Advertisement

Pathology of Small Fiber Neuropathy: Skin Biopsy for the Analysis of Nociceptive Nerve Fibers

  • Claudia SommerEmail author
Chapter

Abstract

Reduced skin innervation as shown by immunostaining in skin biopsies is a sensitive and specific indicator of small fiber neuropathy (SFN). Standard methods for staining and quantification have been established, and normative values are available. However, not every condition with reduced skin innervation is a SFN, and not all types of disorders with pathological small fiber function manifest with reduced skin innervation. Identification of nociceptor subpopulations in humans in the skin is only beginning to yield data. Detection of inflammatory cells and pathologic deposits are additional diagnostic benefits of skin biopsy.

Keywords

Skin biopsy Small fiber neuropathy Protein gene product 9.5 Intraepidermal nerve fiber density Subepidermal nerve fibers Ranvier nodes Amyloidosis Fabry disease 

References

  1. 1.
    McGlone F, Reilly D. The cutaneous sensory system. Neurosci Biobehav Rev. 2010;34:148–59.PubMedCrossRefGoogle Scholar
  2. 2.
    Doppler K, Rittner HL, Deckart M, Sommer C. Reduced dermal nerve fiber diameter in skin biopsies of patients with fibromyalgia. Pain. 2015;156:2319–25.CrossRefGoogle Scholar
  3. 3.
    Nolano M, Provitera V, Crisci C, Stancanelli A, Wendelschafer-Crabb G, Kennedy WR, et al. Quantification of myelinated endings and mechanoreceptors in human digital skin. Ann Neurol. 2003;54:197–205.PubMedCrossRefGoogle Scholar
  4. 4.
    Wang L, Hilliges M, Jernberg T, Wiegleb-Edstrom D, Johansson O. Protein gene product 9.5-immunoreactive nerve fibres and cells in human skin. Cell Tissue Res. 1990;261:25–33.PubMedCrossRefGoogle Scholar
  5. 5.
    Kennedy WR, Wendelschafer-Crabb G. The innervation of human epidermis. J Neurol Sci. 1993;115:184–90.CrossRefGoogle Scholar
  6. 6.
    McCarthy BG, Hsieh ST, Stocks A, Hauer P, Macko C, Cornblath DR, et al. Cutaneous innervation in sensory neuropathies: evaluation by skin biopsy. Neurology. 1995;45:1848–55.PubMedCrossRefGoogle Scholar
  7. 7.
    McArthur JC, Stocks EA, Hauer P, Cornblath DR, Griffin JW. Epidermal nerve fiber density: normative reference range and diagnostic efficiency. Arch Neurol. 1998;55:1513–20.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Lauria G, Cornblath DR, Johansson O, McArthur JC, Mellgren SI, Nolano M, et al. EFNS guidelines on the use of skin biopsy in the diagnosis of peripheral neuropathy. Eur J Neurol. 2005;12:747–58.PubMedCrossRefGoogle Scholar
  9. 9.
    Lauria G, Borgna M, Morbin M, Lombardi R, Mazzoleni G, Sghirlanzoni A, et al. Tubule and neurofilament immunoreactivity in human hairy skin: markers for intraepidermal nerve fibers. Muscle Nerve. 2004;30:310–6.PubMedCrossRefGoogle Scholar
  10. 10.
    Albrecht PJ, Hines S, Eisenberg E, Pud D, Finlay DR, Connolly MK, et al. Pathologic alterations of cutaneous innervation and vasculature in affected limbs from patients with complex regional pain syndrome. Pain. 2006;120:244–66.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Uno H, Parker F. Autonomic innervation of the skin in primary erythermalgia. Arch Dermatol. 1983;119:65–71.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Donadio V, Nolano M, Provitera V, Stancanelli A, Lullo F, Liguori R, et al. Skin sympathetic adrenergic innervation: an immunofluorescence confocal study. Ann Neurol. 2006;59:376–81.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Nolano M, Provitera V, Perretti A, Stancanelli A, Saltalamacchia AM, Donadio V, et al. Ross syndrome: a rare or a misknown disorder of thermoregulation? A skin innervation study on 12 subjects. Brain. 2006;129:2119–31.CrossRefGoogle Scholar
  14. 14.
    Kennedy WR, Wendelschafer-Crabb G, Brelje TC. Innervation and vasculature of human sweat glands: an immunohistochemistry-laser scanning confocal fluorescence microscopy study. J Neurosci. 1994;14:6825–33.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Wilder-Smith EP, Chow A. Comparison of a simple method for quantitation of intraepidermal nerve fibres with a standard image analysis method using hypothenar skin. J Neurol. 2006;253:1011–5.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Chien HF, Tseng TJ, Lin WM, Yang CC, Chang YC, Chen RC, et al. Quantitative pathology of cutaneous nerve terminal degeneration in the human skin. Acta Neuropathol (Berl). 2001;102:455–61.Google Scholar
  17. 17.
    Kennedy WR, Wendelschafer-Crabb G, Polydefkis M, McArthur J. Pathology and quantitation of cutaneous nerves. In: Dyck PJ, Thomas PK, editors. Peripheral neuropathy. 4th ed. Philadelphia: Saunders; 2005. p. 869–96.CrossRefGoogle Scholar
  18. 18.
    Lauria G, Hsieh ST, Johansson O, Kennedy WR, Leger JM, Mellgren SI, et al. European Federation of Neurological Societies/Peripheral Nerve Society Guideline on the use of skin biopsy in the diagnosis of small fiber neuropathy. Report of a joint task force of the European Federation of Neurological Societies and the Peripheral Nerve Society. Eur J Neurol. 2010;17:903–12, e44–9.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Ebenezer GJ, Hauer P, Gibbons C, McArthur JC, Polydefkis M. Assessment of epidermal nerve fibers: a new diagnostic and predictive tool for peripheral neuropathies. J Neuropathol Exp Neurol. 2007;66:1059–73.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Goransson LG, Mellgren SI, Lindal S, Omdal R. The effect of age and gender on epidermal nerve fiber density. Neurology. 2004;62:774–7.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Bakkers M, Merkies IS, Lauria G, Devigili G, Penza P, Lombardi R, et al. Intraepidermal nerve fiber density and its application in sarcoidosis. Neurology. 2009;73:1142–8.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Burns TM, Smith AG. “Measure twice, cut once”: improving diagnostic accuracy of skin biopsy. Neurology. 2012;79:2164–5.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Seger S, Stritt M, Doppler K, Frank S, Panaite A, Kuntzer T, et al. A semi-automated method to assess intraepidermal nerve fibre density in human skin biopsies. Histopathology. 2016;68:657–65.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Umapathi T, Tan WL, Tan NC, Chan YH. Determinants of epidermal nerve fiber density in normal individuals. Muscle Nerve. 2006;33:742–6.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Pan CL, Lin YH, Lin WM, Tai TY, Hsieh ST. Degeneration of nociceptive nerve terminals in human peripheral neuropathy. Neuroreport. 2001;12:787–92.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Nolano M, Biasiotta A, Lombardi R, Provitera V, Stancanelli A, Caporaso G, et al. Epidermal innervation morphometry by immunofluorescence and bright-field microscopy. J Peripher Nerv Syst. 2015;20:387–91.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Lauria G, Bakkers M, Schmitz C, Lombardi R, Penza P, Devigili G, et al. Intraepidermal nerve fiber density at the distal leg: a worldwide normative reference study. J Peripher Nerv Syst. 2010;15:202–7.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Collongues N, Samama B, Schmidt-Mutter C, Chamard-Witkowski L, Debouverie M, Chanson JB, et al. Quantitative and qualitative normative dataset for intraepidermal nerve fibers using skin biopsy. PLoS One. 2018;13:e0191614.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Vlckova-Moravcova E, Bednarik J, Dusek L, Toyka KV, Sommer C. Diagnostic validity of epidermal nerve fiber densities in painful sensory neuropathies. Muscle Nerve. 2008;37:50–60.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Nebuchennykh M, Loseth S, Lindal S, Mellgren SI. The value of skin biopsy with recording of intraepidermal nerve fiber density and quantitative sensory testing in the assessment of small fiber involvement in patients with different causes of polyneuropathy. J Neurol. 2009;256:1067–75.PubMedCrossRefGoogle Scholar
  31. 31.
    Engelstad JK, Taylor SW, Witt LV, Hoebing BJ, Herrmann DN, Dyck PJ, et al. Epidermal nerve fibers: confidence intervals and continuous measures with nerve conduction. Neurology. 2012;79:2187–93.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Donadio V, Incensi A, Giannoccaro MP, Cortelli P, Di Stasi V, Pizza F, et al. Peripheral autonomic neuropathy: diagnostic contribution of skin biopsy. J Neuropathol Exp Neurol. 2012;71:1000–8.CrossRefGoogle Scholar
  33. 33.
    Kennedy WR, Wendelschafer-Crabb G. Utility of skin biopsy in diabetic neuropathy. Semin Neurol. 1996;16:163–71.PubMedCrossRefGoogle Scholar
  34. 34.
    Holland NR, Crawford TO, Hauer P, Cornblath DR, Griffin JW, McArthur JC. Small-fiber sensory neuropathies: clinical course and neuropathology of idiopathic cases. Ann Neurol. 1998;44:47–59.PubMedCrossRefGoogle Scholar
  35. 35.
    Holland NR, Stocks A, Hauer P, Cornblath DR, Griffin JW, McArthur JC. Intraepidermal nerve fiber density in patients with painful sensory neuropathy. Neurology. 1997;48:708–11.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Lauria G, Holland N, Hauer P, Cornblath DR, Griffin JW, McArthur JC. Epidermal innervation: changes with aging, topographic location, and in sensory neuropathy. J Neurol Sci. 1999;164:172–8.PubMedCrossRefGoogle Scholar
  37. 37.
    Lauria G, Sghirlanzoni A, Lombardi R, Pareyson D. Epidermal nerve fiber density in sensory ganglionopathies: clinical and neurophysiologic correlations. Muscle Nerve. 2001;24:1034–9.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Herrmann DN, Griffin JW, Hauer P, Cornblath DR, McArthur JC. Epidermal nerve fiber density and sural nerve morphometry in peripheral neuropathies. Neurology. 1999;53:1634–40.PubMedCrossRefGoogle Scholar
  39. 39.
    Periquet MI, Novak V, Collins MP, Nagaraja HN, Erdem S, Nash SM, et al. Painful sensory neuropathy: prospective evaluation using skin biopsy. Neurology. 1999;53:1641–7.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Scott LJ, Griffin JW, Luciano C, Barton NW, Banerjee T, Crawford T, et al. Quantitative analysis of epidermal innervation in Fabry disease. Neurology. 1999;52:1249–54.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Wakamoto H, Hirai A, Manabe K, Hayashi M. Idiopathic small-fiber sensory neuropathy in childhood: a diagnosis based on objective findings on punch skin biopsy specimens. J Pediatr. 1999;135:257–60.PubMedCrossRefGoogle Scholar
  42. 42.
    Hsieh ST, Chiang HY, Lin WM. Pathology of nerve terminal degeneration in the skin. J Neuropathol Exp Neurol. 2000;59:297–307.PubMedCrossRefGoogle Scholar
  43. 43.
    Polydefkis M, Allen RP, Hauer P, Earley CJ, Griffin JW, McArthur JC. Subclinical sensory neuropathy in late-onset restless legs syndrome. Neurology. 2000;55:1115–21.PubMedCrossRefGoogle Scholar
  44. 44.
    Polydefkis M, Yiannoutsos CT, Cohen BA, Hollander H, Schifitto G, Clifford DB, et al. Reduced intraepidermal nerve fiber density in HIV-associated sensory neuropathy. Neurology. 2002;58:115–9.PubMedCrossRefGoogle Scholar
  45. 45.
    Verze L, Viglietti-Panzica C, Plumari L, Calcagni M, Stella M, Schrama LH, et al. Cutaneous innervation in hereditary sensory and autonomic neuropathy type IV. Neurology. 2000;55:126–8.PubMedCrossRefGoogle Scholar
  46. 46.
    Hoitsma E, Marziniak M, Faber CG, Reulen JP, Sommer C, De Baets M, et al. Small fibre neuropathy in sarcoidosis. Lancet. 2002;359:2085–6.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Boruchow SA, Gibbons CH. Utility of skin biopsy in management of small fiber neuropathy. Muscle Nerve. 2013;48:877–82.PubMedCrossRefGoogle Scholar
  48. 48.
    Devigili G, Tugnoli V, Penza P, Camozzi F, Lombardi R, Melli G, et al. The diagnostic criteria for small fibre neuropathy: from symptoms to neuropathology. Brain. 2008;131:1912–25.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Abuzinadah AR, Kluding P, Wright D, D’Silva L, Ryals J, Hendry B, et al. Less is more in diabetic neuropathy diagnosis: comparison of quantitative sudomotor axon reflex and skin biopsy. J Clin Neuromuscul Dis. 2017;19:5–11.PubMedCrossRefGoogle Scholar
  50. 50.
    Harrer JU, Uceyler N, Doppler K, Fischer TZ, Dib-Hajj SD, Waxman SG, et al. Neuropathic pain in two-generation twins carrying the sodium channel Nav1.7 functional variant R1150W. Pain. 2014;155:2199–203.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Üçeyler N, Ganendiran S, Kramer D, Sommer C. Characterization of pain in Fabry disease. Clin J Pain. 2014;30:915–20.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Üçeyler N, He L, Schönfeld D, Kahn AK, Reiners K, Hilz MJ, et al. Small fibers in Fabry disease: baseline and follow-up data under enzyme replacement therapy. J Peripher Nerv Syst. 2011;16:304–14.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Vlckova-Moravcova E, Bednarik J, Belobradkova J, Sommer C. Small-fibre involvement in diabetic patients with neuropathic foot pain. Diabet Med. 2008;25:692–9.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Sorensen L, Molyneaux L, Yue DK. The relationship among pain, sensory loss, and small nerve fibers in diabetes. Diabetes Care. 2006;29:883–7.PubMedCrossRefGoogle Scholar
  55. 55.
    Günes HN, Bekircan-Kurt CE, Tan E, Erdem-Ozdamar S. The histopathological evaluation of small fiber neuropathy in patients with vitamin B12 deficiency. Acta Neurol Belg. 2018;118:405–10.PubMedCrossRefGoogle Scholar
  56. 56.
    Üçeyler N, Vollert J, Broll B, Riediger N, Langjahr M, Saffer N, et al. Sensory profiles and skin innervation of patients with painful and painless neuropathies. Pain. 2018;159:1867–76.Google Scholar
  57. 57.
    Provitera V, Gibbons CH, Wendelschafer-Crabb G, Donadio V, Vitale DF, Loavenbruck A, et al. The role of skin biopsy in differentiating small-fiber neuropathy from ganglionopathy. Eur J Neurol. 2018;25:848–53.PubMedCrossRefGoogle Scholar
  58. 58.
    Cazzato D, Lauria G. Small fibre neuropathy. Curr Opin Neurol. 2017;30:490–9.PubMedCrossRefGoogle Scholar
  59. 59.
    Waxman SG, Merkies IS, Gerrits MM, Dib-Hajj SD, Lauria G, Cox JJ, et al. Sodium channel genes in pain-related disorders: phenotype-genotype associations and recommendations for clinical use. Lancet Neurol. 2014;13:1152–60.PubMedCrossRefGoogle Scholar
  60. 60.
    Herrmann DN, O’Connor AB, Schwid SR, Da Y, Goodman AD, Rafferty J, et al. Broadening the spectrum of controls for skin biopsy in painful neuropathies. Muscle Nerve. 2010;42:436–8.PubMedCrossRefGoogle Scholar
  61. 61.
    Ringkamp M, Raja SN, Campbell A, Meyer RA. Peripheral mechanisms of cutaneous nociception. In: McMahon SB, Koltzenburg M, Tracey I, Turk DC, editors. Wall and Melzack’s textbook of pain. Philadelphia: Elsevier; 2013. p. 1–30.Google Scholar
  62. 62.
    Taylor AM, Peleshok JC, Ribeiro-da-Silva A. Distribution of P2X(3)-immunoreactive fibers in hairy and glabrous skin of the rat. J Comp Neurol. 2009;514:555–66.PubMedCrossRefGoogle Scholar
  63. 63.
    Nolano M, Provitera V, Caporaso G, Stancanelli A, Leandri M, Biasiotta A, et al. Cutaneous innervation of the human face as assessed by skin biopsy. J Anat. 2013;222:161–9.PubMedCrossRefGoogle Scholar
  64. 64.
    Bechakra M, Schuttenhelm BN, Pederzani T, van Doorn PA, de Zeeuw CI, Jongen JLM. The reduction of intraepidermal P2X3 nerve fiber density correlates with behavioral hyperalgesia in a rat model of nerve injury-induced pain. J Comp Neurol. 2017;525:3757–68.PubMedCrossRefGoogle Scholar
  65. 65.
    Schuttenhelm BN, Duraku LS, Dijkstra JF, Walbeehm ET, Holstege JC. Differential changes in the peptidergic and the non-peptidergic skin innervation in rat models for inflammation, dry skin itch, and dermatitis. J Invest Dermatol. 2015;135:2049–57.PubMedCrossRefGoogle Scholar
  66. 66.
    McCoy ES, Taylor-Blake B, Street SE, Pribisko AL, Zheng J, Zylka MJ. Peptidergic CGRPalpha primary sensory neurons encode heat and itch and tonically suppress sensitivity to cold. Neuron. 2013;78:138–51.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Hsieh YL, Lin CL, Chiang H, Fu YS, Lue JH, Hsieh ST. Role of peptidergic nerve terminals in the skin: reversal of thermal sensation by calcitonin gene-related peptide in TRPV1-depleted neuropathy. PLoS One. 2012;7:e50805.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Dubin AE, Patapoutian A. Nociceptors: the sensors of the pain pathway. J Clin Invest. 2010;120:3760–72.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    da Silva Serra I, Husson Z, Bartlett JD, Smith ES. Characterization of cutaneous and articular sensory neurons. Mol Pain. 2016;12.  https://doi.org/10.1177/1744806916636387.CrossRefGoogle Scholar
  70. 70.
    Wooten M, Weng HJ, Hartke TV, Borzan J, Klein AH, Turnquist B, et al. Three functionally distinct classes of C-fibre nociceptors in primates. Nat Commun. 2014;5:4122.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Lauria G, Morbin M, Lombardi R, Capobianco R, Camozzi F, Pareyson D, et al. Expression of capsaicin receptor immunoreactivity in human peripheral nervous system and in painful neuropathies. J Peripher Nerv Syst. 2006;11:262–71.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Axelsson HE, Minde JK, Sonesson A, Toolanen G, Hogestatt ED, Zygmunt PM. Transient receptor potential vanilloid 1, vanilloid 2 and melastatin 8 immunoreactive nerve fibers in human skin from individuals with and without Norrbottnian congenital insensitivity to pain. Neuroscience. 2009;162:1322–32.PubMedCrossRefGoogle Scholar
  73. 73.
    Wilder-Smith EP, Ong WY, Guo Y, Chow AW. Epidermal transient receptor potential vanilloid 1 in idiopathic small nerve fibre disease, diabetic neuropathy and healthy human subjects. Histopathology. 2007;51:674–80.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Han SB, Kim H, Cho SH, Lee JD, Chung JH, Kim HS. Transient Receptor Potential Vanilloid-1 in Epidermal Keratinocytes May Contribute to Acute Pain in Herpes Zoster. Acta Derm Venereol. 2016;96:319–22.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Chao CC, Tseng MT, Lin YJ, Yang WS, Hsieh SC, Lin YH, et al. Pathophysiology of neuropathic pain in type 2 diabetes: skin denervation and contact heat-evoked potentials. Diabetes Care. 2010;33:2654–9.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Tseng MT, Hsieh SC, Shun CT, Lee KL, Pan CL, Lin WM, et al. Skin denervation and cutaneous vasculitis in systemic lupus erythematosus. Brain. 2006;129:977–85.CrossRefGoogle Scholar
  77. 77.
    Casanova-Molla J, Morales M, Garrabou G, Sola-Valls N, Soriano A, Calvo M, et al. Mitochondrial loss indicates early axonal damage in small fiber neuropathies. J Peripher Nerv Syst. 2012;17:147–57.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Sommer C, Lindenlaub T, Zillikens D, Toyka KV, Naumann M. Selective loss of cholinergic sudomotor fibers causes anhidrosis in Ross syndrome. Ann Neurol. 2002;52:247–50.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Lauria G, Cazzato D, Porretta-Serapiglia C, Casanova-Molla J, Taiana M, Penza P, et al. Morphometry of dermal nerve fibers in human skin. Neurology. 2011;77:242–9.PubMedCrossRefGoogle Scholar
  80. 80.
    Karlsson P, Porretta-Serapiglia C, Lombardi R, Jensen TS, Lauria G. Dermal innervation in healthy subjects and small fiber neuropathy patients: a stereological reappraisal. J Peripher Nerv Syst. 2013;18:48–53.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Doppler K, Frank F, Koschker AC, Reiners K, Sommer C. Nodes of Ranvier in skin biopsies of patients with diabetes mellitus. J Peripher Nerv Syst. 2017;22:182–90.PubMedCrossRefGoogle Scholar
  82. 82.
    Doppler K, Werner C, Henneges C, Sommer C. Analysis of myelinated fibers in human skin biopsies of patients with neuropathies. J Neurol. 2012;259:1879–87.PubMedCrossRefGoogle Scholar
  83. 83.
    Gibbons CH, Illigens BM, Wang N, Freeman R. Quantification of sweat gland innervation: a clinical-pathologic correlation. Neurology. 2009;72:1479–86.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Dabby R, Vaknine H, Gilad R, Djaldetti R, Sadeh M. Evaluation of cutaneous autonomic innervation in idiopathic sensory small-fiber neuropathy. J Peripher Nerv Syst. 2007;12:98–101.PubMedCrossRefGoogle Scholar
  85. 85.
    Kokotis P, Uceyler N, Werner C, Tsivgoulis G, Papanikola N, Katsanos AH, et al. Quantification of sweat gland innervation in patients with Fabry disease: a case-control study. J Neurol Sci. 2018;390:135–8.PubMedCrossRefGoogle Scholar
  86. 86.
    Pare M, Smith AM, Rice FL. Distribution and terminal arborizations of cutaneous mechanoreceptors in the glabrous finger pads of the monkey. J Comp Neurol. 2002;445:347–59.PubMedCrossRefGoogle Scholar
  87. 87.
    Rice FL, Albrecht PJ. Cutaneous mechanisms of tactile perception: morphological and chemical organization of the innervation to the skin. In: Basbaum A, Kaneko A, Shepherd GM, Westheimer G, editors. The senses. San Diego: Academic Press; 2008. p. 1–32.Google Scholar
  88. 88.
    Rice FL, Rasmusson DD. Innervation of the digit on the forepaw of the raccoon. J Comp Neurol. 2000;417:467–90.PubMedCrossRefGoogle Scholar
  89. 89.
    Albrecht PJ, Hou Q, Argoff CE, Storey JR, Wymer JP, Rice FL. Excessive peptidergic sensory innervation of cutaneous arteriole-venule shunts (AVS) in the palmar glabrous skin of fibromyalgia patients: implications for widespread deep tissue pain and fatigue. Pain Med. 2013;14:895–915.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Üçeyler N, Devigili G, Toyka KV, Sommer C. Skin biopsy as an additional diagnostic tool in non-systemic vasculitic neuropathy. Acta Neuropathol. 2010;120:109–16.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Üçeyler N, Braunsdorf S, Kunze E, Riediger N, Scheytt S, Divisova S, et al. Cellular infiltrates in skin and sural nerve of patients with polyneuropathies. Muscle Nerve. 2017;55:884–93.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Casanova-Molla J, Morales M, Planas-Rigol E, Bosch A, Calvo M, Grau-Junyent JM, et al. Epidermal Langerhans cells in small fiber neuropathies. Pain. 2012;153:982–9.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Plante-Bordeneuve V. Transthyretin familial amyloid polyneuropathy: an update. J Neurol. 2018;265:976–83.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Adams D, Gonzalez-Duarte A, O’Riordan WD, Yang CC, Ueda M, Kristen AV, et al. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N Engl J Med. 2018;379:11–21.CrossRefGoogle Scholar
  95. 95.
    Benson MD, Waddington-Cruz M, Berk JL, Polydefkis M, Dyck PJ, Wang AK, et al. Inotersen treatment for patients with hereditary transthyretin amyloidosis. N Engl J Med. 2018;379:22–31.CrossRefGoogle Scholar
  96. 96.
    Üçeyler N, Schröter N, Kafke W, Kramer D, Wanner C, Weidemann F, et al. Skin globotriaosylceramide 3 load is increased in men with advanced fabry disease. PLoS One. 2016;11:e0166484.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Üçeyler N, Böttger J, Henkel L, Langjahr M, Mayer C, Nordbeck P, et al. Detection of blood Gb3 deposits as a new tool for diagnosis and therapy monitoring in patients with classic Fabry disease. J Intern Med. 2018;284:427–38.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Nolano M, Provitera V, Donadio V, Caporaso G, Stancanelli A, Califano F, et al. Cutaneous sensory and autonomic denervation in CADASIL. Neurology. 2016;86:1039–44.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Doppler K, Jentschke HM, Schulmeyer L, Vadasz D, Janzen A, Luster M, et al. Dermal phospho-alpha-synuclein deposits confirm REM sleep behaviour disorder as prodromal Parkinson’s disease. Acta Neuropathol. 2017;133:535–45.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Schrempf W, Katona I, Dogan I, Felbert VV, Wienecke M, Heller J, et al. Reduced intraepidermal nerve fiber density in patients with REM sleep behavior disorder. Parkinsonism Relat Disord. 2016;29:10–6.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Levine TD. Small fiber neuropathy: disease classification beyond pain and burning. J Cent Nerv Syst Dis. 2018;10:1179573518771703.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Universitätsklinikum WürzburgWürzburgGermany

Personalised recommendations