Advertisement

Understanding Uncertainty Associated with Stormwater Quality Modelling

  • Buddhi Wijesiri
  • An Liu
  • Prasanna Egodawatta
  • James McGree
  • Ashantha Goonetilleke
Chapter
Part of the SpringerBriefs in Water Science and Technology book series (BRIEFSWATER)

Abstract

Stormwater quality modelling is the common practice for generating information necessary for decision making in the design of stormwater pollution mitigation measures. However, the reliability of modelling outcomes largely depends on two types of uncertainty, namely, uncertainty inherent to stormwater pollutant processes and process modelling uncertainty. The inherent process uncertainty arises due to the intrinsic variability in stormwater pollutant processes. The modelling uncertainty arises from model structure and parameters, and input data and calibration data. The chapter establishes the context for defining and quantifying the uncertainty inherent to pollutant build-up and wash-off processes by bringing together current scientific knowledge from research literature. The temporal changes in particle size results in different particle behaviour during build-up and wash-off, leading to variations in particle-bound pollutant load and composition. Accordingly, the variation in particle size over time can be used as a basis for accounting for process variability in stormwater quality modelling, and thereby assessing process uncertainty.

Keywords

Process uncertainty Particle size Pollutant build-up Pollutant wash-off Stormwater quality Stormwater pollutant processes 

References

  1. Banerjee, A. D. K. (2003). Heavy metal levels and solid phase speciation in street dusts of Delhi, India. Environmental Pollution, 123(1), 95–105.CrossRefGoogle Scholar
  2. Barbosa, A. E., Fernandes, J. N., & David, L. M. (2012). Key issues for sustainable urban stormwater management. Water Research, 46(20), 6787–6798.CrossRefGoogle Scholar
  3. Beven, K., & Binley, A. (1992). The future of distributed models: Model calibration and uncertainty prediction. Hydrological Processes, 6(3), 279–298.CrossRefGoogle Scholar
  4. Beven, K. J. (2009). Environmental modelling: An uncertain future? London, UK: Routledge.Google Scholar
  5. Bicknell, B. R., Imhoff, J. C., Kittle Jr, J. L., Donigian Jr, A. S., & Johanson, R. C. (1997). Hydrological simulation program-fortran: User’s manual version 11. EPA/600/SR-97/080. Athens, GA: U.S. Environmental Protection Agency, National Exposure Research Laboratory.Google Scholar
  6. Birch, G. F., & Scollen, A. (2003). Heavy metals in road dust, gully pots and parkland soils in a highly urbanised sub-catchment of Port Jackson, Australia. Soil Research, 41(7), 1329–1342.CrossRefGoogle Scholar
  7. Bocca, B., Alimonti, A., Petrucci, F., Violante, N., Sancesario, G., Forte, G., et al. (2004). Quantification of trace elements by sector field inductively coupled plasma mass spectrometry in urine, serum, blood and cerebrospinal fluid of patients with Parkinson’s disease. Spectrochimica Acta, Part B: Atomic Spectroscopy, 59(4), 559–566.  https://doi.org/10.1016/j.sab.2004.02.007.CrossRefGoogle Scholar
  8. Chen, J., & Adams, B. J. (2007). A derived probability distribution approach to stormwater quality modeling. Advances in Water Resources, 30(1), 80–100.CrossRefGoogle Scholar
  9. Chen, M.-H., Fang, H.-W., & Huang, L. (2013). Surface charge distribution and its impact on interactions between sediment particles. Ocean Dynamics, 63(9–10), 1113–1121.CrossRefGoogle Scholar
  10. Cristina, C., Tramonte, J., & Sansalone, J. (2002). A granulometry-based selection methodology for separation of traffic-generated particles in urban highway snowmelt runoff. Water, Air, and Soil pollution, 136(1–4), 33–53.  https://doi.org/10.1023/A:1015239831619.CrossRefGoogle Scholar
  11. Delgado, A. V., González-Caballero, F., Hunter, R. J., Koopal, L. K., & Lyklema, J. (2007). Measurement and interpretation of electrokinetic phenomena. Journal of Colloid and Interface Science, 309(2), 194–224.CrossRefGoogle Scholar
  12. Dong, T. T. T., & Lee, B.-K. (2009). Characteristics, toxicity, and source apportionment of polycylic aromatic hydrocarbons (PAHs) in road dust of Ulsan, Korea. Chemosphere, 74(9), 1245–1253.CrossRefGoogle Scholar
  13. Dotto, C. B. S., Mannina, G., Kleidorfer, M., Vezzaro, L., Henrichs, M., McCarthy, D. T., et al. (2012). Comparison of different uncertainty techniques in urban stormwater quantity and quality modelling. Water Research, 46(8), 2545–2558.CrossRefGoogle Scholar
  14. Duong, T. T. T., & Lee, B.-K. (2009). Partitioning and mobility behavior of metals in road dusts from national-scale industrial areas in Korea. Atmospheric Environment, 43(22–23), 3502–3509.CrossRefGoogle Scholar
  15. Egodawatta, P., & Goonetilleke, A. (2006). Chracteristics of pollutants build-up on residential road surfaces. In Proceedings of the 7th International Conference on HydroScience and Engineering, Philadelphia, USA.Google Scholar
  16. Egodawatta, P., Thomas, E., & Goonetilleke, A. (2007). Mathematical interpretation of pollutant wash-off from urban road surfaces using simulated rainfall. Water Res, 41(13), 3025–3031.CrossRefGoogle Scholar
  17. Gbeddy, G., Jayarathne, A., Goonetilleke, A., Ayoko, G. A., & Egodawatta, P. (2018). Variability and uncertainty of particle build-up on urban road surfaces. Science of the Total Environment, 640–641, 1432–1437.  https://doi.org/10.1016/j.scitotenv.2018.05.384.CrossRefGoogle Scholar
  18. Giudice, D. D., Honti, M., Scheidegger, A., Albert, C., Reichert, P., & Rieckermann, J. (2013). Improving uncertainty estimation in urban hydrological modeling by statistically describing bias. Hydrology and Earth System Sciences, 17(10), 4209–4225.CrossRefGoogle Scholar
  19. Gunawardana, C., Goonetilleke, A., & Egodawatta, P. (2013). Adsorption of heavy metals by road deposited solids. Water Science and Technology, 67(11), 2622–2629.CrossRefGoogle Scholar
  20. Gunawardana, C., Goonetilleke, A., Egodawatta, P., Dawes, L., & Kokot, S. (2012). Role of solids in heavy metals build-up on urban road surfaces. Journal of Environmental Engineering, 138(4), 490–498.CrossRefGoogle Scholar
  21. Gunawardana, C. T. K. (2011). Influence of physical and chemical properties of solids on heavy metal adsorption. (Ph.D.), Queensland University of Technology.Google Scholar
  22. Gunawardena, J., Egodawatta, P., Ayoko, G. A., & Goonetilleke, A. (2013). Atmospheric deposition as a source of heavy metals in urban stormwater. Atmospheric Environment, 68, 235–242.CrossRefGoogle Scholar
  23. Hamers, T., Smit, L. A. M., Bosveld, A. T. C., van den Berg, J. H. J., Koeman, J. H., van Schooten, F. J., et al. (2002). Lack of a distinct gradient in biomarker responses in small mammals collected at different distances from a highway. Archives of Environmental Contamination and Toxicology, 43(3), 0345–0355.  https://doi.org/10.1007/s00244-002-1230-3.CrossRefGoogle Scholar
  24. Helton, J. C., & Burmaster, D. E. (1996). Treatment of aleatory and epistemic uncertainty in performance assessments for complex systems. Reliability Engineering & System Safety, 54(2–3), 91–258.CrossRefGoogle Scholar
  25. Herngren, L., Goonetilleke, A., & Ayoko, G. A. (2006). Analysis of heavy metals in road-deposited sediments. Analytica Chimica Acta, 571(2), 270–278.CrossRefGoogle Scholar
  26. Herngren, L., Goonetilleke, A., Ayoko, G. A., & Mostert, M. M. M. (2010). Distribution of polycyclic aromatic hydrocarbons in urban stormwater in Queensland. Australia. Environmental Pollution, 158(9), 2848–2856.CrossRefGoogle Scholar
  27. Herngren, L. F. (2005). Build-up and wash-off process kinetics of PAHs and heavy metals on paved surfaces using simulated rainfall. (Ph.D.), Queensland University of Technology.Google Scholar
  28. Hinds, W. C. (2012). Aerosol technology: Properties, behavior, and measurement of airborne particles. USA: Wiley.Google Scholar
  29. Jayarathne, A., Egodawatta, P., Ayoko, G. A., & Goonetilleke, A. (2018). Intrinsic and extrinsic factors which influence metal adsorption to road dust. Science of the Total Environment, 618(Supplement C), 236–242. doi: https://doi.org/10.1016/j.scitotenv.2017.11.047.CrossRefGoogle Scholar
  30. Kanso, A., Gromaire, M.-C., Gaume, E., Tassin, B., & Chebbo, G. (2003). Bayesian approach for the calibration of models: Application to an urban stormwater pollution model. Water Science and Technology, 47(4), 77–84.CrossRefGoogle Scholar
  31. Kiureghian, A. D., & Ditlevsen, O. (2009). Aleatory or epistemic? Does it matter? Structural Safety, 31(2), 105–112.CrossRefGoogle Scholar
  32. Kupiainen, K. (2007). Road dust from pavement wear and traction sanding. Monographs of the Boreal Environment Research, (Vol. 26). Finnish Environmental Institute, Helsinki, Finland.Google Scholar
  33. Lau, S.-L., & Stenstrom, M. K. (2005). Metals and PAHs adsorbed to street particles. Water Research, 39(17), 4083–4092.CrossRefGoogle Scholar
  34. Li, Y., Jia, Z., Wijesiri, B., Song, N., & Goonetilleke, A. (2018). Influence of traffic on build-up of polycyclic aromatic hydrocarbons on urban road surfaces: A Bayesian network modelling approach. Environmental Pollution, 237, 767–774.  https://doi.org/10.1016/j.envpol.2017.10.125.CrossRefGoogle Scholar
  35. Li, Y., Lau, S.-L., Kayhanian, M., & Stenstrom, M. K. (2005). Particle size distribution in highway runoff. Journal of Environmental Engineering, 131(9), 1267–1276.CrossRefGoogle Scholar
  36. Liu, A., Goonetilleke, A., & Egodawatta, P. (2015). Role of rainfall and catchment characteristics on urban stormwater quality. Singapur: Springer.Google Scholar
  37. Liu, A., Wijesiri, B., Hong, N., Zhu, P., Egodawatta, P., & Goonetilleke, A. (2018). Understanding re-distribution of road deposited particle-bound pollutants using a Bayesian Network (BN) approach. Journal of Hazardous Materials, 355, 56–64.CrossRefGoogle Scholar
  38. Ma, Y., Liu, A., Egodawatta, P., McGree, J., & Goonetilleke, A. (2016). Quantitative assessment of human health risk posed by polycyclic aromatic hydrocarbons in urban road dust. Science of the Total Environment. doi:http://dx.doi.org/10.1016/j.scitotenv.2016.09.148.CrossRefGoogle Scholar
  39. Ma, Y., McGree, J., Liu, A., Deilami, K., Egodawatta, P., & Goonetilleke, A. (2017). Catchment scale assessment of risk posed by traffic generated heavy metals and polycyclic aromatic hydrocarbons. Ecotoxicology and Environmental Safety, 144(Supplement C), 593–600. doi: https://doi.org/10.1016/j.ecoenv.2017.06.073.CrossRefGoogle Scholar
  40. Mahbub, P., Ayoko, G. A., Goonetilleke, A., & Egodawatta, P. (2011a). Analysis of the build-up of semi and non volatile organic compounds on urban roads. Water Research, 45(9), 2835–2844.CrossRefGoogle Scholar
  41. Mahbub, P., Goonetilleke, A., Egodawatta, P. K., Yigitcanlar, T., & Ayoko, G. A. (2011b). Analysis of build-up of heavy metals and volatile organics on urban roads in Gold Coast, Australia. Water Science and Technology, 63(9), 2077–2085.CrossRefGoogle Scholar
  42. Manning, M. J., Sullivan, R. H., & Kipp, T. M. (1977). Nationwide evaluation of combined sewer overflows and urban stormwater discharges Vol. III: Characterization of discharges. US EPA-600/2-77-064c. Washington, D.C.: U.S. Environmental Protection AgencyGoogle Scholar
  43. Manno, E., Varrica, D., & Dongarrà, G. (2006). Metal distribution in road dust samples collected in an urban area close to a petrochemical plant at Gela, Sicily. Atmospheric Environment, 40(30), 5929–5941.CrossRefGoogle Scholar
  44. MikeUrban. (2014a). Mike urban collection system—User guide. Danish Hydraulic Institute.Google Scholar
  45. MikeUrban. (2014b). Mouse pollution transport—Reference manual. Danish Hydraulic Institute.Google Scholar
  46. Mummullage, S. W. N. (2015). Source characterization of urban road surface pollutants for enhanced water quality predictions. (Ph.D.), Queensland University of Technology (QUT).Google Scholar
  47. Murakami, M., Nakajima, F., & Furumai, H. (2008). The sorption of heavy metal species by sediments in soakaways receiving urban road runoff. Chemosphere, 70(11), 2099–2109.CrossRefGoogle Scholar
  48. Obropta, C. C., & Kardos, J. S. (2007). Review of urban stormwater quality models: Deterministic, stochastic, and hybrid approaches. Journal of the American Water Resources Association, 43(6), 1508–1523.CrossRefGoogle Scholar
  49. Rossman, L. A. (2009). Stormwater management model user’s manual version 5.0. EPA/600/R-05/040. Washington, D.C.: U.S. Environmental Protection Agency.Google Scholar
  50. Sartor, J. D., & Boyd, G. B. (1972). Water pollution aspects of street surface contaminants EPA-R2-72-081. Washington, D.C.: U.S. Environmental Protection Agency.Google Scholar
  51. Sehmel, G. A. (1973). Particle Resuspension from an asphalt road caused by car and truck traffic. Atmospheric Environment (1967), 7(3), 291–309.CrossRefGoogle Scholar
  52. Sparks, D. L. (2003). Environmental soil chemistry: Access Online via Elsevier.Google Scholar
  53. Sposito, G. (2008). The chemistry of soils: Oxford University Press.Google Scholar
  54. Sun, S., Fu, G., Djordjević, S., & Khu, S.-T. (2012). Separating aleatory and epistemic uncertainties: Probabilistic sewer flooding evaluation using probability box. Journal of Hydrology, 420–421, 360–372.CrossRefGoogle Scholar
  55. Takada, H., Onda, T., Harada, M., & Ogura, N. (1991). Distribution and sources of polycyclic aromatic hydrocarbons (PAHs) in street dust from the Tokyo Metropolitan Area. Science of the Total Environment, 107, 45–69.CrossRefGoogle Scholar
  56. Vrugt, J. A., Gupta, H. V., Bouten, W. &, Sorooshian, S. (2003). A shuffled complex evolution metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters. Water Resources Research, 39(8).Google Scholar
  57. Vrugt, J. A., & Robinson, B. A. (2007). Improved evolutionary optimization from genetically adaptive multimethod search. Proceedings of the National Academy of Sciences, 104(3), 708–711. CrossRefGoogle Scholar
  58. Wijesiri, B., Egodawatta, P., McGree, J., & Goonetilleke, A. (2015). Influence of pollutant build-up on variability in wash-off from urban road surfaces. Science of the Total Environment, 527–528, 344–350.  https://doi.org/10.1016/j.scitotenv.2015.04.093.CrossRefGoogle Scholar
  59. Wijesiri, B., Egodawatta, P., McGree, J., & Goonetilleke, A. (2016). Understanding the uncertainty associated with particle-bound pollutant build-up and wash-off: A critical review. Water Research, 101, 582–596.  https://doi.org/10.1016/j.watres.2016.06.013.CrossRefGoogle Scholar
  60. Wijesiri, B., Liu, A., Gunawardana, C., Hong, N., Zhu, P., Guan, Y., et al. (2018). Influence of urbanisation characteristics on the variability of particle-bound heavy metals build-up: A comparative study between China and Australia. Environmental Pollution, 242, 1067–1077.  https://doi.org/10.1016/j.envpol.2018.07.123.CrossRefGoogle Scholar
  61. Wong, T. H. F., Fletcher, T. D., Duncan, H. P., & Jenkins, G. A. (2006). Modelling urban stormwater treatment—A unified approach. Ecological Engineering, 27(1), 58–70.CrossRefGoogle Scholar
  62. Xiang, L., Li, Y., Yang, Z., & Shi, J. (2010). Influence of traffic conditions on polycyclic aromatic hydrocarbon abundance in street dust. Journal of Environmental Science and Health Part A, 45(3), 339–347.CrossRefGoogle Scholar
  63. Zafra, C. A., Temprano, J., & Tejero, I. (2011). Distribution of the concentration of heavy metals associated with the sediment particles accumulated on road surfaces. Environmental Technology, 32(9), 997–1008.CrossRefGoogle Scholar
  64. Zhou, J., Wang, T., Huang, Y., Mao, T., & Zhong, N. (2005). Size distribution of polycyclic aromatic hydrocarbons in urban and suburban sites of Beijing, China. Chemosphere, 61(6), 792–799.CrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Buddhi Wijesiri
    • 1
  • An Liu
    • 2
  • Prasanna Egodawatta
    • 1
  • James McGree
    • 1
  • Ashantha Goonetilleke
    • 1
  1. 1.Science and Engineering FacultyQueensland University of Technology (QUT)BrisbaneAustralia
  2. 2.College of Chemistry and Environmental EngineeringShenzhen UniversityShenzhenChina

Personalised recommendations