Advertisement

Navigation in Laparoscopic and Robotic Urologic Surgery

  • Fumiya HongoEmail author
  • Osamu Ukimura
Chapter

Abstract

Augmented reality for surgical navigation is considered to visually recognize organs in the surgical field, for example, additional information not perceptible in reality is presented in real time on the endoscope screen by superimposing information not directly visible macroscopically or endoscopically. It is a surgical assistance technology aiming at improvement of the objective of surgery.

In surgery navigation, it is necessary to prepare an organ tracking system to acquire information on the spatial position of the target in real time similar to the spatial position tracking system, like a satellite GPS.

In future, application for hologram display using a laser light, commentary characters and sound up-dating the target condition in real time, a system informing of the safety and risk to the operator through color codes and alarm sound will be expected. Also, complementation and improvement of judgment ability will be possible by introducing Artificial Intelligence (AI).

Keywords

Kidney cancer Prostate cancer Augmented reality Three-dimensional Medical imaging 

Notes

Acknowledgement

Conflict of Interest: None.

References

  1. Edgcumbe P, Pratt P, Yang GZ, Nguan C, Rohling R. Pico Lantern: surface reconstruction and augmented reality in laparoscopic surgery using a pick-up laser projector. Med Image Anal. 2015;25(1):95–102.CrossRefGoogle Scholar
  2. Epp H, Kalin M, Miller D. PC software for artificial intelligence applications. Science. 1988;240(4853):824–30.CrossRefGoogle Scholar
  3. Hartl AD, Arth C, Grubert J, Schmalstieg D. Efficient verification of holograms using mobile augmented reality. IEEE Trans Vis Comput Graph. 2016;22(7):1843–51.CrossRefGoogle Scholar
  4. Isotani S, Shimoyama H, Yokota I, China T, Hisasue S, Ide H, Muto S, Yamaguchi R, Ukimura O, Horie S, et al. Feasibility and accuracy of computational robot-assisted partial nephrectomy planning by virtual partial nephrectomy analysis. Int J Urol. 2015;22(5):439–46.  https://doi.org/10.1111/iju.12714. Epub 2015 Mar 17.CrossRefPubMedGoogle Scholar
  5. Komai Y, Sugimoto M, Gotohda N, Matsubara N, Kobayashi T, Sakai Y, et al. Patient-specific 3-dimensional printed kidney designed for “4D” surgical navigation: a novel aid to facilitate minimally invasive off-clamp partial nephrectomy in complex tumor cases. Urology. 2016;91:226–33.CrossRefGoogle Scholar
  6. Lanchon C, Custillon G, Moreau-Gaudry A, Descotes JL, Long JA, Fiard G, Voros S. Augmented reality using transurethral ultrasound for laparoscopic radical prostatectomy: preclinical evaluation. J Urol. 2016;196(1):244–50.CrossRefGoogle Scholar
  7. Marescaux J, Rubino F, Arenas M, Mutter D, Soler L. Augmented-reality-assisted laparoscopic adrenalectomy. JAMA. 2004;292(18):2214–5.PubMedGoogle Scholar
  8. Müller M, Rassweiler MC, Klein J, Seitel A, Gondan M, Baumhauer M, Teber D, Rassweiler JJ, Meinzer HP, Maier-Hein L. Mobile augmented reality for computer-assisted percutaneous nephrolithotomy. Int J Comput Assist Radiol Surg. 2013;8(4):663–75.CrossRefGoogle Scholar
  9. Nakamoto M, Ukimura O, Faber K, Gill IS. Current progress on augmented reality visualization in endoscopic surgery. Curr Opin Urol. 2012;22:121–6.CrossRefGoogle Scholar
  10. Nakamoto M, Ukimura O, Gill IS, et al. Realtime organ tracking for endoscopic augmented reality visualization using miniature wireless magnetic tracker. In: Dohi T, Sakura I, Liao H, editors. Medical imaging and augmented reality, (MIAR) 2008. New York: Springer; 2008. p. 359–66.CrossRefGoogle Scholar
  11. Okihara K, Kamoi K, Kanazawa M, Yamada T, Ukimura O, Kawauchi A, Miki T. Transrectal ultrasound navigation during minilaparotomy retropubic radical prostatectomy: impact on positive margin rates and prediction of earlier return to urinary continence. Int J Urol. 2009;16:820–5.CrossRefGoogle Scholar
  12. Schneider A, Pezold S, Saner A, Ebbing J, Wyler S, Rosenthal R, Cattin PC. Augmented reality assisted laparoscopic partial nephrectomy. Med Image Comput Comput Assist Interv. 2014;17(Pt 2):357–64.PubMedGoogle Scholar
  13. Shin T, Ukimura O, Gill IS. Three-dimensional printed model of prostate anatomy and targeted biopsy-proven index tumor to facilitate nerve-sparing prostatectomy. Eur Urol. 2016;69(2):377–9.CrossRefGoogle Scholar
  14. Simpfendörfer T, Baumhauer M, Müller M, Gutt CN, Meinzer HP, Rassweiler JJ, Guven S, Teber D. Augmented reality visualization during laparoscopic radical prostatectomy. J Endourol. 2011;25(12):1841–5.CrossRefGoogle Scholar
  15. Simpfendörfer T, Gasch C, Hatiboglu G, Müller M, Maier-Hein L, Hohenfellner M, Teber D. Intraoperative computed tomography imaging for navigated laparoscopic renal surgery: first clinical experience. J Endourol. 2016;30(10):1105–11.CrossRefGoogle Scholar
  16. Su LM, Vagvolgyi BP, Agarwal R, et al. Augmented reality during robot assisted laparoscopic partial nephrectomy: toward real-time three-dimensional-CT to stereoscopic video registration. Urology. 2009;73:896–900.CrossRefGoogle Scholar
  17. Teber D, Guven S, Simpfendörfer T, et al. Augmented reality: a new tool to improve surgical accuracy during laparoscopic partial nephrectomy? Preliminary in vitro and in vivo results. Eur Urol. 2009;56:332–8.CrossRefGoogle Scholar
  18. Ukimura O, Gill IS. Imaging assisted endoscopic surgery—Cleveland Clinic experience. J Endourol. 2008;22(4):803–10.CrossRefGoogle Scholar
  19. Ukimura O, Gill IS. Augmented reality. In: Ukimura O, Gill IS, editors. Contemporary interventional ultrasonography in urology. New York: Springer; 2009a.CrossRefGoogle Scholar
  20. Ukimura O, Gill IS. Image-fusion, augmented reality and predictive surgical navigation. Urol Clin North Am. 2009b;36:115–23.CrossRefGoogle Scholar
  21. Ukimura O, Magi-Galluzzi C, Gill IS. Real-time transrectal ultrasound guidance during laparoscopic radical prostatectomy: impact on surgical margins. J Urol. 2006;175:1304–10.CrossRefGoogle Scholar
  22. Ukimura O, Nakamoto M, Gill IS. 3D reconstruction of renovascular-tumor anatomy to facilitate zero-ischemia laparoscopic and robotic partial nephrectomy. Eur Urol. 2012;61:211–7.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of UrologyKyoto Prefectural University of MedicineKyotoJapan

Personalised recommendations