• Fadzil Noor Gonawan
Part of the Springer Theses book series (Springer Theses)


This chapter provides a brief overview of the research background in relation to β-galactosidase-catalyzed conversion of lactose. The essential for lactose conversion is described in this chapter. Lactose can be converted to various types of product, and this research is utilizing β-galactosidase as a biocatalyst which results in the formation of saccharides. Therefore, β-galactosidase-catalyzed reaction with lactose as a substrate is introduced in the following subsection. This section also introduces the problem statement, research objectives, and the scope of study.


  1. 1.
    Albayrak N, Yang ST (2002) Production of galacto-oligosaccharides from lactose by Aspergillus oryzae β-galactosidase immobilized on cotton cloth. Biotechnol Bioeng 77(1):8–19CrossRefGoogle Scholar
  2. 2.
    Aronson M (1952) Transgalactosidation during lactose hydrolysis. Arch Biochem Biophys 39(2):370–378CrossRefGoogle Scholar
  3. 3.
    Carvalho F, Prazeres AR, Rivas J (2013) Cheese whey wastewater: characterization and treatment. Sci Total Environ 445:385–396CrossRefGoogle Scholar
  4. 4.
    Chan C, Bérubé P, Hall E (2011) Relationship between types of surface shear stress profiles and membrane fouling. Water Res 45(19):6403–6416CrossRefGoogle Scholar
  5. 5.
    Chockchaisawasdee S, Athanasopoulos VI, Niranjan K, Rastall RA (2005) Synthesis of galacto-oligosaccharide from lactose using β-galactosidase from Kluyveromyces lactis: Studies on batch and continuous UF membrane-fitted bioreactors. Biotechnol Bioeng 89(4):434–443CrossRefGoogle Scholar
  6. 6.
    Cohen Y (1988) Hydrodynamic thickness of adsorbed polymers in steady shear flow. Macromolecules 21(2):494–499CrossRefGoogle Scholar
  7. 7.
    Crittenden R, Playne MJ (1996) Production, properties and applications of food-grade oligosaccharides. Trends Food Sci Technol 7(11):353–361CrossRefGoogle Scholar
  8. 8.
    Cuartas-Uribe B, Alcaina-Miranda M, Soriano-Costa E, Mendoza-Roca J, Iborra-Clar M, Lora-García J (2009) A study of the separation of lactose from whey ultrafiltration permeate using nanofiltration. Desalination 241(1):244–255CrossRefGoogle Scholar
  9. 9.
    Foda MI, Lopez-Leiva M (2000) Continuous production of oligosaccharides from whey using a membrane reactor. Process Biochem 35(6):581–587CrossRefGoogle Scholar
  10. 10.
    Gropper SS, Smith JL (2012) Advanced nutrition and human metabolism, 6th edn. Wadsworth Publishing, CaliforniaGoogle Scholar
  11. 11.
    Güleç H, Gürdaş S, Albayrak N, Mutlu M (2010) Immobilization of Aspergillus oryzae β-galactosidase on low-pressure plasma-modified cellulose acetate membrane using polyethyleneimine for production of galactooligosaccharide. Biotechnol Bioproc E 15(6):1006–1015CrossRefGoogle Scholar
  12. 12.
    Güleç HA (2013) Immobilization of β-galactosidase from Kluyveromyces lactis onto polymeric membrane surfaces: effect of surface characteristics. Colloids Surf B 104:83–90CrossRefGoogle Scholar
  13. 13.
    Heyman MB (2006) Lactose intolerance in infants, children, and adolescents. Pediatrics 118(3):1279–1286CrossRefGoogle Scholar
  14. 14.
    Hueso P, Martin-Sosa S, Martin M-J (2005) Role of milk carbohydrates in preventing bacterial adhesion. In: Yarema KJ (ed) Handbook of carbohydrate engineering. Taylor & Francis Group, London, p 142Google Scholar
  15. 15.
    Iwasaki K-I, Nakajima M, Nakao S-I (1996) Galacto-oligosaccharide production from lactose by an enzymic batch reaction using β-galactosidase. Process Biochem 31(1):69–76CrossRefGoogle Scholar
  16. 16.
    Jovanovic-Malinovska R, Fernandes P, Winkelhausen E, Fonseca L (2012) Galacto-oligosaccharides synthesis from lactose and whey by β-galactosidase immobilized in PVA. Appl Biochem Biotechnol 168(5):1197–1211CrossRefGoogle Scholar
  17. 17.
    Juers DH, Matthews BW, Huber RE (2012) LacZ β-galactosidase: structure and function of an enzyme of historical and molecular biological importance. Protein Sci 21(12):1792–1807CrossRefGoogle Scholar
  18. 18.
    Keim NL, Levin RJ, Havel PJ (2014) Carbohydrates. In: Ros AC, Caballero B, Cousins RJ, Tucker KL, Ziegler TR (eds) Modern nutrition in health and disease, 11st ed. Lippincott Williams & Wilkins, Philadelphia, p 74Google Scholar
  19. 19.
    Kushwaha JP, Srivastava VC, Mall ID (2010) Treatment of dairy wastewater by inorganic coagulants: parametric and disposal studies. Water Res 44(20):5867–5874CrossRefGoogle Scholar
  20. 20.
    Mahoney RR (1998) Galactosyl-oligosaccharide formation during lactose hydrolysis: a review. Food Chem 63(2):147–154CrossRefGoogle Scholar
  21. 21.
    Mateo C, Monti R, Pessela BC, Fuentes M, Torres R, Manuel Guisán J, Fernández‐Lafuente R (2004) Immobilization of lactase from Kluyveromyces lactis greatly reduces the inhibition promoted by glucose. Full hydrolysis of lactose in milk. Biotechnol Prog 20 (4):1259–1262Google Scholar
  22. 22.
    Mozaffar Z, Nakanishi K, Matsuno R (1986) Continuous production of galacto-oligosaccharides from lactose using immobilized β-galactosidase from Bacillus circulans. Appl Microbiol Biotechnol 25(3):224–228Google Scholar
  23. 23.
    Nagy E (2012) Basic equations of the mass transport through a membrane layer. Elsevier, LondonGoogle Scholar
  24. 24.
    Nath A, Bhattacharjee C, Chowdhury R (2013) Synthesis and separation of galacto-oligosaccharides using membrane bioreactor. Desalination 316:31–41CrossRefGoogle Scholar
  25. 25.
    Neri DF, Balcão VM, Costa RS, Rocha IC, Ferreira EM, Torres DP, Rodrigues LR, Carvalho LB, Teixeira JA (2009) Galacto-oligosaccharides production during lactose hydrolysis by free Aspergillus oryzae β-galactosidase and immobilized on magnetic polysiloxane-polyvinyl alcohol. Food Chem 115(1):92–99CrossRefGoogle Scholar
  26. 26.
    Palai T, Bhattacharya PK (2013) Kinetics of lactose conversion to galacto-oligosaccharides by β-galactosidase immobilized on PVDF membrane. J Biosci Bioeng 115(6):668–673CrossRefGoogle Scholar
  27. 27.
    Panesar PS, Kennedy JF, Gandhi DN, Bunko K (2007) Bioutilisation of whey for lactic acid production. Food Chem 105(1):1–14CrossRefGoogle Scholar
  28. 28.
    Park A-R, Oh D-K (2010) Galacto-oligosaccharide production using microbial β-galactosidase: Current state and perspectives. Appl Microbiol Biotechnol 85(5):1279–1286CrossRefGoogle Scholar
  29. 29.
    Sadava DE, Heller HC, Orians GH, Purves WK, Hillis DM (2013) E-book for life: the science of biology, 10th edn. Palgrave Macmillan, LondonGoogle Scholar
  30. 30.
    Saltzman JR, Russell RM (1998) The aging gut: nutritional issues. Gastroenterol Clin North Am 27(2):309–324CrossRefGoogle Scholar
  31. 31.
    Shin H-J, Yang J-W (1994) Galacto-oligosaccharide production by β-galactosidase in hydrophobic organic media. Biotech Lett 16(11):1157–1162CrossRefGoogle Scholar
  32. 32.
    Starr C, Evers CA, Starr L (2011) Biology: concepts and applications without physiology. Cengage Learning, BostonGoogle Scholar
  33. 33.
    Szczodrak J (2000) Hydrolysis of lactose in whey permeate by immobilized β-galactosidase from Kluyveromyces fragilis. J Mol Catal B Enzym 10(6):631–637CrossRefGoogle Scholar
  34. 34.
    Ulbricht M, Riedel M, Marx U (1996) Novel photochemical surface functionalization of polysulfone ultrafiltration membranes for covalent immobilization of biomolecules. J Membr Sci 120(2):239–259CrossRefGoogle Scholar
  35. 35.
    Urrutia P, Rodriguez-Colinas Br, Fernandez-Arrojo L, Ballesteros AO, Wilson L, Illanes As, Plou FJ (2013) Detailed analysis of galactooligosaccharides synthesis with β-galactosidase from Aspergillus oryzae. J Agric Food Chem 61(5):1081–1087CrossRefGoogle Scholar
  36. 36.
    Zheng P, Yu H, Sun Z, Ni Y, Zhang W, Fan Y, Xu Y (2006) Production of galacto-oligosaccharides by immobilized recombinant β-galactosidase from Aspergillus candidus. Biotechnol J 1(12):1464–1470CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.School of Chemical EngineeringUniversiti Sains MalaysiaPenangMalaysia

Personalised recommendations