hybrid adaptive algorithms. Second, we hypothesize that if a region of interest had been located by a “vision–brain,” then scene understanding and partition could be smoothly carried out, which help cognition systems to reduce the loss from mid-aligned samples addition by employing non-adaptive random projections instead of self-taught learning. Third, we hypothesize that cognition rates of the “vision–brain” could approach to 100%, which finally establishes the robustness and efficiency of the vision–brain. A broad learning system (BLS) was integrated with a decision layer (the vision–brain) to address the issue whether face recognition rates can reach 100%. And in the next chapter, we will show that face recognition rates can reach 100% in BLS with the vision–brain, as verified by a challenging AR database with real occlusion. BLS performance in face recognition on other bigger databases remains unknown and worthy of further attempts.

References

  1. 1.
    S. Medasani, Y. Owechko, Evolutionary optimization and graphical models for robust recognition of behaviors in video imagery. Proc. SPIE—Int. Soc. Opt. Eng. 12(3), 361–371 (2007)Google Scholar
  2. 2.
    O.P. Popoola, K. Wang, Video-based abnormal human behavior recognition—a review. IEEE Trans. Syst. Man Cybern. Part C 42(6), 865–878 (2012)CrossRefGoogle Scholar
  3. 3.
    T. Huynh-The, O. Banos, B.V. Le et al., Traffic behavior recognition using the pachinko allocation model. Sensors 15(7), 16040–16059 (2015)CrossRefGoogle Scholar
  4. 4.
    R.T. Collins, Y. Liu, Online selection of discriminative tracking features. IEEE Trans. Pattern Anal. Mach. Intell. 27(10), 1631–1643 (2005)CrossRefGoogle Scholar
  5. 5.
    K. Huang, T. Tan, Vs-star: a visual interpretation system for visual surveillance. Pattern Recogn. Lett. 31(14), 2265–2285 (2010)CrossRefGoogle Scholar
  6. 6.
    L. Jing, Incremental learning for robust visual tracking. Int. J. Comput. Vision 77(1–3), 125–141 (2008)Google Scholar
  7. 7.
    M.A.A. Dewan, E. Granger, G.L. Marcialis, et al., Adaptive appearance model tracking for still-to-video face recognition. Pattern Recog. 49(C), 129–151 (2016)CrossRefGoogle Scholar
  8. 8.
    B. Babenko, M.H. Yang, S. Belongie, Robust object tracking with online multiple instance learning. IEEE Trans. Pattern Anal. Mach. Intell. 33(8), 1619–1632 (2011)CrossRefGoogle Scholar
  9. 9.
    Y. Wu, N. Jia, J. Sun, Real-time multi-scale tracking based on compressive sensing. Visual Comput. Int. J. Comput. Graph. 31(4), 471–484 (2015)Google Scholar
  10. 10.
    X. Mei, H. Ling, Robust visual tracking and vehicle classification via sparse representation. IEEE Trans. Softw. Eng. 33(11), 2259–2272 (2011)Google Scholar
  11. 11.
    N. Ovcharova, F. Gauterin, Assessment of an adaptive predictive collision warning system based on driver’s attention detection. Clin. Exp. Metas. 8(2), 215–224 (2012)Google Scholar
  12. 12.
    A. Finn, K. Rogers, Accuracy requirements for unmanned aerial vehicle-based acoustic atmospheric tomography. J. Acoust. Soc. Am. 139(4), 2097 (2016)CrossRefGoogle Scholar
  13. 13.
    J. Chen, X. Zhang, B. Xin et al., Coordination between unmanned aerial and ground vehicles: a taxonomy and optimization perspective. IEEE Trans. Cybern. 46(4), 959–972 (2016)CrossRefGoogle Scholar
  14. 14.
    Z. Zheng, Y. Liu, X. Zhang, The more obstacle information sharing, the more effective real-time path planning? Knowl. Based Syst. 114, 36–46 (2016)CrossRefGoogle Scholar
  15. 15.
    M.W. Whalen, D. Cofer, A. Gacek, Requirements and architectures for Secure Vehicles. IEEE Softw. 33(4), 22–25 (2016)CrossRefGoogle Scholar
  16. 16.
    R. Czyba, G. Szafrański, A. Ryś, Design and control of a single tilt tri-rotor aerial vehicle. J. Intell. Robot. Syst. 1–14 (2016)Google Scholar
  17. 17.
    X. Zhang, H. Duan, An improved constrained differential evolution algorithm for unmanned aerial vehicle global route planning. Appl. Soft Comput. 26(C), 270–284 (2015)CrossRefGoogle Scholar
  18. 18.
    G. Mati, M. Jankovec M, D. Jurman, et al., Feasibility study of attitude determination for all-rotating unmanned aerial vehicles in steady flight. J. Intell. Robot. Syst. 80(2), 341–360 (2015)Google Scholar
  19. 19.
    J.G. Lee, K.J. Kim, S. Lee et al., Can autonomous vehicles be safe and trustworthy? Effects of appearance and autonomy of unmanned driving systems. Int. J. Hum. Comput. Interact. 31(10), 682–691 (2015)MathSciNetCrossRefGoogle Scholar
  20. 20.
    J. Han, J. Park, T. Kim et al., Precision navigation and mapping under bridges with an unmanned surface vehicle. Auton. Robots 38(4), 1–14 (2015)CrossRefGoogle Scholar
  21. 21.
    J.L. Crespo, A. Faiña, R.J. Duro, An adaptive detection/attention mechanism for real time robot operation. Neurocomputing 72(4–6), 850–860 (2009)CrossRefGoogle Scholar
  22. 22.
    Barbara Webb, Computational intelligence: from natural to artificial systems. Connection Sci. 14(2), 163–164 (2002)CrossRefGoogle Scholar
  23. 23.
    E. Bonabeau, C. Meyer, Computational intelligence. A whole new way to think about business. Harvard Bus. Rev. 79(5), 106–114 (2001)Google Scholar
  24. 24.
    M. Dorigo, M. Birattari, C. Blum, Ant Colony Optimization and Computational intelligence, vol. 49, no. 8 (Springer, Berlin, 1995), pp. 767–771Google Scholar
  25. 25.
    S. Garnier, J. Gautrais, G. Theraulaz, The biological principles of computational intelligence. Comput. Intell. 1(1), 3–31 (2007)Google Scholar
  26. 26.
    M. Dorigo, M. Birattari, C. Blum, et al. Ant Colony Optimization and Computational intelligence, 4th International Workshop, ANTS 2004, Brussels, Belgium, 5–8 Sept 2004, Proceedings, vol. 49, no. 8. Lecture Notes in Computer Science (2004), pp. 767–771Google Scholar
  27. 27.
    C.J. Wan, L.Q. Zhu, Y.H. Liu et al., Proton-conducting graphene oxide-coupled neuron transistors for brain-inspired cognitive systems. Adv. Mater. 28(3), 3557–3563 (2016)CrossRefGoogle Scholar
  28. 28.
    P. Gkoupidenis, D.A. Koutsouras, T. Lonjaret et al., Orientation selectivity in a multi-gated organic electrochemical transistor. Sci. Rep. 6, 27007 (2016)CrossRefGoogle Scholar
  29. 29.
    X. Liu, Y. Zeng, T. Zhang, et al., Parallel brain simulator: a multi-scale and parallel brain-inspired neural network modeling and simulation platform. Cogn. Comput. 1–15 (2016)Google Scholar
  30. 30.
    R. Velik, A Brain-inspired multimodal data mining approach for human activity recognition in elderly homes. J. Ambient Intell. Smart Environ. 6(4), 447–468 (2014)Google Scholar
  31. 31.
    J.J. Wong, S.Y. Cho, A brain-inspired framework for emotion recognition. Magn. Reson. Imaging 32(9), 1139–1155 (2006)Google Scholar
  32. 32.
    R. Kozma, W.J. Freeman, Neurodynamics of cognition and consciousness. The Workshop on PERFORMANCE Metrics for Intelligent Systems (ACM, 2009), pp. 147–148Google Scholar
  33. 33.
    J.J. Wong, S.Y. Cho, A local experts organization model with application to face emotion recognition. Expert Syst. Appl. 36(1), 804–819 (2009)CrossRefGoogle Scholar
  34. 34.
    J.G. Lee, K.J. Kim, S. Lee et al., Can autonomous vehicles be safe and trustworthy? Effects of appearance and autonomy of unmanned driving systems. Int. J. Hum. Comput. Interact. 31(10), 682–691 (2015)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Y. Yao, X. Xu, C. Zhu et al., A hybrid fusion algorithm for GPS/INS integration during GPS outages. Measurement 103, 42–51 (2017)CrossRefGoogle Scholar
  36. 36.
    Y. Chen, J. Gao, G. Yang, et al., Solving equilibrium standby redundancy optimization problem by hybrid PSO algorithm. Soft Comput. 1–15 (2017)Google Scholar
  37. 37.
    A.M. Durán-Rosal, M.D.L. Paz-Marín, P.A. Gutiérrez, et al., Identifying market behaviours using european stock index time series by a hybrid segmentation algorithm. Neural Process. Lett. 1–24 (2017)Google Scholar
  38. 38.
    P. Guo, W. Cheng, Y. Wang, Hybrid evolutionary algorithm with extreme machine learning fitness function evaluation for two-stage capacitated facility location problems. Expert Syst. Appl. 71, 57–68 (2017)CrossRefGoogle Scholar
  39. 39.
    F. Li, K.Y. Lam, L. Wang, Power allocation in cognitive radio networks over Rayleigh-fading channels with hybrid intelligent algorithms. Wireless Netw. 1–11 (2017)Google Scholar
  40. 40.
    B. Jafrasteh, N. Fathianpour, A hybrid simultaneous perturbation artificial bee colony and back-propagation algorithm for training a local linear radial basis neural network on ore grade estimation. Neurocomputing 235, 217–227 (2017)CrossRefGoogle Scholar
  41. 41.
    S. Yao, Z. Li, Robust tracking via locally structured representation. Int. J. Comput. Vision 1–35 (2016)Google Scholar
  42. 42.
    G. Han, X. Wang, J. Liu et al., Robust object tracking based on local region sparse appearance model. Neurocomputing 184, 145–167 (2016)CrossRefGoogle Scholar
  43. 43.
    P. Wang, W. Qian, Q. Chen, Robust visual tracking with contiguous occlusion constraint. Opt. Rev. 23(1), 40–52 (2016)CrossRefGoogle Scholar
  44. 44.
    S. Chen, S. Li, R. Ji, et al., Discriminative local collaborative representation for online object tracking. Knowl. Based Syst. 100(C), 13–24 (2016)CrossRefGoogle Scholar
  45. 45.
    E.J. Candes, T. Tao, Decoding by linear programming. IEEE Trans. Inf. Theor. 51(12), 4203–4215 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    D. Achlioptas, Database-friendly random projections: Johnson-Lindenstrauss with binary coins. J. Comput. Syst. Sci. 66(4), 671–687 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  47. 47.
    V.S. Borkar, R. Dwivedi, N. Sahasrabudhe, Gaussian approximations in high dimensional estimation. Syst. Control Lett. 92, 42–45 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  48. 48.
    L. Liu, P.W. Fieguth, Texture classification from random features. IEEE Trans. Pattern Anal. Mach. Intell. 34(3), 574–586 (2011)CrossRefGoogle Scholar
  49. 49.
    S. Paul, M. Magdon-Ismail, P. Drineas, Feature selection for linear SVM with provable guarantees. Pattern Recogn. 60, 205–214 (2016)CrossRefGoogle Scholar
  50. 50.
    C. Vondrick, A. Khosla, H. Pirsiavash et al., Visualizing object detection features. Int. J. Comput. Vision 119(2), 145–158 (2016)MathSciNetCrossRefGoogle Scholar
  51. 51.
    S.Z. Li, Z.Q. Zhang, FloatBoost learning and statistical face detection. Trans. Pattern Anal. Mach. Intell. IEEE 26(9), 1112–1123 (2004)CrossRefGoogle Scholar
  52. 52.
    J. Romberg, Compressive sensing by random convolution. Siam J. Imaging Sci. 2(4), 1098–1128 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  53. 53.
    T.T. Do, L. Gan, N.H. Nguyen et al., Fast and efficient compressive sensing using structurally random matrices. IEEE Trans. Signal Process. 60(1), 139–154 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  54. 54.
    J. Romberg, Compressive Sensing by Random Convolution. Siam J. Imaging Sci. 2(4), 1098–1128 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  55. 55.
    S. Osher, Y. Mao, B. Dong et al., Fast linearized bregman iteration for compressive sensing and sparse denoising. Math. Comput. 8(1), 93–111 (2011)MathSciNetzbMATHGoogle Scholar
  56. 56.
    Y. Chen, Y. Chi, Robust spectral compressed sensing via structured matrix completion. IEEE Trans. Inf. Theory 60(10), 6576–6601 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  57. 57.
    J. Zhang, G. Han, Y. Fang, Deterministic construction of compressed sensing matrices from protograph ldpc codes. IEEE Signal Process. Lett. 22(11), 1960–1964 (2015)CrossRefGoogle Scholar
  58. 58.
    N. Eslahi, A. Aghagolzadeh, S.M.H. Andargoli, Image/video compressive sensing recovery using joint adaptive sparsity measure. Neurocomputing 200(C), 88–109 (2016)CrossRefGoogle Scholar
  59. 59.
    H. Jiang, W. Deng, Z. Shen, Surveillance Video Processing Using Compressive Sensing. Inverse Prob. Imaging 6(2), 201–214 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  60. 60.
    H. Jiang, S. Zhao, Z. Shen et al., Surveillance video analysis using compressive sensing with low latency. Bell Labs Techn. J. 18(4), 63–74 (2014)CrossRefGoogle Scholar
  61. 61.
    W.F. Wang, X. Chen, H.Y. Wang et al., Locally Compressive sensing for behaviors recognition. J. Tsinghua Univ. (Sci & Technol) 24(4), 118–121 (2007)Google Scholar
  62. 62.
    M. Yang, L. Zhang, J. Yang, D. Zhang, Regularized robust coding for face recognition. IEEE Trans. Image Process. 22(5), 1753–1766 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  63. 63.
    J. Wright, A.Y. Yang, A. Ganesh, S.S. Sastry, Y. Ma, Robust face recognition via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 31(2), 210–227 (2009)CrossRefGoogle Scholar
  64. 64.
    J. Očenášek, J. Schwarz, “The Parallel Bayesian Optimization Algorithm” in The State of the Art in Computational Intelligence (Physica-Verlag HD, 2000)Google Scholar
  65. 65.
    M. Yang, L. Zhang, Gabor feature based sparse representation for face recognition with Gabor occlusion dictionary. In Proc. Eur. Conf. Comput. Vis. 448–461 (2010)Google Scholar
  66. 66.
    Z. Mahmood, T. Ali, S.U. Khan, Effects of pose and image resolution on automatic face recognition. IET Biometrics 5(2), 111–119 (2017)CrossRefGoogle Scholar
  67. 67.
    B.K. Tripathi, On the complex domain deep machine learning for face recognition. Appl. Intell. 47(3), 1–15 (2017)Google Scholar
  68. 68.
    A. Krizhevsky, I. Sutskever, G.E. Hinton, ImageNet classification with deep convolutional neural networks, in Advances in Neural Information Processing Systems 25 (NIPS 2012), ed. by F. Pereira, C.J.C. Burges, L. Bottou, K.Q. Weinberger (Curran Associates Inc, New York, NY, USA, 2012), pp. 1097–1105Google Scholar
  69. 69.
    I. Goodfellow, Y. Bengio, A. Courville, Deep Learning (MIT Press, Cambridge, MA, USA, 2016)zbMATHGoogle Scholar
  70. 70.
    G.E. Hinton, S. Osindero, Y.-W. Teh, A fast learning algorithm for deep belief nets. Neural Comput. 18, 0899–7667 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  71. 71.
    G.E. Hinton, R.R. Salakhutdinov, Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  72. 72.
    R. Salakhutdinov, G.E. Hinton, Deep boltzmann machines, in Proceedings of the AISTATS, vol. 1 (2009), p. 3Google Scholar
  73. 73.
    Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)CrossRefGoogle Scholar
  74. 74.
    K. Simonyan, A. Zisserman, Very Deep Convolutional Networks for Large-Scale Image Recognition. Available: https://arxiv.org/abs/1409.1556
  75. 75.
    J. Tang, C. Deng, G.-B. Huang, Extreme learning machine for multilayer perceptron. IEEE Trans. Neural Netw. Learn. Syst. 27(4), 809–821 (2016)MathSciNetCrossRefGoogle Scholar
  76. 76.
    M. Gong, J. Zhao, J. Liu, Q. Miao, L. Jiao, Change detection in synthetic aperture radar images based on deep neural networks. IEEE Trans. Neural Netw. Learn. Syst. 27(1), 125–138 (2016)MathSciNetCrossRefGoogle Scholar
  77. 77.
    W. Hou, X. Gao, D. Tao, X. Li, Blind image quality assessment via deep learning. IEEE Trans. Neural Netw. Learn. Syst. 26(6), 1275–1286 (2015)MathSciNetCrossRefGoogle Scholar
  78. 78.
    M.M. Ghazi, H.K. Ekenel, A Comprehensive Analysis of Deep Learning Based Representation for Face Recognition. IEEE Computer Vision and Pattern Recognition Workshops (2016), pp. 102–109Google Scholar
  79. 79.
    K. Grm, V. Štruc, A. Artiges, M. Caron, H.K. Ekenel, Strengths and weaknesses of deep learning models for face recognition against image degradations. IET Biometrics 7(1), 81–89 (2018)CrossRefGoogle Scholar
  80. 80.
    J. Lezama, Q. Qiu, G. Sapiro, Not Afraid of the Dark: NIR-VIS Face Recognition via Cross-Spectral Hallucination and Low-Rank Embedding. IEEE Conference on Computer Vision and Pattern Recognition, pp. 6628–6637, 2017Google Scholar
  81. 81.
    M. S. Sarfraz, R. Stiefelhagen, Deep Perceptual Mapping for Cross-Modal Face Recognition. Kluwer Academic Publishers (2017)Google Scholar
  82. 82.
    G. Goswami, R. Bhardwaj, R. Singh, M. Vatsa, MDLFace: Memorability Augmented Deep Learning for Video Face Recognition. IEEE International Joint Conference on Biometrics (2014), pp. 1–7Google Scholar
  83. 83.
    P. Sharma, R.N. Yadav, K.V. Arya, Face Recognition from Video Using Generalized Mean Deep Learning Neural Network. IEEE International Symposium on Computational and Business Intelligence (2016), pp. 195–199Google Scholar
  84. 84.
    C.L.P. Chen, Z.L. Liu, Broad Learning system: an effective and efficient incremental learning system without the need for deep architecture. IEEE Trans. Neural Networks Learn. Syst. 29(1), 10–24 (2018)MathSciNetCrossRefGoogle Scholar
  85. 85.
    C.L.P. Chen, Z.L. Liu, Broad learning system: A new learning paradigm and system without going deep. IEEE Autom. 1271–1276 (2017)Google Scholar
  86. 86.
    Y.H. Pao, G.H. Park, D.J. Sobajic, Learning and generalization characteristics of the random vector functional-link net. Neurocomputing 6(2), 163–180 (1994)CrossRefGoogle Scholar
  87. 87.
    K.S. Narendra, K. Parthasarathy, Identification and control of dynamical systems using neural networks. IEEE Trans. Neural Netw. 1(1), 4–27 (1990)CrossRefGoogle Scholar
  88. 88.
    I.Y. Tyukin, D.V. Prokhorov, Feasibility of random basis function approximators for modeling and control, in Proceedings of the IEEE Control Application of Intelligent Control (ISIC) (CCA) (2009), pp. 1391–1396Google Scholar
  89. 89.
    C.L.P. Chen, C.Y. Zhang, Data-intensive applications, challenges, techniques and technologies: a survey on big data. Inf. Sci. 275, 314–347 (2014)CrossRefGoogle Scholar
  90. 90.
    C.L.P. Chen, J.Z. Wan, A rapid learning and dynamic stepwise updating algorithm for flat neural networks and the application to timeseries prediction. IEEE Trans. Syst., Man, Cybern. B, Cybern. 29(1), 62–72 (1999)CrossRefGoogle Scholar
  91. 91.
    H. Yu, J. Yang, A direct LDA algorithm for high-dimensional data with application to face recognition. Pattern Recogn. 34(10), 2067–2070 (2001)zbMATHCrossRefGoogle Scholar
  92. 92.
    X.S. Zhuang, D.Q. Dai, Improved discriminate analysis for high-dimensional data and its application to face recognition. Pattern Recogn. 40(5), 1570–1578 (2007)zbMATHCrossRefGoogle Scholar
  93. 93.
    A. Sagheer, Improved SOM search algorithm for high-dimensional data with application to face recognition across pose and illumination. IEEE Soft Comput. Pattern Recogn. 247–252 (2011)Google Scholar
  94. 94.
    P.M. Narendra, K. Fukunaga, A branch and bound algorithm for feature subset selection. IEEE Trans. Comput. 26(9), 917–922 (1977)zbMATHCrossRefGoogle Scholar
  95. 95.
    A. Rakotomamonjy, Variable selection using SVM-based criteria. J. Mach. Learn. Res. 3, 1357–1370 (2003)MathSciNetzbMATHGoogle Scholar
  96. 96.
    L. Breiman, Random forests. Mach. Learn. 45(1), 5–32 (2001)zbMATHCrossRefGoogle Scholar
  97. 97.
    R.G. Baraniuk, M.B. Wakin, Random projections of smooth manifolds. Found. Comput. Math. 9(1), 51–77 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  98. 98.
    Y. Chen, H. Jiang, C. Li, X. Jia, P. Ghamisi, Deep feature extraction and classification of hyperspectral images based on convolutional neural networks. IEEE Trans. Geosci. Remote Sens. 54(10), 6232–6251 (2016)CrossRefGoogle Scholar
  99. 99.
    A. Stuhlsatz, J. Lippel, T. Zielke, Feature extraction with deep neural networks by a generalized discriminant analysis. IEEE Trans. Neural Netw. Learn. Syst. 23(4), 596–608 (2012)CrossRefGoogle Scholar
  100. 100.
    M. Courbariaux, Y. Bengio, J.P. David, BinaryConnect: Training Deep Neural Networks with Binary Weights During Propagations. International Conference on Neural Information Processing Systems (2015) pp. 3123–3131Google Scholar
  101. 101.
    A. Ben-Israel, T. Greville, Generalized Inverses: Theory and Applications (Wiley, New York, NY, USA, 1974)zbMATHGoogle Scholar
  102. 102.
    C.R. Rao, S.K. Mitra, Generalized Inverse of a Matrix and its Applications. Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1 (1972), pp. 601–620Google Scholar
  103. 103.
    D. Serre, “Matrices”, in Theory and Applications (Graduate Texts in Mathematics) (Springer, New York, NY, USA, 2002)Google Scholar
  104. 104.
    A.E. Hoerl, R.W. Kennard, Ridge regression: biased estimation for nonorthogonal problems. Technometrics 42(1), 80–86 (2000)zbMATHCrossRefGoogle Scholar
  105. 105.
    C. Leonides, “Control and dynamic systems V18”, in Advances in Theory and Applications (Control and dynamic systems) (Elsevier, Amsterdam, The Netherlands, 2012)Google Scholar
  106. 106.
    J. Tapson, A.V. Schaik, “Learning the pseudoinverse solution to network weights. Neural Netw. 45(3), 94–100 (2013)zbMATHCrossRefGoogle Scholar
  107. 107.
    L. Grasedyck, D. Kressner, C. Tobler, A literature survey of lowrank tensor approximation techniques. GAMM-Mitteilungen 36(1), 53–78 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  108. 108.
    I. Markovsky, “Low rank approximation”, in Algorithms, Implementation, Applications (Communications and Control Engineering) (Springer, London, U.K., 2011)Google Scholar
  109. 109.
    Z. Yang, Y. Xiang, K. Xie, Y. Lai, Adaptive method for nonsmooth nonnegative matrix factorization. IEEE Trans. Neural Netw. Learn. Syst. 28(4), 948–960 (2017)CrossRefGoogle Scholar
  110. 110.
    C.L.P. Chen, A rapid supervised learning neural network for function interpolation and approximation. IEEE Trans. Neural Netw. 7(5), 1220–1230 (1996)CrossRefGoogle Scholar
  111. 111.
    M. Yang, L. Zhang, J. Yang, D. Zhang, Robust Sparse Coding for Face Recognition. Proceedings of the IEEE Conference of Computer Vision and Pattern Recognition (2011), pp. 625–632Google Scholar
  112. 112.
    J. Rommes, N. Martins, Exploiting structure in large-scale electrical circuit and power system problems. Linear Algebra Appl. 431(3), 318–333 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  113. 113.
    X. Li, C. Chen, Y. Luo, M. Chen, “Optimization Scheme Based on Parallel Computing Technology. International Symposium on Parallel Architecture” in Algorithm and Programming. Springer, Singapore (2017)Google Scholar

Copyright information

© Huazhong University of Science and Technology Press, Wuhan and Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Wenfeng Wang
    • 1
    Email author
  • Xiangyang Deng
    • 2
  • Liang Ding
    • 3
  • Limin Zhang
    • 2
  1. 1.CNITECH, Chinese Academy of SciencesInstitute of Advanced Manufacturing TechnologyNingboChina
  2. 2.Naval Aeronautical UniversityYantaiChina
  3. 3.Harbin Institute of TechnologyHarbinChina

Personalised recommendations