Small Fiber Pathology in Neurodegenerative Disorders

  • Kathrin Doppler
  • Claudia SommerEmail author


In recent years, pathological findings in small nerve fiber tests have been described in various neurodegenerative disorders, where they were either unexpected or where they potentially explained symptoms that were so far of uncertain origin. In amyotrophic lateral sclerosis (ALS), traditionally considered a pure motor neuron disease, mild sensory symptoms may occur late in the disease. Accordingly, ALS patients have a decrease in epidermal and dermal nerve fiber density of the distal calf skin, as well as morphological changes (focal swellings), regarded as predegenerative changes. These findings support the notion of a distal axonopathy in sensory neurons in ALS. The understanding of Parkinson’s disease has recently changed from a basal ganglia disease to a multisystem disorder. Part of the spectrum of symptoms in PD is sensory disturbance and pain. Patients with Parkinson’s disease have pathological tactile and thermal thresholds in quantitative sensory testing and a significant loss of intraepidermal and autonomic nerve fibers and the touch-sensitive Meissner corpuscles. Furthermore, the pathological hallmark of Parkinson’s disease, deposits of phosphorylated alpha-synuclein, can be detected in dermal fibers. Data on other neurodegenerative disorders and skin innervation are accumulating. Monitoring small fiber function and morphology in these disorders may prove useful as a surrogate marker in clinical trials.


Amyotrophic lateral sclerosis (ALS) Parkinson’s disease Alpha-synuclein Multiple system atrophy (MSA) Kennedy’s disease Friedreich’s ataxia Trinucleotide repeat disorder Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) Ross syndrome Contact heat evoked potential Corneal confocal microscopy 


  1. 1.
    Galvin JE. Interaction of alpha-synuclein and dopamine metabolites in the pathogenesis of Parkinson’s disease: a case for the selective vulnerability of the substantia nigra. Acta Neuropathol. 2006;112:115–26.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Song P, Li S, Wu H, Gao R, Rao G, Wang D, et al. Parkin promotes proteasomal degradation of p62: implication of selective vulnerability of neuronal cells in the pathogenesis of Parkinson’s disease. Protein Cell. 2016;7:114–29.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Munhoz RP, Moro A, Silveira-Moriyama L, Teive HA. Non-motor signs in Parkinson’s disease: a review. Arq Neuropsiquiatr. 2015;73:454–62.PubMedCrossRefGoogle Scholar
  4. 4.
    Jellinger KA. Neuropathobiology of non-motor symptoms in Parkinson disease. J Neural Transm (Vienna). 2015;122:1429–40.CrossRefGoogle Scholar
  5. 5.
    Borghammer P, Knudsen K, Brooks DJ. Imaging systemic dysfunction in Parkinson’s disease. Curr Neurol Neurosci Rep. 2016;16:51.PubMedCrossRefGoogle Scholar
  6. 6.
    Nolano M, Provitera V, Manganelli F, Iodice R, Caporaso G, Stancanelli A, et al. Non-motor involvement in amyotrophic lateral sclerosis: new insight from nerve and vessel analysis in skin biopsy. Neuropathol Appl Neurobiol. 2017;43:119–32.PubMedCrossRefGoogle Scholar
  7. 7.
    Bartolo M, Chio A, Ferrari S, Tassorelli C, Tamburin S, Avenali M, et al. Assessing and treating pain in movement disorders, amyotrophic lateral sclerosis, severe acquired brain injury, disorders of consciousness, dementia, oncology and neuroinfectivology. Evidence and recommendations from the Italian consensus conference on pain in neurorehabilitation. Eur J Phys Rehabil Med. 2016;52:841–54.PubMedPubMedCentralGoogle Scholar
  8. 8.
    van Dijk JG, Haan J, Zwinderman K, Kremer B, van Hilten BJ, Roos RA. Autonomic nervous system dysfunction in Parkinson’s disease: relationships with age, medication, duration, and severity. J Neurol Neurosurg Psychiatry. 1993;56:1090–5.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Dabby R, Djaldetti R, Shahmurov M, Treves TA, Gabai B, Melamed E, et al. Skin biopsy for assessment of autonomic denervation in Parkinson’s disease. J Neural Transm (Vienna). 2006;113:1169–76.CrossRefGoogle Scholar
  10. 10.
    Navarro-Otano J, Casanova-Molla J, Morales M, Valls-Sole J, Tolosa E. Cutaneous autonomic denervation in Parkinson’s disease. J Neural Transm (Vienna). 2015;122:1149–55.CrossRefGoogle Scholar
  11. 11.
    Giannoccaro MP, Donadio V, Incensi A, Pizza F, Cason E, Di Stasi V, et al. Skin biopsy and I-123 MIBG scintigraphy findings in idiopathic Parkinson’s disease and parkinsonism: a comparative study. Mov Disord. 2015;30:986–9.PubMedCrossRefGoogle Scholar
  12. 12.
    Wang N, Gibbons CH, Lafo J, Freeman R. Alpha-Synuclein in cutaneous autonomic nerves. Neurology. 2013;81:1604–10.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Siepmann T, Frenz E, Penzlin AI, Goelz S, Zago W, Friehs I, et al. Pilomotor function is impaired in patients with Parkinson’s disease: a study of the adrenergic axon-reflex response and autonomic functions. Parkinsonism Relat Disord. 2016;31:129–34.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Nolano M, Provitera V, Estraneo A, Selim MM, Caporaso G, Stancanelli A, et al. Sensory deficit in Parkinson’s disease: evidence of a cutaneous denervation. Brain. 2008;131:1903–11.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Novak P, Marya NB, Whren K, Bhawan J. Dermal sheet preparations in the evaluation of dermal innervation in Parkinson’s disease and multiple system atrophy. J Cutan Pathol. 2009;36:296–301.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Doppler K, Ebert S, Üceyler N, Trenkwalder C, Ebentheuer J, Volkmann J, et al. Cutaneous neuropathy in Parkinson’s disease: a window into brain pathology. Acta Neuropathol. 2014;128:99–109.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Donadio V, Incensi A, Leta V, Giannoccaro MP, Scaglione C, Martinelli P, et al. Skin nerve alpha-synuclein deposits: a biomarker for idiopathic Parkinson disease. Neurology. 2014;82:1362–9.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Kass-Iliyya L, Javed S, Gosal D, Kobylecki C, Marshall A, Petropoulos IN, et al. Small fiber neuropathy in Parkinson’s disease: a clinical, pathological and corneal confocal microscopy study. Parkinsonism Relat Disord. 2015;21:1454–60.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Lin CH, Chao CC, Wu SW, Hsieh PC, Feng FP, Lin YH, et al. Pathophysiology of small-fiber sensory system in Parkinson’s disease: skin innervation and contact heat evoked potential. Medicine (Baltimore). 2016;95:e3058.CrossRefGoogle Scholar
  20. 20.
    Akaogi Y, Asahina M, Yamanaka Y, Koyama Y, Hattori T. Sudomotor, skin vasomotor, and cardiovascular reflexes in 3 clinical forms of Lewy body disease. Neurology. 2009;73:59–65.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Toth C, Brown MS, Furtado S, Suchowersky O, Zochodne D. Neuropathy as a potential complication of levodopa use in Parkinson’s disease. Mov Disord. 2008;23:1850–9.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Toth C, Breithaupt K, Ge S, Duan Y, Terris JM, Thiessen A, et al. Levodopa, methylmalonic acid, and neuropathy in idiopathic Parkinson disease. Ann Neurol. 2010;68:28–36.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Rajabally YA, Martey J. Neuropathy in Parkinson disease: prevalence and determinants. Neurology. 2011;77:1947–50.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Nolano M, Provitera V, Manganelli F, Iodice R, Stancanelli A, Caporaso G, et al. Loss of cutaneous large and small fibers in naive and l-dopa-treated PD patients. Neurology. 2017;89:776–84.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Nolano M, Provitera V, Lanzillo B, Santoro L. Neuropathy in idiopathic Parkinson disease: an iatrogenic problem? Ann Neurol. 2011;69:427–8.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Podgorny PJ, Suchowersky O, Romanchuk KG, Feasby TE. Evidence for small fiber neuropathy in early Parkinson’s disease. Parkinsonism Relat Disord. 2016;28:94–9.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Schrempf W, Katona I, Dogan I, Felbert VV, Wienecke M, Heller J, et al. Reduced intraepidermal nerve fiber density in patients with REM sleep behavior disorder. Parkinsonism Relat Disord. 2016;29:10–6.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Kalia LV, Kalia SK. Alpha-Synuclein and Lewy pathology in Parkinson’s disease. Curr Opin Neurol. 2015;28:375–81.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Xu Y, Deng Y, Qing H. The phosphorylation of alpha-synuclein: development and implication for the mechanism and therapy of the Parkinson’s disease. J Neurochem. 2015;135:4–18.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Benskey MJ, Perez RG, Manfredsson FP. The contribution of alpha synuclein to neuronal survival and function—implications for Parkinson’s disease. J Neurochem. 2016;137:331–59.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Del Tredici K, Braak H. Review: sporadic Parkinson’s disease: development and distribution of alpha-synuclein pathology. Neuropathol Appl Neurobiol. 2016;42:33–50.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Longhena F, Faustini G, Missale C, Pizzi M, Spano P, Bellucci A. The contribution of alpha-Synuclein spreading to Parkinson’s disease Synaptopathy. Neural Plast. 2017;2017:5012129.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Rocha EM, De Miranda B, Sanders LH. Alpha-synuclein: pathology, mitochondrial dysfunction and neuroinflammation in Parkinson’s disease. Neurobiol Dis. 2018;109:249–57.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Michell AW, Luheshi LM, Barker RA. Skin and platelet alpha-synuclein as peripheral biomarkers of Parkinson’s disease. Neurosci Lett. 2005;381:294–8.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Chen L, Periquet M, Wang X, Negro A, McLean PJ, Hyman BT, et al. Tyrosine and serine phosphorylation of alpha-synuclein have opposing effects on neurotoxicity and soluble oligomer formation. J Clin Invest. 2009;119:3257–65.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Fujiwara H, Hasegawa M, Dohmae N, Kawashima A, Masliah E, Goldberg MS, et al. Alpha-Synuclein is phosphorylated in synucleinopathy lesions. Nat Cell Biol. 2002;4:160–4.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Ikemura M, Saito Y, Sengoku R, Sakiyama Y, Hatsuta H, Kanemaru K, et al. Lewy body pathology involves cutaneous nerves. J Neuropathol Exp Neurol. 2008;67:945–53.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Miki Y, Tomiyama M, Ueno T, Haga R, Nishijima H, Suzuki C, et al. Clinical availability of skin biopsy in the diagnosis of Parkinson’s disease. Neurosci Lett. 2010;469:357–9.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Doppler K, Weis J, Karl K, Ebert S, Ebentheuer J, Trenkwalder C, et al. Distinctive distribution of phospho-alpha-synuclein in dermal nerves in multiple system atrophy. Mov Disord. 2015;30:1688–92.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Donadio V, Incensi A, Rizzo G, Capellari S, Pantieri R, Stanzani Maserati M, et al. A new potential biomarker for dementia with Lewy bodies: skin nerve alpha-synuclein deposits. Neurology. 2017;89:318–26.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Doppler K, Jentschke HM, Schulmeyer L, Vadasz D, Janzen A, Luster M, et al. Dermal phospho-alpha-synuclein deposits confirm REM sleep behaviour disorder as prodromal Parkinson’s disease. Acta Neuropathol. 2017;133:535–45.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Antelmi E, Donadio V, Incensi A, Plazzi G, Liguori R. Skin nerve phosphorylated alpha-synuclein deposits in idiopathic REM sleep behavior disorder. Neurology. 2017;88:2128–31.PubMedCrossRefGoogle Scholar
  43. 43.
    Kanda T, Tomimitsu H, Yokota T, Ohkoshi N, Hayashi M, Mizusawa H. Unmyelinated nerve fibers in sural nerve in pure autonomic failure. Ann Neurol. 1998;43:267–71.PubMedCrossRefGoogle Scholar
  44. 44.
    Kanda T, Tsukagoshi H, Oda M, Miyamoto K, Tanabe H. Changes of unmyelinated nerve fibers in sural nerve in amyotrophic lateral sclerosis, Parkinson’s disease and multiple system atrophy. Acta Neuropathol. 1996;91:145–54.PubMedCrossRefGoogle Scholar
  45. 45.
    Orimo S, Oka T, Miura H, Tsuchiya K, Mori F, Wakabayashi K, et al. Sympathetic cardiac denervation in Parkinson’s disease and pure autonomic failure but not in multiple system atrophy. J Neurol Neurosurg Psychiatry. 2002;73:776–7.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Orimo S, Suzuki M, Inaba A, Mizusawa H. 123I-MIBG myocardial scintigraphy for differentiating Parkinson’s disease from other neurodegenerative parkinsonism: a systematic review and meta-analysis. Parkinsonism Relat Disord. 2012;18:494–500.PubMedCrossRefGoogle Scholar
  47. 47.
    Donadio V, Cortelli P, Elam M, Di Stasi V, Montagna P, Holmberg B, et al. Autonomic innervation in multiple system atrophy and pure autonomic failure. J Neurol Neurosurg Psychiatry. 2010;81:1327–35.PubMedCrossRefGoogle Scholar
  48. 48.
    Kaufmann H, Hague K, Perl D. Accumulation of alpha-synuclein in autonomic nerves in pure autonomic failure. Neurology. 2001;56:980–1.PubMedCrossRefGoogle Scholar
  49. 49.
    Igari R, Wada M, Wakabayashi K, Kato T. Alpha-Synuclein in the skin nerve of pure autonomic failure. Intern Med. 2011;50:3049–50.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Shishido T, Ikemura M, Obi T, Yamazaki K, Terada T, Sugiura A, et al. Alpha-synuclein accumulation in skin nerve fibers revealed by skin biopsy in pure autonomic failure. Neurology. 2010;74:608–10.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Donadio V, Incensi A, Cortelli P, Giannoccaro MP, Jaber MA, Baruzzi A, et al. Skin sympathetic fiber alpha-synuclein deposits: a potential biomarker for pure autonomic failure. Neurology. 2013;80:725–32.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Donadio V, Incensi A, Piccinini C, Cortelli P, Giannoccaro MP, Baruzzi A, et al. Skin nerve misfolded alpha-synuclein in pure autonomic failure and Parkinson disease. Ann Neurol. 2016;79:306–16.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Provitera V, Nolano M, Caporaso G, Stancanelli A, Manganelli F, Iodice R, et al. Postganglionic sudomotor denervation in patients with multiple system atrophy. Neurology. 2014;82:2223–9.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Doppler K, Volkmann J, Sommer C. Skin biopsies in the differential diagnosis of parkinsonism: are we ready for simplified protocols? Brain. 2016;139:e5.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Nakamura K, Mori F, Tanji K, Miki Y, Toyoshima Y, Kakita A, et al. Alpha-Synuclein pathology in the cranial and spinal nerves in Lewy body disease. Neuropathology. 2016;36:262–9.PubMedCrossRefGoogle Scholar
  56. 56.
    Nakamura K, Mori F, Kon T, Tanji K, Miki Y, Tomiyama M, et al. Filamentous aggregations of phosphorylated alpha-synuclein in Schwann cells (Schwann cell cytoplasmic inclusions) in multiple system atrophy. Acta Neuropathol Commun. 2015;3:29.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Haga R, Sugimoto K, Nishijima H, Miki Y, Suzuki C, Wakabayashi K, et al. Clinical utility of skin biopsy in differentiating between Parkinson’s disease and multiple system atrophy. Parkinsons Dis. 2015;2015:167038.PubMedPubMedCentralGoogle Scholar
  58. 58.
    Zange L, Noack C, Hahn K, Stenzel W, Lipp A. Phosphorylated alpha-synuclein in skin nerve fibres differentiates Parkinson’s disease from multiple system atrophy. Brain. 2015;138:2310–21.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Truini A, Biasiotta A, Onesti E, Di Stefano G, Ceccanti M, La Cesa S, et al. Small-fibre neuropathy related to bulbar and spinal-onset in patients with ALS. J Neurol. 2015;262:1014–8.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Xu YS, Zhang J, Zheng JY, Zhang S, Kang DX, Fan DS. Fully intact contact heat evoked potentials in patients with amyotrophic lateral sclerosis. Muscle Nerve. 2009;39:735–8.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Yang S, Zhang KY, Kariawasam R, Bax M, Fifita JA, Ooi L, et al. Evaluation of skin fibroblasts from amyotrophic lateral sclerosis patients for the rapid study of pathological features. Neurotox Res. 2015;28:138–46.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Sommer C, Lindenlaub T, Zillikens D, Toyka KV, Naumann M. Selective loss of cholinergic sudomotor fibers causes anhidrosis in Ross syndrome. Ann Neurol. 2002;52:247–50.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Perretti A, Nolano M, De Joanna G, Tugnoli V, Iannetti G, Provitera V, et al. Is Ross syndrome a dysautonomic disorder only? An electrophysiologic and histologic study. Clin Neurophysiol. 2003;114:7–16.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Dalla Bella E, Lombardi R, Porretta-Serapiglia C, Ciano C, Gellera C, Pensato V, et al. Amyotrophic lateral sclerosis causes small fiber pathology. Eur J Neurol. 2016;23:416–20.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Weis J, Katona I, Muller-Newen G, Sommer C, Necula G, Hendrich C, et al. Small-fiber neuropathy in patients with ALS. Neurology. 2011;76:2024–9.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Deepika J, Manvir B, Sumit S, Vinay G, Trilochan S, Garima S, et al. Quantitative thermal sensory testing in patients with amyotrophic lateral sclerosis using reaction time exclusive method of levels (MLE). Electromyogr Clin Neurophysiol. 2006;46:145–8.PubMedPubMedCentralGoogle Scholar
  67. 67.
    Isak B, Pugdahl K, Karlsson P, Tankisi H, Finnerup NB, Furtula J, et al. Quantitative sensory testing and structural assessment of sensory nerve fibres in amyotrophic lateral sclerosis. J Neurol Sci. 2017;373:329–34.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Ferrari G, Grisan E, Scarpa F, Fazio R, Comola M, Quattrini A, et al. Corneal confocal microscopy reveals trigeminal small sensory fiber neuropathy in amyotrophic lateral sclerosis. Front Aging Neurosci. 2014;6:278.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Blokhuis AM, Groen EJ, Koppers M, van den Berg LH, Pasterkamp RJ. Protein aggregation in amyotrophic lateral sclerosis. Acta Neuropathol. 2013;125:777–94.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Ince PG, Highley JR, Kirby J, Wharton SB, Takahashi H, Strong MJ, et al. Molecular pathology and genetic advances in amyotrophic lateral sclerosis: an emerging molecular pathway and the significance of glial pathology. Acta Neuropathol. 2011;122:657–71.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Renton AE, Chio A, Traynor BJ. State of play in amyotrophic lateral sclerosis genetics. Nat Neurosci. 2014;17:17–23.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Sabatelli M, Conte A, Zollino M. Clinical and genetic heterogeneity of amyotrophic lateral sclerosis. Clin Genet. 2013;83:408–16.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Nishihira Y, Tan CF, Onodera O, Toyoshima Y, Yamada M, Morita T, et al. Sporadic amyotrophic lateral sclerosis: two pathological patterns shown by analysis of distribution of TDP-43-immunoreactive neuronal and glial cytoplasmic inclusions. Acta Neuropathol. 2008;116:169–82.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Wakabayashi K, Mori F, Tanji K, Orimo S, Takahashi H. Involvement of the peripheral nervous system in synucleinopathies, tauopathies and other neurodegenerative proteinopathies of the brain. Acta Neuropathol. 2010;120:1–12.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Abe K, Ohkubo T, Yokota T. TDP-43 in the skin of amyotrophic lateral sclerosis patients. J Med Dent Sci. 2017;64:9–17.PubMedPubMedCentralGoogle Scholar
  76. 76.
    Suzuki M, Mikami H, Watanabe T, Yamano T, Yamazaki T, Nomura M, et al. Increased expression of TDP-43 in the skin of amyotrophic lateral sclerosis. Acta Neurol Scand. 2010;122:367–72.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Devigili G, Üçeyler N, Beck M, Reiners K, Stoll G, Toyka KV, et al. Vasculitis-like neuropathy in amyotrophic lateral sclerosis unresponsive to treatment. Acta Neuropathol. 2011;122:343–52.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Nolano M, Provitera V, Crisci C, Saltalamacchia AM, Wendelschafer-Crabb G, Kennedy WR, et al. Small fibers involvement in Friedreich’s ataxia. Ann Neurol. 2001;50:17–25.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Manganelli F, Iodice V, Provitera V, Pisciotta C, Nolano M, Perretti A, et al. Small-fiber involvement in spinobulbar muscular atrophy (Kennedy’s disease). Muscle Nerve. 2007;36:816–20.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Antonini G, Gragnani F, Romaniello A, Pennisi EM, Morino S, Ceschin V, et al. Sensory involvement in spinal-bulbar muscular atrophy (Kennedy’s disease). Muscle Nerve. 2000;23:252–8.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Suzuki K, Katsuno M, Banno H, Takeuchi Y, Atsuta N, Ito M, et al. CAG repeat size correlates to electrophysiological motor and sensory phenotypes in SBMA. Brain. 2008;131:229–39.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Sicurelli F, Dotti MT, De Stefano N, Malandrini A, Mondelli M, Bianchi S, et al. Peripheral neuropathy in CADASIL. J Neurol. 2005;252:1206–9.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Kang SY, Oh JH, Kang JH, Choi JC, Lee JS. Nerve conduction studies in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. J Neurol. 2009;256:1724–7.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Nolano M, Provitera V, Donadio V, Caporaso G, Stancanelli A, Califano F, et al. Cutaneous sensory and autonomic denervation in CADASIL. Neurology. 2016;86:1039–44.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Bergmann I, Dauphin M, Naumann M, Flachenecker P, Mullges W, Koltzenburg M, et al. Selective degeneration of sudomotor fibers in Ross syndrome and successful treatment of compensatory hyperhidrosis with botulinum toxin. Muscle Nerve. 1998;21:1790–3.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Nolano M, Provitera V, Perretti A, Stancanelli A, Saltalamacchia AM, Donadio V, et al. Ross syndrome: a rare or a misknown disorder of thermoregulation? A skin innervation study on 12 subjects. Brain. 2006;129:2119–31.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Universitätsklinikum WürzburgWürzburgGermany

Personalised recommendations